用户名: 密码: 验证码:
蛋白质分子进化及其与分子内相互作用的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛋白质的进化和分子内(间)相互作用紧密联系。一方面,蛋白质在进化过程中似乎倾向于保持一些关键相互作用,相关突变即属于这种情况。另一方面,蛋白质的进化又必须通过改变分子内(间)的相互作用来实现。对蛋白质分子进化和分子内相互作用关系的研究,对于揭示蛋白质结构与功能的关系,以及蛋白质的分子进化的机理,都具有十分重要的理论意义。本论文从以下四个方面研究蛋白质的分子进化和分子内相互作用的关系。
     (一)根据进化相关性预测蛋白质相互作用面
     在过去的十多年里,已有大量研究工作致力于预测蛋白之间的相互作用,产生了许多新的预测方法。预测蛋白质相互作用大致分为两步。第一步是预测存在相互作用的蛋白对,第二步是预测相互作用蛋白对之间的相互作用面(InteractioninterFace,IF)。但是目前蛋白质相互作用面的预测都需要事先已知蛋白质的三维结构,如果没有结构信息,目前的方法仅能够预测到相关的位点对。针对这一问题,我们提出了一种仅使用蛋白质序列信息来预测IF的新方法——PIFPAM(Predicting protein Interaction interFaces by using PAM matrix)。
     目前普遍认为,如果在蛋白质相互作用面上的一个位点发生突变,那么相互作用面的另一侧则需产生互补的突变,以维持相互作用。因此,蛋白质相互作用面的两侧在进化上会呈现出相关性,因而具有结构相似的进化树。基于这一点,我们开发了一个基于序列的、通过比较分析进化树来预测相互作用面的方法。首先,将存在相互作用的两个亚基家族的序列比对好,并使得两个家族具有相同的序列数和序列顺序。然后,各使用一个长度适中的窗口在两个亚基家族序列上进行滑动,给出两个家族亚基的多个序列片断。在进一步计算每个序列片断的距离矩阵后,估算两个亚基之间的所有可能的成对片断对应的距离矩阵之间的相关系数。最后,通过设定一个阈值,选择相关系数大于阈值的成对片断作为可能的相互作用面。
     首先,我们使用丝氨酸蛋白酶枯草杆菌素(subtilisin)为分子内相互作用面预测的例子,以捕光色素蛋白藻蓝蛋白(phycocyanin,PC)为亚基间相互作用面预测的例子,介绍了PIFPAM法预测相互作用面的步骤。之后,我们详细分析了窗口长度选择、序列选择、阈值选择等多项因素对预测结果的影响,找到了较为优化的参数。在此基础上,我们使用PIFPAM法预测了12个家族蛋白或复合物的相互作用面。对分子内相互作用面预测的精确度是0.41~0.71,对亚基间相互作用面预测的精确度为0.07~0.60。与已报道的方法相比,在相同条件下,此方法在11个家族中预测到了更多的相互作用位点对,并且在其中的8个家族中可以比其他方法多预测超过34%的位点对,显示了此方法的优越性,同时也表明此方法可以推广到其他家族的研究中去。由于此方法仅需要氨基酸序列信息,因此,尤其适用于那些尚未获得三维结构的蛋白家族。对于那些已有部分结构信息的家族,可以通过整合已知结构信息提高预测的精确度。即使对那些完全已知三维结构的蛋白,此方法也可以用于分析在结构中相互接触的作用面两侧在进化上相关性的高低。
     综上,本论文出了一种仅使用进化信息(序列信息)预测蛋白质相互作用面的新方法——PIFPAM法。PIFPAM法对8个家族蛋白质分子内相互作用面预测的精确度为0.41-0.71,对4个亚基间相互作用面预测的精确度为0.07-0.60。与已经报道的方法相比,在11个(共12个)蛋白家族的预测中超过了其他方法,并且在其中的8个家族中可以比其他方法多预测34%以上的位点对。此外,本章系统讨论了不同参数条件对预测结果的影响。PIFPAM法是第一种不依赖蛋白质三维结构预测相互作用面的方法,因此对尚未解析三维结构的蛋白尤其有用。
     (二)改进现有的蛋白质进化相关性分析方法
     虽然计算两个蛋白质进化树的线性相关系数(即r值)的方法已广泛地用于蛋白质的进化分析和蛋白质相互作用的预测中,但是由于此相关系数的计算在很大程度上受序列共同进化历史的影响(通常共同进化历史使得相关系数较大),使得仅靠相关系数数值本身无法有效判断两个蛋白之间是否存在相互作用。本研究的目的就是为相关系数法开发一种统计方法,用以判断两个蛋白之间是否存在相互作用。
     在本研究中,我们提出了一个基于PAM模型模拟产生具有特定进化历史序列的方法。通过此方法,我们可以产生多套与拟分析蛋白序列具有相同(至少高度相似)进化历史的序列。通过分析这些模拟产生的序列之间相关系数的分布,可以获得在相同进化历史下条件下,随机、独立进化获得拟分析蛋白之间相关系数的概率,即P值。若P值小(如P<0.05),我们可以推测两个蛋白在进化过程中很可能存在相互作用。
     我们构建了PC的α和β亚基融合序列的邻接树作为引导树,模拟产生了1000套融合序列,并计算了各模拟树与引导树之间的相似性。总体上,模拟树与引导树具有很高的相似性,相关系数为0.864±0.021。各模拟树之间的相关系数为0.824±0.039。上述结果表明此模拟方法得到的模拟序列与原始序列具有相似进化历史,因此可以用于下一步的P值计算。
     PC(αβ)单体内亚基间有很大的相互作用面,根据相关突变的基本思想,作用面之间应该具有协同进化的关系。我们计算了两个亚基作用面之间的相关系数,为0.515,模拟序列的相关系数为0.266±0.135。通过位点间独立、随机进化得到不小于相关系数0.515的概率仅为P=0.029,在统计上显著,说明相互作用面的位点在进化上存在相关性。
     但是对PC的α亚基全长和β亚基全长之间相关系数的计算表明,尽管两者具有很高的相关系数0.644,但是它的P值高达0.802,说明此相关系数主要来源于两个亚基之间的共同进化历史。PC的相互作用面在进化过程中存在相互作用,但是整体亚基却无法得到显著的相互作用信号,这可能有两方面原因。一个原因可能是拟分析序列的共同进化历史信号太强,掩盖了相互作用信号。另一个可能的原因是蛋白内相互作用面外其他区域的进化特点不同于相互作用面,不同区域具有不同结构的系统发育树,将不同区域合在一起分析使得相互作用信号被抵消。这个结果提示我们需要进一步分析比较蛋白质不同区域的进化特征。
     综上,目前广泛使用计算相关系数的方法进行蛋白质共进化分析和相互作用预测,但是此方法并无法直接判断拟研究的两个蛋白是否真正存在进化相关性和相互作用。针对上述问题,本研究提出了一种基于PAM模型模拟序列进化的方法来改进现有方法。改进后的方法可以给出一个统计值(P)值),说明拟研究的两个蛋白不存在相互作用的条件下得到此相关系数的概率(P值),P值越小,说明两个蛋白存在相互作用的可能性越高。本论文使用PC作为例子研究了PC的α-亚基和β-亚基的相互作用面,以及整个α-亚基和β-亚基的进化相关性,发现亚基相互作用面进化中相互关联(r=0.515,P=0.029),而整个亚基进化上则不显示相关性(r=0.644,P=0.802),暗示着藻蓝蛋白的不同区域具有不同的进化特征。
     (三)蛋白质分子内相互作用网络的进化分析
     蛋白质分子内的氨基酸残基形成一个十分庞大的相互作用网络。通过对氨基酸序列的分析可知,网络内各结点(氨基酸位点)的进化速率不同。在蛋白质三维结构中,这些保守位点并不是随机分布(均匀分布)的,而是一些保守位点倾向于聚在一起。成簇聚在一起的保守位点很可能受到相同的选择压力制约。
     通过对PC的(αβ)单体内残基间相互作用网络的分析发现,整个相互作用网络由多个从内层向外层保守性依次降低的子网络构成。进一步分析可以发现,部分子网络的核心层残基完全保守,并且对应于蛋白已知的功能中心或结构中心。对于PC(αβ)单体来讲,它的三个藻胆蓝素(phycocyanobilin,PCB)代表了蛋白的三个功能中心,这三个功能中心分别存在于以PCB为中心的三个保守子网络中。PC(αβ)单体内亚基间的相互作用面上对亚基的识别和结合其重要作用的两个盐键也分别位于两个保守子网络的核心层中。上述结果表明,蛋白质的功能中心和结构中心以及它们各自的周围残基的确形成了由内层向外层保守性逐渐降低的子网络。本研究利用改进的相关系数法分析不同功能和/或结构中心之间协同进化,结果显示,在21对子网络对中,仅有2对在进化中存在相互作用。上述结果表明,整个藻蓝蛋白的进化是以区域(多数对应于功能和结构中心)为单位的,不同区域具有不同的进化特征和进化树。
     (四)进化过程中分子内相互作用的优化策略
     本论文通过研究适冷酶的适冷进化来研究探讨蛋白质进化过程中分子内相互作用的优化策略。
     适冷酶通常由生活于永久低温环境(如深海、极地和高山)的生物所产生。适冷酶由于在低温下具有高的催化效率,因此是近年来生物化学和相关领域的研究热点之一。目前对适冷机制最流行的解释是适冷酶通过降低热稳定性来提高柔性,而高的柔性则赋予酶高的催化效率。但是,也有报道发现同时具有高的催化效率和高的热稳定性的适冷酶。因此,深入研究适冷酶催化效率-柔性-稳定性三者之间的关系,阐明酶适冷进化的结构基础,对于适冷酶研究以及生物化学相关领域的研究具有重要意义。
     我们从深海细菌Pseudoalteromonas sp.SM9913和北极海冰细菌Pseudoalteromonas sp.SM495中鉴定了属于thermolysin家族(嗜热菌素家族,M4)的两个新的金属蛋白酶,分别命名为MCP-02和E495。这是thermolysin家族中首次报道生化性质的低温来源的酶。将深海MCP-02和北极E495同来源于陆地细菌的中温同源酶pseudolysin进行系统的生化和结构性质比较,结果显示,酶的催化效率和柔性具有相同的顺序,都随来源环境温度的降低而升高,为中温pseudolysin<深海MCP-02<北极E495。但是,酶的热稳定性却有如下顺序:中温pseudolysin>深海MCP-02≈北极E495。上述柔性和热稳定性的顺序上的差异表明,在适冷进化过程中,稳定性的降低并不是提高柔性所必须的,这与目前流行的适冷机制不同。
     长时(30 ns)分子动力学模拟和结构分析表明,蛋白质的热稳定性与静态结构中的平均氢键数目和平均盐键数目有关,键数目越多,结构越稳定。上述三酶静态结构中含有的盐键数目为中温pseudolysin(13.4±0.8/14.4±1.1)<深海MCP-02(8.1±1.0/8.1±1.0)≈北极E495(5.8±0.9/8.0±1.0);而平均氢键数目基本相同,为中温pseudolysin(219±6/206±7)≈深海MCP-02(221±7/210±7)≈北极E495(219±7/209±7)。序列分析表明,Arg数目减少是盐键数目减少的主要原因。
     氢键是蛋白质结构中最重要的次级键,所以很有可能成为蛋白质适冷过程中的优化对象。对于动态结构的研究结果表明,虽然静态结构中氢键的平均数目不变,但是动态结构中氢键的组成和平均寿命却明显不同。我们使用氢键的持续性(persistency)来表征氢键的寿命和稳定性,定义为一定时间段内,每个氢键实际存在的时间占总时间段的比例。氢键持续性越高,氢键寿命越长,越稳定;反之,寿命越短,越不稳定。分析表明,动态结构中,氢键的平均持续性顺序为中温pseudolysin(29.2%/22.3%)>深海MCP-02(28.4%/20.5%)>极地E495(24.7%/18.7%),说明随着生存环境温度的降低,酶中所含氢键的平均持续性也是降低的。氢键持续性顺序与柔性顺序高度相关(R=-0.9995,SD=0.0039),说明在适冷进化中,深海MCP-02和极地E495是通过降低氢键持续性来提高构象柔性的。氢键持续性的分布表明,适冷酶中低持续性氢键的数目增多是动态结构中氢键平均持续性降低的主要原因。结合氨基酸序列分析可以发现,由pseudolysin到MCP-02/E495,氢键平均持续性降低与Asn含量的升高有关,而由MCP-02到E495,氢键平均持续性降低则与Ser+Thr的含量升高有关。
     在thermolysin家族蛋白酶的适冷进化中,主要通过增加Asn、Ser和Thr残基的数目来形成更多的低持续性(低稳定性)氢键,这些新增氢键使得蛋白具有更多的低能构象。由于新增氢键多数具有低的持续性(稳定性),因此,这些低能构象之间的能垒比较低,蛋白能够在这些低能构象之间相对容易地转换,从而使得蛋白具有较高的柔性。较高的柔性则增加了酶的催化效率。
     上述结果也表明,蛋白的柔性和稳定性是由相关但并不相同的结构因素决定的,降低稳定性并非提高柔性的前提。稳定性主要取决于静态结构中键(主要包括氢键和盐键等)的(平均)数目,键数目越多,稳定性越高;而柔性则与这些键的动态持续性(键的稳定性)相关,键的动态持续性越低,柔性越高。这也是之前研究报道中对适冷酶和中温酶静态结构(如晶体结构)的比较经常显示氢键数目没有显著差异的原因。
     本研究是对深海和北极海冰来源的Thermolysin家族蛋白酶性质的首次系统报道,并首次提出了Thermolysin家族蛋白酶的适冷进化模型。本研究首次提出优化氢键动态持续性是酶的一项适冷策略,是蛋白质适冷进化研究的新发现。本研究首次提出构象柔性由键(如氢键)的持续性所决定,而不是由蛋白稳定性所决定,这对于更深入理解酶的催化效率-柔性-稳定性三者之间的关系,以及蛋白质结构与功能之间的关系具有重要意义。
     上述四方面的研究,前三项是从残基角度展开研究的,第四项是从相互作用(键)的角度展开研究的。前三项的研究表明,在进化中,蛋白质内部相互作用面影响着(或限制着)作用面两侧残基的进化,而蛋白质的分子内相互作用网络则是以区域(功能中心和结构中心)为单位,独立进化的。第四项研究告诉我们,分子内相互作用的优化是蛋白质分子进化的一个重要策略。
The molecular evolution and the intra-and inter-molecular interaction of proteins are closely related.On one hand,some key interactions tend to be maintained during evolution.On the other hand,the protein evolves by changing certain intra-molecular interactions.Therefore,the study of the relationships between molecular evolution and intra-molecular interaction is essential to the understanding of structure-function relationship of protein and to the uncovering of mechanisms underlying molecular evolution of the protein.Here,the following studies were conducted to reveal the relationship between protein evolution and intra-molecular interaction.
     Ⅰ.Predicting protein-protein interaction interfaces from co-evolution information
     Identification of protein interaction interfaces is very important for understanding the molecular mechanisms underlying biological phenomena.Here,we present a novel method for predicting protein interaction interfaces from sequences by using PAM matrix(PIFPAM).Sequence alignments for interacting proteins were constructed and parsed into segments using sliding windows.By calculating distance matrix for each segment,the correlation coefficients between segments were estimated.The interaction interfaces were predicted by extracting highly correlated segment pairs from the correlation map.The predictions achieved an accuracy 0.41-0.71 for eight intra-protein interaction examples,and 0.07-0.60 for four inter-protein interaction examples.Compared with three previously published methods,PIFPAM predicted more contacting site pairs for 11 out of the 12 example proteins,and predicted at least 34%more contacting site pairs for eight proteins of them.The factors affecting the predictions were also analyzed.Since PIFPAM uses only the alignments of the two interacting proteins as input,it is especially useful when no three-dimensional protein structure data are available.
     Ⅱ.Improving the analysis of protein co-evolution
     The calculation of correlative coefficient of a pair of evolutionary trees has been used in the estimation of protein co-evolution and in the prediction of protein-protein interaction.However,in many cases,a high correlative coefficient is just only the result of their common evolutionary history rather than the interaction between them. Though efforts have been made to reduce the effect of the common evolutionary history,another key shortage of the method is still untouched,that is the lack of the statistics of the obtained correlative coefficient.For a given correlative coefficient,a P value is needed to give out the probability that an equal or a higher correlative coefficient is obtained by the random and independent mutation of the sites.Here in this study,we presented a method to compute this P value.Firstly,the evolutionary tree of the fusion protein of the proteins under study is constructed,and then this tree is used as a guide tree to simulate to produce multiple sets of sequences with each set having the same evolutionary history as the guide tree of the fusion protein.Because the simulation was conducted under the PAM model,i.e.the sites mutate randomly and independently,the probability that a given correlative coefficient is obtained by random and independent mutation could be calculated.And the P value is calculated as the sum of the probabilities that an equal or a higher correlative coefficient is obtained.For a given correlative coefficient smaller than 0.05,it is suggested that the two proteins co-evolve due to the correlated mutations between their sites.
     Using this method,the common evolutionary history ofα-andβ-subunits of phycocyanin were simulated,and 1000 sequence sets were obtained.The evolutionary trees of the simulated sequences were very similar to the guide tree constructed using the fusion sequence ofα-andβ-subunits(r=0.864±0.021),suggesting that the simulated sequences have similar evolutionary history as the fusion sequence ofα-andβ-subunits,and that they can be used to calculate the P values.The correlative coefficient for the interface residues of theα-andβ-subunits was 0.515(versus r=0.266±0.135 for simulated sequences),and the corresponding P value was 0.029, suggesting that the interface residues were correlated during the evolution.However, the correlative coefficient for the fullα-andβ-subunits was 0.644 with a P value 0.802,suggesting that this r value 0.644 probably come from the common evolutionary history(plus the random and independent evolution of the sites) rather than the correlated mutations.This disagreement looks like coming from two points. The first is the signal of common history is much stronger than the correlated mutations.The second is that different parts of a protein may have different evolutionary trees,and that the combination of different parts may lead to the decrease of the signal.
     Ⅲ.The analysis of protein intra-molecular network
     Each protein molecular contains a huge intra-molecular interaction network with the nodes being the residues or groups and the edges being inter-group interactions. The nodes(sites) have different evolutionary rates,and some conserved sites tend to cluster together,suggesting that the clustered conserved sites might be subject to the same selection pressure.Here,the intra-(αβ) interaction network of phycocyanin was investigated.The results showed that the intra-(αβ) network comprisee 48 subnetworks each with a conserved core.The core residues of some subnetworks were completely conserved.Some subnetworks were related to the functional centers or structural centers of the protein.The three phycocyanobilins within one(αβ) are three functional centers,and they each corresponded to a completely conserved subnetwork with one phycocyanobilin surround by the completely conserved core sites.The conservation of each subnetwork decreased from the core to the periphery. Among the seven subnetworks whose size is bigger than ten residues,only two pair of them(among all 21 pairs of them) have a correlative coefficient with P smaller than 0.05.This result suggested that the functional centers in the protein were nearly independent during evolution.
     Ⅳ.The optimization of intra-molecular interactions during molecular evolution
     The cold adaptation mechanism of cold-adapted enzymes was studied to uncover the optimization strategy of intra-molecular interaction during the protein evolution.
     Increased conformational flexibility is the prevailing explanation for the high catalytic efficiency of cold-adapted enzymes at low temperatures.However,less is known about the structural determinants of flexibility.We reported two novel cold-adapted zinc metalloproteases in the thermolysin family,vibriolysin MCP-02 from a deep sea bacterium and vibriolysin E495 from an Arctic sea ice bacterium,and compared them with their mesophilic homolog,pseudolysin from a terrestrial bacterium.Their catalytic efficiencies,k_(cat)/K_m(10-40℃),followed the order pseudolysin<MCP-02<E495 with a ratio of~1:2:4 at 25℃.MCP-02 and E495 have the same optimal temperature(T_(opt),57℃,5℃lower than pseudolysin) and apparent melting temperature(T_m=64℃,~10℃lower than pseudolysin).Structural analysis showed that the slightly lower stabilities resulted from a decrease in the number of salt bridges.Fluorescence quenching experiments and molecular dynamics simulations showed that the flexibilities of the proteins were pseudolysin<MCP-02<E495,suggesting that optimization of flexibility is a strategy for cold adaptation. Molecular dynamics results showed that the ordinal increase in flexibility from pseudolysin to MCP-02 and E495,especially the increase from MCP-02 to E495, mainly resulted from the decrease of hydrogen-bond stability in the dynamic structure, which was due to the increase in asparagine,serine,and threonine residues.Finally,a model for the cold adaptation of MCP-02 and E495 was proposed.This is the first report of the optimization of hydrogen-bonding dynamics as a strategy for cold adaptation and provides new insights into the structural basis underlying conformational flexibility.
引文
1.王镜岩,朱圣庚,徐长法.生物化学.第三版.高等教育出版社,2002.
    2.Nei,M.,Kumar,S.著,吕宝忠,钟扬,高莉萍等译.分子进化与系统发育.高等教育出版社,2002.
    3.边斐.博士学位论文.2009.
    4.Adekoya,O.A.,Helland,R.,Willassen,N.P.,and Sylte,I.(2006) Comparative sequence and structure analysis reveal features of cold adaptation of an enzyme in the thermolysin family.Proteins 62:435-449.
    5.Aghajari,N.,Feller,G,Gerday,C.,and Haser,R.(1998) Structures of the psychrophilic Alteromonas haloplanctis alpha-amylase give insights into cold adaptation at a molecular level.Structure 6:1503-1516.
    6.Aghajari,N.,Van,P.F.,Villeret,V.,Chessa,J.P.,Gerday,C.,Haser,R.,and Van,B.J.(2003) Crystal structures of a psychrophilic metalloprotease reveal new insights into catalysis by cold-adapted proteases.Proteins 50:636-647.
    7.Altschuh,D.,Lesk,A.M.,Bloomer,A.C.,and Klug,A.(1987) Correlation of co-ordinated amino acid substitutions with function in viruses related to tobacco mosaic virus.J Mol Biol 193:693-707.
    8.Altschuh,D.,Vernet,T.,Berti,P.,Moras,D.,and Nagai,K.(1988) Coordinated amino acid changes in homologous protein families.Protein Eng 2:193-199.
    9.Armon,A.,Graur,D.,and Ben-Tal,N.(2001) ConSurf:an algorithmic tool for the identification of functional regions in proteins by surface mapping of phylogenetic information.J Mol Biol 307:447-463.
    10.Atchley,W.R.,Wollenberg,K.R.,Fitch,W.M.,Terhalle,W.,and Dress,A.W.(2000) Correlations among amino acid sites in bHLH protein domains:an information theoretic analysis.Mol Biol Evol 17:164-178.
    11.Bae,E.,and Phillips,G.N.,Jr.(2004) Structures and analysis of highly homologous psychrophilic,mesophilic,and thermophilic adenylate kinases.J Biol Chem 279:28202-28208.
    12.Banbula,A.,Potempa,J.,Travis,J.,Fernandez-Catalan,C.,Mann,K.,Huber,R.et al.(1998) Amino-acid sequence and three-dimensional structure of the Staphylococcus aureus metalloproteinase at 1.72 A resolution.Structure 6:1185-1193.
    13.Bentahir,M.,Feller,G,Aittaleb,M.,Lamotte-Brasseur,J.,Himri,T.,Chessa,J.P., and Gerday,C. (2000) Structural, kinetic, and calorimetric characterization of the cold-active phosphoglycerate kinase from the antarctic Pseudomonas sp.TACII18.J Biol Chem 275: 11147-11153.
    
    14. Berman,H.M., Westbrook,J., Feng,Z., Gilliland,G., Bhat,T.N., Weissig,H. et al.(2000) The Protein Data Bank. Nucleic Acids Res 28: 235-242.
    
    15. Bickel,P.J., Kechris,K.J., Spector,P.C, Wedemayer,G.J., and Glazer,A.N. (2002) Inaugural Article: finding important sites in protein sequences. Proc Natl Acad Sci U S A 99:14764-14771.
    
    16. Bode,W., Papamokos,E., and Musil,D. (1987) The high-resolution X-ray crystal structure of the complex formed between subtilisin Carlsberg and eglin c, an elastase inhibitor from the leech Hirudo medicinalis. Structural analysis,subtilisin structure and interface geometry. Eur J Biochem 166: 673-692.
    
    17. Bradford,J.R., Needham,C.J., Bulpitt,A.J., and Westhead,D.R. (2006) Insights into protein-protein interfaces using a Bayesian network prediction method. J Mol Biol 362: 365-386.
    
    18. Brandsdal,B.O., Smalas,A.O., and Aqvist,J. (2001) Electrostatic effects play a central role in cold adaptation of trypsin. FEBS Lett 499: 171-175.
    
    19. Chen,X.L., Zhang,Y.Z., Gao,P.J., and Luan,X.W. (2003) Two different proteases produced by a deep-sea psychrotrophic bacterial strain,Pseudoaltermonas sp SM9913. Mar Biol 143: 989-993.
    
    20. Chessa,J.P., Petrescu,I., Bentahir,M., Van,B.J, and Gerday,C. (2000) Purification, physico-chemical characterization and sequence of a heat labile alkaline metalloprotease isolated from a psychrophilic Pseudomonas species.Biochim Biophys Acta 1479: 265-274.
    
    21. Collins,T, Meuwis,M.A., Gerday,C, and Feller,G. (2003) Activity, stability and flexibility in glycosidases adapted to extreme thermal environments. J Mol Biol 328: 419-428.
    
    22. Collins,T, Roulling,F., Piette,F., Marx,J.C., Feller,G., Gerday,C., and D'Amico,S. (2008) Fundamentals of Cold-Adapted Enzymes. In Psychrophiles:from Biodiversity to Biotechnology. Margesin,R., Schinner,F., Marx,J.C., and Gerday,C. (eds). Berlin Heidelberg: Springer-Verlag, pp. 211-227.
    
    23. D'Amico,S., Claverie,P., Collins,T., Georlette,D., Gratia,E., Hoyoux,A. et al. (2002) Molecular basis of cold adaptation. Philos Trans R Soc Lond B Biol Sci 357: 917-925.
    
    24. D'Amico,S., Marx,J.C., Gerday,C., and Feller,G. (2003) Activity-stability relationships in extremophilic enzymes. J Biol Chem 278: 7891-7896.
    25. Date,S.V., and Marcotte,E.M. (2003) Discovery of uncharacterized cellular systems by genome-wide analysis of functional linkages. Nat Biotechnol 21:1055-1062.
    
    26. Dayhoff,M. (1972) Atlas of protein sequence and structure Silver Springs,MD:National Biomedical Research Foundation.
    
    27. Dayhoff,M., Schwartz,R., and Orcutt,B. (1978) Amodel of evolutionary change in proteins. In Atlas of protein sequence and structure. Dayhoff,M. (ed).Silver Springs,MD: National Biomedical Research Foundation, pp. 345-352.
    
    28. del Sol Mesa,A., Pazos,F., and Valencia,A. (2003) Automatic methods for predicting functionally important residues. J Mol Biol 326: 1289-1302.
    
    29. Edgar,R.C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32: 1792-1797.
    
    30. Emanuelsson,O., Brunak,S., von,H.G, and Nielsen,H. (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2:953-971.
    
    31. Enright,A.J., Iliopoulos,I., Kyrpides,N.C, and Ouzounis,C.A. (1999) Protein interaction maps for complete genomes based on gene fusion events. Nature 402: 86-90.
    
    32. Fariselli,P., Olmea,O., Valencia,A., and Casadio,R. (2001) Prediction of contact maps with neural networks and correlated mutations. Protein Eng 14:835-843.
    
    33. Feder,J. (1968) A spectrophotometric assay for neutral protease. Biochem Biophys Res Commun 32: 326-332.
    
    34. Fedoy,A.E., Yang,N., Martinez,A., Leiros,H.K., and Steen,I.H. (2007) Structural and functional properties of isocitrate dehydrogenase from the psychrophilic bacterium Desulfotalea psychrophila reveal a cold-active enzyme with an unusual high thermal stability. J Mol Biol 372: 130-149.
    
    35. Feller,G., and Gerday,C. (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol 1: 200-208.
    
    36. Felsenstein,J. (1989) Phylogeny inference package (version 3.2). Cladistics 5:164-166.
    
    37. Fields,P.A., and Somero,G.N. (1998) Hot spots in cold adaptation: localized increases in conformational flexibility in lactate dehydrogenase A4 orthologs of Antarctic notothenioid fishes. Proc Natl Acad Sci U S A 95: 11476-11481.
    38. Fodor,A.A., and Aldrich,R.W. (2004) Influence of conservation on calculations of amino acid covariance in multiple sequence alignments.Proteins 56: 211-221.
    
    39. Gaasterland,T., and Ragan,M.A. (1998) Microbial genescapes: phyletic and functional patterns of ORF distribution among prokaryotes. Microb Comp Genomics 3: 199-217.
    
    40. Georlette,D., Blaise,V., CoIlins,T., D'Amico,S., Gratia,E., Hoyoux,A. et al.(2004) Some like it cold: biocatalysis at low temperatures. FEMS Microbiol Rev 28: 25-42.
    
    41. Georlette,D., Damien,B., Blaise,V., Depiereux,E., Uversky,V.N., Gerday,C.,and Feller,G. (2003) Structural and functional adaptations to extreme temperatures in psychrophilic, mesophilic, and thermophilic DNA ligases. J Biol Chem 278: 37015-37023.
    
    42. Gertz,J., Elfond,G., Shustrova,A., Weisinger,M., Pellegrini,M., Cokus,S., and Rothschild,B. (2003) Inferring protein interactions from phylogenetic distance matrices. Bioinformatics 19: 2039-2045.
    
    43. Gianese,G., Bossa,F., and Pascarella,S. (2002) Comparative structural analysis of psychrophilic and meso- and thermophilic enzymes. Proteins 47: 236-249.
    
    44. Glazer,A.N. (1985) Light harvesting by phycobilisomes. Annu Rev Biophys Biophys Chem 14: 47-77.
    
    45. Gobel,U., Sander,C., Schneider,R., and Valencia,A. (1994) Correlated mutations and residue contacts in proteins. Proteins 18: 309-317.
    
    46. Goh,C.S., Bogan,A.A., Joachimiak,M., Walther,D., and Cohen,F.E. (2000) Co-evolution of proteins with their interaction partners. J Mol Biol 299:283-293.
    
    47. Goh,C.S., and Cohen,F.E. (2002) Co-evolutionary analysis reveals insights into protein-protein interactions. J Mol Biol 324: 177-192.
    
    48. Gouet,P., Courcelle,E., Stuart,D.I., and Metoz,F. (1999) ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics 15: 305-308.
    
    49. Gray,J.J. (2006) High-resolution protein-protein docking. Curr Opin Struct Biol 16: 183-193.
    
    50. Guex,N., and Peitsch,M.C. (1997) SWISS-MODEL and the Swiss-PdbViewer:an environment for comparative protein modeling. Electrophoresis 18:2714-2723.
    51. Hall,T.A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95-98.
    
    52. Henikoff,S., and Henikoff,J.G. (1992) Amino acid substitution matrices from protein blocks.Proc Natl Acad Sci U S A 89: 10915-10919.
    
    53. Hoyoux,A., Jennes,I., Dubois,P., Genicot,S., Dubail,F., Francois,J.M. et al.(2001) Cold-adapted beta-galactosidase from the Antarctic psychrophile Pseudoalteromonas haloplanktis. Appl Environ Microbiol 67: 1529-1535.
    
    54. Humphrey,W., Dalke,A., and Schulten,K. (1996) VMD: visual molecular dynamics. J Mol Graph 14: 33-38.
    
    55. Jones,D.T., Taylor,W.R., and Thornton,J.M. (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8:275-282.
    
    56. Jones,S., and Thornton,J.M. (1996) Principles of protein-protein interactions.Proc Natl Acad Sci U S A 93: 13-20.
    
    57. Jones,S., and Thornton,J.M. (1997a) Prediction of protein-protein interaction sites using patch analysis. J Mol Biol 727: 133-143.
    
    58. Jones,S., and Thornton,J.M. (1997b) Analysis of protein-protein interaction sites using surface patches. J Mol Biol 272: 121-132.
    
    59. Jothi,R., Cherukuri,P.R, Tasneem,A., and Przytycka,T.M. (2006) Co-evolutionary analysis of domains in interacting proteins reveals insights into domain-domain interactions mediating protein-protein interactions. J Mol Biol 362:861-875.
    
    60. Kann,M.G., Jothi,R., Cherukuri,P.R, and Przytycka,T.M. (2007) Predicting protein domain interactions from coevolution of conserved regions. Proteins 67:811-820.
    
    61. Kann,M.G., Shoemaker,B.A., Panchenko,A.R., and Przytycka,T.M. (2009) Correlated evolution of interacting proteins: looking behind the mirrortree. J Mol Biol 385: 91-98.
    
    62. Kass,I., and Horovitz,A. (2002) Mapping pathways of allosteric communication in GroEL by analysis of correlated mutations. Proteins 48:611-617.
    
    63. La,D., Sutch,B., and Livesay,D.R. (2005) Predicting protein functional sites with phylogenetic motifs. Proteins 58: 309-320.
    64. Landgraf,R., Xenarios,I., and Eisenberg,D. (2001) Three-dimensional cluster analysis identifies interfaces and functional residue clusters in proteins. J Mol Biol 307: 1487-1502.
    
    65. Larkin,M.A., Blackshields,G., Brown,N.P., Chenna,R., McGettigan,P.A.,McWilliam,H. et al. (2007) Clustal W and Clustal X version 2.0.Bioinformatics 23: 2947-2948.
    
    66. Lee,S.O., Kato,J., Nakashima,K., Kuroda,A., Ikeda,T., Takiguchi,N., and Ohtake,H. (2002) Cloning and characterization of extracellular metal protease gene of the algicidal marine bacterium Pseudoalteromonas sp strain A28.Biosci Biotechnol Biochem 66: 1366-1369.
    
    67. Leiros,H.K., Pey,A.L., Innselset,M., Moe,E., Leiros,I., Steen,I.H., and Martinez,A. (2007) Structure of phenylalanine hydroxylase from Colwellia psychrerythraea 34H, a monomeric cold active enzyme with local flexibility around the active site and high overall stability. J Biol Chem 282:21973-21986.
    
    68. Leiros,I, Moe,E, Lanes,O., Smalas,A.O., and Willassen,N.P. (2003) The structure of uracil-DNA glycosylase from Atlantic cod (Gadus morhua) reveals cold-adaptation features. Ada Crystallogr D Biol Crystallogr 59:1357-1365.
    
    69. Lichtarge,O., Bourne,H.R., and Cohen,F.E. (1996) An evolutionary trace method defines binding surfaces common to protein families. J Mol Biol 257:342-358.
    
    70. Livesay,D.R., and La,D. (2005) The evolutionary origins and catalytic importance of conserved electrostatic networks within TIM-barrel proteins.Protein Sci 14: 1158-1170.
    
    71. Lockless,S.W., and Ranganathan,R. (1999) Evolutionarily conserved pathways of energetic connectivity in protein families. Science 286: 295-299.
    
    72. Lonhienne,T., Gerday,C., and Feller,G. (2000) Psychrophilic enzymes:revisiting the thermodynamic parameters of activation may explain local flexibility. Biochim Biophys Acta 1543: 1-10.
    
    73. Lonhienne,T., Zoidakis,J., Vorgias,C.E., Feller,G., Gerday,C., and Bouriotis,V.(2001) Modular structure, local flexibility and cold-activity of a novel chitobiase from a psychrophilic Antarctic bacterium. J Mol Biol 310: 291-297.
    
    74. MacColl,R. (1998) Cyanobacterial phycobilisomes. J Struct Biol 124:311-334.
    
    75. MacKerell,A.D., Bashford,D., Bellott,M., Dunbrack,R.L., Evanseck,J.D., Field,M.J. et al. (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. Journal of Physical Chemistry B102:3586-3616.
    
    76. Marchler-Bauer,A., Anderson,J.B., Derbyshire,M.K., Weese-Scott,C.,Gonzales,N.R., Gwadz,M. et al. (2007) CDD: a conserved domain database for interactive domain family analysis. Nucleic Acids Res 35: D237-D240.
    
    77. Marcotte,E.M., Pellegrini,M., Ng,H.L, Rice,D.W., Yeates,T.O., and Eisenberg,D. (1999a) Detecting protein function and protein-protein interactions from genome sequences. Science 285: 751-753.
    
    78. Marcotte,E.M., Pellegrini,M., Thompson,M.J., Yeates,T.O., and Eisenberg,D.(1999b) A combined algorithm for genome-wide prediction of protein function.Nature 402: 83-86.
    
    79. McDonald,I.K., and Thornton,J.M. (1994) Satisfying hydrogen bonding potential in proteins. J Mol Biol 238: 777-793.
    
    80. Mimuro,M., and Kikuchi,H. (2003) Antenna systems and energy transfer in cyanophyta and rhodophyta. In Light-harvesting antennas in photosynthesis.Green,B., and Parson,W. (eds). Dordrecht: Kluwer Academic Publishers, pp.281-306.
    
    81. Mintseris,J., and Weng,Z. (2005) Structure, function, and evolution of transient and obligate protein-protein interactions. Proc Natl Acad Sci U S A 102: 10930-10935.
    
    82. Miyazaki,K., Wintrode,P.L., Grayling,R.A., Rubingh,D.N., and Arnold,F.H.(2000) Directed evolution study of temperature adaptation in a psychrophilic enzyme.J Mol Biol 297: 1015-1026.
    
    83. Moe,E., Leiros,I., Riise,E.K., Olufsen,M., Lanes,O., Smalas,A., and Willassen,N.P. (2004) Optimisation of the surface electrostatics as a strategy for cold adaptation of uracil-DNA N-glycosylase (UNG) from Atlantic cod (Gadus morhua). J Mol Biol 343: 1221-1230.
    
    84. Murzin,A.G., Brenner,S.E., Hubbard,T., and Chothia,C. (1995) SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol 247: 536-540.
    
    85. Nelson,D.L., and Cox,M.M. (2004) Lehninger principles of biochemistry New York: W.H. Freeman.
    
    86. O'fran,Y, and Rost,B. (2003) Predicted protein-protein interaction sites from local sequence information. FEBS Lett 544: 236-239.
    87. Olmea,O., Rost,B., and Valencia,A. (1999) Effective use of sequence correlation and conservation in fold recognition. J Mol Biol 293: 1221-1239.
    
    88. 01ufsen,M., Smalas,A.O., Moe,E., and Brandsdal,B.O. (2005) Increased flexibility as a strategy for cold adaptation: a comparative molecular dynamics study of cold- and warm-active uracil DNA glycosylase. J Biol Chem 280:18042-18048.
    
    89. Pazos,F., Helmer-Citterich,M., Ausiello,G., and Valencia,A. (1997) Correlated mutations contain information about protein-protein interaction. J Mol Biol 271:511-523.
    
    90. Pazos,F., Ranea,J.A., Juan,D., and Sternberg,M.J. (2005) Assessing protein co-evolution in the context of the tree of life assists in the prediction of the interactome. J Mol Biol 352: 1002-1015.
    
    91. Pazos,F., and Valencia,A. (2001) Similarity of phylogenetic trees as indicator of protein-protein interaction. Protein Eng 14: 609-614.
    
    92. Pazos,F., and Valencia,A. (2008) Protein co-evolution, co-adaptation and interactions. EMBO J 27: 2648-2655.
    
    93. Pazos,F., and Valencia,A. (2002) In silico two-hybrid system for the selection of physically interacting protein pairs. Proteins 47: 219-227.
    
    94. Pellegrini,M, Marcotte,E.M., Thompson,M.J., Eisenberg,D., and Yeates,T.O.(1999) Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. Proc Natl Acad Sci U S A 96: 4285-4288.
    
    95. Phillips,J.C., Braun,R., Wang,W., Gumbart,J., Tajkhorshid,E., Villa,E. et al (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781-1802.
    
    96. Ranea,J.A., Yeats,C., Grant,A., and Orengo,C.A. (2007) Predicting protein function with hierarchical phylogenetic profiles: the Gene3D Phylo-Tuner method applied to eukaryotic genomes. PLoS Comput Biol 3: e237.
    
    97. Rawlings,N.D., Morton,RR., Kok,C.Y., Kong,J., and Barrett,A.J. (2008) MEROPS: the peptidase database. Nucleic Acids Res 36: D320-D325.
    
    98. Russell,R.J., Gerike,U., Danson,M.J., Hough,D.W., and Taylor,G.L. (1998) Structural adaptations of the cold-active citrate synthase from an Antarctic bacterium. Structure 6: 351-361.
    
    99. Sali,A., and Blundell,T.L. (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234: 779-815.
    100. Saraf,M.C, Moore,GL., and Maranas,C.D. (2003) Using multiple sequence correlation analysis to characterize functionally important protein regions.Protein Eng 16: 397-406.
    
    101. Sato,T., Yamanishi,Y, Kanehisa,M., and Toh,H. (2005) The inference of protein-protein interactions by co-evolutionary analysis is improved by excluding the information about the phylogenetic relationships. Bioinformatics 21: 3482-3489.
    
    102. Shenkin,P.S., Erman,B., and Mastrandrea,L.D. (1991) Information-theoretical entropy as a measure of sequence variability. Proteins 11: 297-313.
    
    103. Siddiqui,K.S., and Cavicchioli,R. (2006) Cold-adapted enzymes. Annu Rev Biochem 75: 403-433.
    
    104. Sidler,W. (1994) Phycobilisome and phycobiliprotein structures. In The biology of cyanobacteria. Bryant,D. (ed). Dordrecht: Kluwer Academic Publishers, pp. 139-216.
    
    105. Skalova,T., Dohnalek,J., Spiwok,V, Lipovova,P., Vondrackova,E.,Petrokova,H. et al. (2005) Cold-active beta-galactosidase from Arthrobacter sp.C2-2 forms compact 660 kDa hexamers: crystal structure at 1.9A resolution. J Mol Biol 353: 282-294.
    
    106. Sousa,S.R, Fernandes,P.A., and Ramos,M.J. (2006) Protein-ligand docking:current status and future challenges. Proteins 65: 15-26.
    
    107. Soyer,O.S., and Goldstein,R.A. (2004) Predicting functional sites in proteins: site-specific evolutionary models and their application to neurotransmitter transporters. J Mol Biol 339: 227-242.
    
    108. Stark,W., Pauptit,R.A., Wilson,K.S., and Jansonius,J.N. (1992) The structure of neutral protease from Bacillus cereus at 0.2-nm resolution. Eur J Biochem 207: 781-791.
    
    109. Svingor,A., Kardos,J., Hajdu,I., Nemeth,A., and Zavodszky,R (2001) A better enzyme to cope with cold. Comparative flexibility studies on psychrotrophic,mesophilic, and thermophilic IPMDHs. J Biol Chem 276: 28121-28125.
    
    110. Tamura,K., Dudley,J., Nei,M., and Kumar,S. (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24: 1596-1599.
    
    111. Thayer,M.M., Flaherty,K.M., and McKay,D.B. (1991) Three-dimensional structure of the elastase of Pseudomonas aeruginosa at 1.5-A resolution. J Biol Chem 266: 2864-2871.
    112. Toole,C, and Allnutt,F. (2003) Red, cryptomonad and glaucocystophyte algal phycobiliproteins. In Photosynthesis in algae. Larkum,A., Douglas,S., and Raven,J. (eds). Dordrecht: Kluwer Academic Publishers, pp. 305-334.
    
    113. Tronrud,D.E., Monzingo,A.F., and Matthews,B.W. (1986) Crystallographic structural analysis of phosphoramidates as inhibitors and transition-state analogs of thermolysin. Eur J Biochem 157: 261-268.
    
    114. Uzzell,T., and Corbin,K.W. (1971) Fitting discrete probability distributions to evolutionary events. Science 172: 1089-1096.
    
    115. Valencia,A., and Pazos,F. (2002) Computational methods for the prediction of protein interactions. Curr Opin Struct Biol 12: 368-373.
    
    116. Vicatos,S., Reddy,B.V., and Kaznessis,Y. (2005) Prediction of distant residue contacts with the use of evolutionary information. Proteins 58: 935-949.
    
    117. Violot,S., Aghajari,N., Czjzek,M., Feller.G, Sonan,G.K., Gouet,P. et al. (2005) Structure of a full length psychrophilic cellulase from Pseudoalteromonas haloplanktis revealed by X-ray diffraction and small angle X-ray scattering. J Mol Biol 348: 1211-1224.
    
    118. Wang,B, Chen,P, Huang,D.S., Li,J.J., Lok,T.M., and Lyu,M.R. (2006) Predicting protein interaction sites from residue spatial sequence profile and evolution rate. FEBS Lett 580: 380-384.
    
    119. Wang,X.Q., Li,L.N., Chang,W.R., Zhang,J.R, Gui,L.L, Guo,B.J., and Liang,D.C. (2001) Structure of C-phycocyanin from Spirulina platensis at 2.2 A resolution: a novel monoclinic crystal form for phycobiliproteins in phycobilisomes. Acta Crystallogr D Biol Crystallogr 57: 784-792.
    
    120. Wintrode,P.L., Miyazaki,K., and Arnold,F.H. (2000) Cold adaptation of a mesophilic subtilisin-like protease by laboratory evolution. J Biol Chem 275:31635-31640.
    
    121. Wright,C.S., Alden,R.A., and Kraut,J. (1969) Structure of subtilisin BPN' at 2.5 angstrom resolution. Nature 221: 235-242.
    
    122. Xu,Y., Feller,G., Gerday,C., and Glansdorff,N. (2003) Metabolic enzymes from psychrophilic bacteria: challenge of adaptation to low temperatures in ornithine carbamoyltransferase from Moritella abyssi. J Bacteriol 185:2161-2168.
    
    123. Zhou,H.X., and Shan,Y. (2001) Prediction of protein interaction sites from sequence profile and residue neighbor list. Proteins 44: 336-343.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700