用户名: 密码: 验证码:
硝化和氧化修饰对烯醇酶功能的影响以及去铁胺的干预作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛋白质酪氨酸硝化是一种重要的蛋白质翻译后修饰,蛋白质上的氨基酸残基一旦发生翻译后修饰,就会对蛋白质的结构和功能产生重要的影响,进而与多种疾病的发生发展紧密联系。在病理条件下,蛋白质容易受到各种活性氧和活性氮自由基的损伤,发生蛋白质酪氨酸硝化。蛋白质酪氨酸硝化常常伴随有蛋白质氧化,使得对蛋白质酪氨酸硝化功能的研究变得复杂。此外,在蛋白质硝化和氧化的过程中,生物体内广泛存在的微量元素铁起着非常重要的催化作用。到目前为止,蛋白质硝化和氧化修饰与铁的关系,及其对蛋白质功能的不同影响尚未完全明了。本文从体外化学体系和动物模型两个方面入手,首先以烯醇酶为研究对象,在体外化学体系中研究了由铁诱导的蛋白质硝化和氧化修饰对烯醇酶功能的影响;并在此基础上考察了抗氧化剂去铁胺(DFO)对蛋白质硝化和氧化损伤的干预作用;最后,在动物模型上研究了糖尿病大鼠组织中烯醇酶硝化和氧化的情况,探讨了生物体内的硝化和氧化修饰对烯醇酶功能的影响。主要研究内容包括以下几个方面:
     (1)铁在烯醇酶硝化和氧化修饰中的作用
     选取酵母烯醇酶为研究对象,研究了不同形态铁催化NO2--H2O2和ONOO-对烯醇酶硝化、氧化及酶活的影响。实验结果显示,在催化NO2--H2O2和ONOO"导致的烯醇酶硝化/氧化损伤中,实验浓度(10μmol/L)下的柠檬酸铁(Citrate-Fe)和铁蛋白(ferritin)对两种损伤体系没有显著影响,而乙二胺四乙酸铁(EDTA-Fe)能促进ONOO-导致的烯醇酶硝化,但对NO2--H2O2体系导致的蛋白质硝化和氧化无显著作用。氯高铁血红素(hemin)和血红蛋白(hemoglobin)不仅能有效催化NO2--H2O2硝化和氧化蛋白质,同时它们也能有效促进ONOO-导致的蛋白质酪氨酸硝化,但对ONOO-导致的蛋白质氧化有显著的抑制作用。游离的二价铁(Fe2+)和三价铁(Fe3+)能有效促进NO2--H2O2导致的烯醇酶氧化,但同时显著地抑制ONOO-导致的烯醇酶硝化。此外,与蛋白质硝化相比,烯醇酶活性与蛋白质羰基化关系更密切,蛋白质氧化程度越强,酶活力下降越明显。在hemin-NO2--H2O2导致的烯醇酶硝化/氧化损伤中,蛋白质氧化(非巯基氧化)对酶活的影响要显著强于蛋白质酪氨酸硝化,但酪氨酸修饰对酶活也有一定的影响。这些结果表明,不同硝化途径导致的烯醇酶硝化/氧化修饰受铁的影响不同,除储存态铁如ferritin外,其他形态的铁都可能通过促进氧化或硝化影响烯醇酶的功能。
     (2)去铁胺对蛋白质硝化和氧化修饰的干预作用
     研究了铁螯合剂DFO对hemin-NO2--H2O2体系中蛋白质硝化和氧化的影响,并对其作用机理进行初步探讨。在hemin-NO2--H2O2体系中,这种抗氧化剂在低浓度(0.01-0.1mmol/L)时对蛋白质(牛血清白蛋白、谷氨酸脱氢酶、人血浆蛋白)的硝化和氧化有完全不同的作用,它能有效抑制蛋白质硝化,而对蛋白质的羰基化却有促进作用。在高浓度时,DFO则会发挥其抗氧化作用,抑制蛋白质的硝化和氧化。进一步研究证实,这种促氧化作用与heme-DFO复合物的形成密切相关。以上结果首次阐明了低浓度的DFO对heme-NO2--H2O2体系导致的蛋白质硝化和氧化有完全不同的干预作用,研究结果对于深入认识DFO在临床和医药上的毒副作用有重要的生理意义。
     (3)Hemin-DFO复合物促氧化机理的初步研究
     从自由基产生的角度初步研究了hemin-DFO复合物的促氧化机制。实验结果表明,在DFO促进hemin-H2O2体系导致的氧化损伤中,DFO促氧化作用的发挥需要与hemin和H2O2共存,其促氧化机理可能是促进了O2·-的生成。DFO完善的促氧化机制,有待进一步研究。
     (4)糖尿病大鼠组织中α-烯醇酶的硝化和氧化修饰
     通过腹腔注射链脲霉素建立糖尿病大鼠模型,同时选取α-烯醇酶作为靶蛋白,利用免疫沉淀和Western blotting技术检测糖尿病组织中α-烯醇酶的硝化和氧化,并采用高效液相色谱-质谱联用技术鉴定糖尿病大鼠心肌中α-烯醇酶的硝化位点,初步探讨生物体内的蛋白质酪氨酸硝化和氧化对α-烯醇酶功能的影响。实验结果显示,糖尿病大鼠心肌组织中蛋白质硝化水平明显提高,而其羰基化水平无显著变化,同时,糖尿病肝脏和血清中蛋白质硝化和羰基化水平均显著性提高。通过免疫沉淀的方法,确证了糖尿病组织和血清中α-烯醇酶是一种易于发生酪氨酸硝化的蛋白质。与正常大鼠相比,糖尿病心肌、肝脏和血清中α-烯醇酶的表达和硝化水平显著上升,同时其氧化水平和酶活略微提高,但无统计学上的差异。此外,还通过高效液相色谱-质谱联用技术,鉴定了糖尿病大鼠心肌中α-烯醇酶的硝化位点在Tyr257和Tyr131。而在体外ONOO-体系中,儿茶素选择性地抑制烯醇酶的硝化(Tyr259和Tyr191),并部分恢复酶活。这些结果表明,相比于蛋白质氧化,糖尿病组织中α-烯醇酶的硝化是一种更敏感的氧化损伤。尽管蛋白质的羰基化对酶活的影响要强于蛋白质硝化,但酪氨酸残基的硝化修饰对烯醇酶失活也有一定的贡献。
Exposure of proteins to reactive oxygen species (ROS) and reactive nitrogen species (RNS) results in oxidative and nitrative modifications of amino acid residues, altering the protein structure and function. Protein tyrosine nitration is becoming increasingly recognized as a prevalent post-translational modification that could serve as a biomarker of pathological process and oxidative stress. Meanwhile, oxidative damage of protein is always accompanied, which makes it difficult to interpret the single effect of nitrative modification on protein function. Moreover, iron is known to play an important role in catalyzing the formation of free radicals and protein nitrative/oxidative modifications. However, the relationship between iron and protein nitration/oxidation, and the respective function of protein nitrative and oxidative modifications remain poorly understood. In this paper, the respective effects of iron-induced nitrative and oxidative modifications on enolase function were firstly investigated in vitro. Subsequently, the iron chelating agent desferrioxamine (DFO) was used to affect the development of nitrative and oxidative stress. Finally, experimental diabetic rat model was established to investigate the effect of nitrative and oxidative modifications on enolase function in vivo. The main results are as follows:
     (1) Effects of iron on enolase nitrative and oxidative modifications
     Effects of different forms of iron on NO2--H2O2 or ONOO--induced enolase nitrative and oxidative modifications were investigated in vitro. The results showed that ferric citrate and ferritin exhibited ineffective activity in catalyzing protein 3-nitrotyrosine and carbonyl formation in both nitrating models. EDTA-Fe showed a promotive effect on ONOO--induced enolase tyrosine nitration, whereas exhibited ineffectively effect on NO2--H2O2-induced enolase nitrative and oxidative modifications. Moreover, both hemin and hemoglobin exhibited significant effect on catalyzing NO2--H2O2-triggered protein nitration and oxidation, while they promoted ONOO--induced protein nitration, but inhibited ONOO--induced protein oxidation. Meanwhile, free iron (Fe2+, Fe3+) could clearly promote NO2--H2O2-triggered protein carbonyls formation, and effectively inhibited ONOO--induced enolase nitration. The more protein carbonyls generated, the more significant enolase inactivation was. In hemin-NO2--H2O2-induced enolase nitrative and oxidative modifications, protein oxidation formation (not thiol oxidation), rather than protein tyrosine nitration, might make a major contribution to the inactivation of enolase. These findings indicate that the different forms of iron exhibit different activities in catalyzing enolase nitration and oxidation, suggesting that iron-induced protein nitrative/oxidative modifications would play an important role in protein dysfunction.
     (2) Effects of DFO on protein nitration and oxidation
     In the hemin-NO2--H2O2-induced protein nitration and oxidation model, protein was analyzed for 3-nitrotyosine and carbonyl groups measured by spectrophotometry and Western blotting upon exposure to the iron chelating agent DFO. The results showed a significant inhibitory effect of DFO on hemin-NO2--H2O2-induced protein (bovine serum albumin, L-glutamic dehydrogenase, human plasma proteins) nitration, while an enhancement on oxidation was surprisingly observed at lower concentration (0.01-O.lmmol/L). However, DFO exhibited protective effect on protein 3-nitrotyrosine and carbonyl formation when the higher concentration was used. In addition, the abnormal effect of DFO on promoting protein oxidation was probably originated from heme-DFO complex which needs further study. These results indicate the completely effects of DFO on hemin-NO2--H2O2-induced protein nitration and oxidation first time, suggesting that the toxicity should be taken into account when DFO is used in clinical and medical application.
     (3) Preliminary study on the promoting mechanism of hemin-DFO complex
     The promoting mechanism of hemin-DFO complex on protein oxidation was studied based on free radials formation. The results showed that the promoting effect of DFO on hemin-H2O2-induced oxidative stress was dependent on the coexistence of hemin and H2O2. Moreover, the additive O2 formation would be the important contributing factor to the promotion effect of DFO, while the integrity mechanism needs further study.
     (4) Nitrative and oxidative modifications of a-enolase in diabetic rat proteins
     By means of immunoprecipitation and Western blotting analysis, the levels of 3-nitrotyrosine residues and protein carbonyls in a-enolase from streptozotocin-induced diabetic rats were determined and compared with age-matched control. Moreover, by high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) analysis, the nitrated site of tyrosine residues in a-enolase from diabetic rat heart was identified to link nitrative and oxidative modifications to protein dysfunction in diabetic damage. The cardiac proteins from diabetic rats showed that the total level of protein tyrosine nitration was clearly elevated, while the total protein carbonylation was slightly increased, but showed no statistical significance. However, both protein tyrosine nitration and protein carbonylation were clearly elevated in diabetic rat liver and serum. By means of immunoprecipitation analysis, a-enolase was identified as the important target for nitrative and oxidative modifications in diabetic rats. The levels of a-enolase expression and nitration were clearly increased in diabetic group, whereas the enolase activity and oxidation status were not significantly changed. By means of HPLC-MS/MS analysis, it was found that Tyr257 and Tyr131 of a-enolase were the most susceptible to nitration in diabetic rat heart. The addition of catechin selectively inhibited ONOO--induced tyrosine nitration (Tyr259 and Tyr191) and partially recovered the enzyme activity. These results suggested that tyrosine nitration was a more susceptive parameter for oxidative damage in diabetic state. Although protein oxidation may play a major role in enzyme inactivation, there is also a significant contribution of protein tyrosine nitration to the inactivation of enolase.
引文
[1]方允中,郑荣梁.自由基生物学的理论与应用.北京:科学出版社,2002
    [2]孙存普,张建中,段绍瑾.自由基生物学导论.合肥:中国科学技术大学出版社,1999:19-20,29-30,226
    [3]Beckman KB, Ames BN. The free radical theory of aging matures. Physiol Rev, 1998,78(2):547-581
    [4]李冰冰,赵倩,张龙富.活性氧与蛋白质氧化损伤.平顶山工学院学报,2005,14(5):16-17
    [5]Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev,2007,87(1):315-424
    [6]钟慈声,孙安阳.一氧化氮的生物医学.上海:上海医科大学出版社,1997,P6-11
    [7]Eiserish JP, Patel RP, ODonnell VB. Pathophysiology of nitric oxide and related species:free radical reactions and modification of biomolecules. Mol Aspects Med,1998,19(4-5):221-357
    [8]Beckman JS, Koppenol WH. Nitric oxide, superoxide and peroxynitrite:the good, the bad, and ugly. Am J Physiol,1996,271(5 Pt 1):C1424-C1437
    [9]Pryor WA, Squadrito GL. The chemistry of peroxynitrite:a product of the reaction of nitric oxide with superoxide. Am J Physiol,1995,268(5): L699-L722
    [10]Gow AJ, Farkouh CR, Munson DA, et al. Biological significance of nitric oxide-mediated protein modifications. Am J Physiol Lung Cell Mol Physiol, 2004,287(2):L262-L268
    [11]Schopfer FJ, Baker PR, Freeman BA. NO-dependent protein nitration:a cell signaling event or an oxidative inflammatory response? Trends Biochem Sci, 2003,28(12):646-654
    [12]Radi R. Nitric oxide, oxidants, and protein tyrosine nitration. Proc Natl Acad Sci USA,2004,101(12):4003-4008
    [13]Turko IV, Murad F. Protein nitration in cardiovascular diseases. Pharmacol Rev, 2002,54(4):619-634
    [14]Peluffo G, Radi R. Biochemistry of protein tyrosine nitration in cardiovascular pathology. Cardiovasc Res,2007,75(2):291-302
    [15]Greenacre SA, Ischiropoulos H. Tyrosine nitration:localisation, quantification, consequences for protein functions and signal transduction. Free Radic Res, 2001,34(6):541-581
    [16]Ischiropoulos H. Biological selectivity and functional aspects of protein tyrosine nitration. Biochem Biophys Res Commun,2003,305(3):776-783
    [17]Dalle-Donne I, Rossi R, Giustarini D, et al. Protein carbonyl groups as biomarkers of oxidative stress. Clin Chim Acta,2003,329(1):23-38
    [18]Cecarini V, Gee J, Fioretti E, et al. Protein oxidation and cellular homeostasis: Emphasis on metabolism. Biochim Biophys Acta,2007,1773(2):93-104
    [19]Barreiro E, de la Puente B, Busquets S, et al. Both oxidative and nitrosative stress are associated with muscle wasting in tumour-bearing rats. FEBS Lett, 2005,579(7):1646-1652.
    [20]Andreadis AA, Hazen SL, Comhair SA, et al. Oxidative and nitrosative events in asthma. Free Radic Biol Med,2003,35(3):213-225
    [21]Jung T, Engels M, Klotz LO, et al. Nitrotyrosine and protein carbonyls are equally distributed in HT22 cells after nitrosative stress. Free Radic Biol Med, 2007,42(6):773-786
    [22]李海玲,徐辉碧,高中洪.微量元素铁与蛋白质酪氨酸硝化.化学进展,2006,18(5):622-626
    [23]Halliwell B, Gutteridge JM. Role of free radicals and catalytic metal ions in human disease:an overview. Methods Enzymol,1990,186:1-85
    [24]Stadtman ER. Metal ion-catalyzed oxidation of proteins:biochemical mechanism and biological consequences. Free Radic Biol Med,1990,9(4): 315-325
    [25]Keberle, H. The biochemistry of desferrioxamine and its relation to iron metabolism. Ann N Y Acad Sci,1964,119(2):758-768
    [26]Jay D, Hitomi H, Griendling KK. Oxidative stress and diabetic cardiovascular complications. Free Radic Biol Med,2006,40(2):183-192
    [27]Pacher P, Obrosova IG, Mabley JG, et al. Role of nitrosative stress and peroxynitrite in the pathogenesis of diabetic complications. Emerging new therapeutical strategies. Curr Med Chem,2005,12(3):267-275
    [28]Dalle-Donne I, Scaloni A, Giustarini D, et al. Proteins as biomarkers of oxidative/nitrosative stress in diseases:the contribution of redox proteomics. Mass Spectrom Rev,2005,24(1):55-99
    [29]池泉,黄开勋.过氧亚硝酸根与细胞信号转导.生命的化学,2006,26(1):14-17
    [30]Monteiro HP. Signal transduction by protein tyrosine nitration:competition or cooperation with tyrosine phosphorylation-dependent signaling events? Free Radic Biol Med,2002,33(6):765-773
    [31]卢乃浩,高平章,高中洪.蛋白质酪氨酸硝化和细胞信号传导.生理科学进展,2007,38(4):369-372
    [32]Souza JM, Peluffo G, Radi R. Protein tyrosine nitration-Functional alteration or just a biomarker? Free Radic Biol Med,2008,45(4):357-366
    [33]Gole MD, Souza JM, Choi I, et al. Plasma proteins modified by tyrosine nitration in acute respiratory distress syndrome. Am J Physiol Lung Cell Mol Physiol,2000,278(5):L961-L967
    [34]MacMillan-Crow LA, Crow JP, Kerby JD, et al. Nitration and inactivation of manganese superoxide dismutase in chronic rejection of human renal allografts. Proc Natl Acad Sci U S A,1996,93(21):11853-11858
    [35]Knapp LT, Kanterewicz BI, Hayes EL, et al. Peroxynitrite-induced tyrosine nitration and inhibition of protein kinase C. Biochem Biophys Res Commun, 2001,286(4):764-770
    [36]Blanchard-Fillion B, Souza JM, Friel T, et al. Nitration and inactivation of tyrosine hydroxylase by peroxynitrite. J Biol Chem,2001,276(49): 46017-46023
    [37]Knyushko TV, Sharov VS, Williams TD, et al.3-Nitrotyrosine modification of SERCA2a in the aging heart:a distinct signature of the cellular redox environment. Biochemistry,2005,44(39):13071-13081
    [38]Berlet BS, Levine RL, Stadtman ER. Carbon dioxide stimulates peroxynitrite-mediated nitration of tyrosine residues and inhibits oxidation of methionine residues of glutamine synthetase:both modifications mimic effects of adenylylation. Proc Natl Acad Sci USA,1998,95(6):2784-2789
    [39]Roberts ES, Lin H, Crowley JR, et al. Peroxynitrite-mediated nitration of tyrosine and inactivation of the catalytic activity of cytochrome P450 2B1. Chem Res Toxicol,1998,11(9):1067-1074
    [40]Deeb RS, Hao G, Gross SS, et al. Heme catalyzes tyrosine 385 nitration and inactivation of prostaglandin H2 synthase-1 by peroxynitrite. J Lipid Res,2006, 47(5):898-911
    [41]Koeck T, Levison B, Hazen SL, et al. Tyrosine nitration impairs mammalian aldolase A activity. Mol Cell Proteomics,2004,3(6):548-557
    [42]Zou M, Martin C, Ullrich V. Tyrosine nitration as a mechanism of selective inactivation of prostacyclin synthase by peroxynitrite. Biol Chem,1997,378(7): 707-713
    [43]Seidel ER, Ragan V, Liu L. Peroxynitrite inhibits the activity of ornithine decarboxylase. Life Sci,2001,68(13):1477-1483
    [44]Guittet O, Ducastel B, Salem JS, et al. Differential sensitivity of the tyrosyl radical of mouse ribonucleotide reductase to nitric oxide and peroxynitrite. J Biol Chem,1998,273(34):22136-22144
    [45]Marcondes S, Turko IV, Murad F. Nitration of succinyl-CoA:3-oxoacid CoAtransferase in rats after endotoxin administration. Proc Natl Acad Sci USA, 2001,98(13):7146-7151
    [46]Cassina AM, Hodara R, Souza JM, et al. Cytochrome c nitration by peroxynitrite. J Biol Chem,2000,275(28):21409-21415
    [47]Batthyany C, Souza JM, Duran R, et al. Time course and site(s) of cytochrome c tyrosine nitration by peroxynitrite. Biochemistry,2005,44(22):8038-8046
    [48]Souza JM, Castro L, Cassina AM, et al. Nitrocytochrome c:Synthesis, Purification, and Functional studies. Methods Enzymol,2008,441:197-215
    [49]Ji Y, Neverova I, Van Eyk JE, et al. Nitration of tyrosine 92 mediates the activation of rat microsomal glutathione s-transferase by peroxynitrite. J Biol Chem,2006,281 (4):1986-1991
    [50]Crow JP, Ye YZ, Strong M, et al. Superoxide dismutase catalyzes nitration of tyrosines by peroxynitrite in the rod and head domains of neurofilament-L. J Neurochem,1997,69(5):1945-1953
    [51]Vadseth C, Souza JM, Thomson L, et al. Pro-thrombotic state induced by posttranslational modification of fibrinogen by reactive nitrogen species. J Biol Chem,2004,279(10):8820-8826
    [52]Pehar M, Vargas MR, Robinson KM, et al. Peroxynitrite transforms nerve growth factor into an apoptotic factor for motor neurons. Free Radic Biol Med, 2006,41(11):1632-1644
    [53]Hodara R, Norris EH, Giasson BI, et al. Functional consequences of alpha-synuclein tyrosine nitration:diminished binding to lipid vesicles and increased fibril formation. J Biol Chem,2004,279(46):47746-47753
    [54]Balafanova Z, Bolli R, Zhang J, et al. Nitric oxide (NO) induces nitration of protein kinase Cε (PKCε), facilitating PKCs translocation via enhanced PKCε-RACK2 interactions:a novel mechanism of no-triggered activation of PKCε. J Biol Chem,2002,277(17):15021-15027
    [55]赵玉玲,高中洪.蛋白质硝基化反应的途径.生命的化学,2003,23(5):356-358
    [56]Beckman JS, Beckman TW, Chen J, et al. Apparent hydroxyl radical production by peroxynitrite:implication for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA,1990,87(4):1620-1624
    [57]Alvarez B, Radi R. Peroxynitrite reactivity with amino acids and proteins. Amino Acids,2003,25(3-4):295-311
    [58]Ducrocq C, Blanchard B, Pignatelli B, et al. Peroxynitrite:an endogenous oxidizing and nitrating agent. Cell Mol Life Sci,1999,55(8-9):1068-1077
    [59]Gow A, Duran D, Thom SR, et al. Carbon dioxide enhancement of peroxynitrite-mediated protein tyrosine nitration. Arch Biochem Biophys,1996, 333(1):42-48
    [60]Denicola A, Freeman BA, Trujillo M, et al. Peroxynitrite reaction with carbon dioxide/bicarbonate:kinetics and influence on peroxynitrite mediated oxidations. Arch Biochem Biophys,1996,333(1):49-58
    [61]Lymar SV, Hurst JK. Rapid reaction between peroxynitrite ion and carbon dioxide:implications for biological activity. J Am Chem Soc,1995,117: 8867-8868
    [62]Sampson JB, Ye Y, Rosen H, et al. Myeloperoxidase and horseradish peroxidase catalyze tyrosine nitration in proteins from nitrite and hydrogen peroxide. Arch Biochem Biophys,1998,356(2):207-213
    [63]Vaz SM, Augusto O. Inhibition of myeloperoxidase-mediated protein nitration by tempol:Kinetics, mechanism, and implications. Proc Natl Acad Sci USA, 2008,105(24):8191-8196
    [64]Duguet A, Iijima H, Eum SY, et al. Eosinophil peroxidase mediates protein nitration in allergic airway inflammation in mice. Am J Respir Crit Care Med, 2001,164(7):1119-1126
    [65]Wu W, Chen Y, Hazen SL. Eosinophil peroxidase nitrates protein tyrosyl residues. Implications for oxidative damage by nitrating intermediates in eosinophilic inflammatory disorders. J Biol Chem,1999,274(36):25933-25944
    [66]Ricoux R, Boucher JL, Mansuy D, et al. Microperoxidase 8 catalyzed nitration of phenol by nitrogen dioxide radicals. Eur J Biochem,2001,268(13): 3783-3788
    [67]Grzelak A, Balcerczyk A, Mateja A, et al. Hemoglobin can nitrate itself and other proteins. Biochim Biophys Acta,2001,1528(2-3):97-100
    [68]Kilinc K, Kilinc A, Wolf RE, et al. Myoglobin-catalyzed tyrosine nitration:no need for peroxynitrite. Biochem Biophys Res Comm,2001,285(2):273-276
    [69]van der Vliet A, Eiserich JP, Halliwell B, et al. Formation of reactive nitrogen species during peroxidase-catalyzed oxidation of nitrite. A potential additional mechanism of nitric oxide-dependent toxicity. J Biol Chem,1997,272(12): 7617-7625
    [70]Thomas DD, Espey MG, Vitek MP, et al. Protein nitration is mediated by heme and free metals through Fenton-type chemistry:an alternative to the NO/O2-reaction. Proc Natl Acad Sci USA,2002,99(20):12691-12696
    [71]Bian K, Gao Z, Weisbrodt N, et al. The nature of heme/iron-induced protein tyrosine nitration. Proc Natl Acad Sci USA,2003,100(10):5712-5717
    [72]李培峰,方允中.活性氧对蛋白质的损伤作用.生命的化学,1994,14(6):1-3
    [73]李国林,印大中.ROS介导的蛋白质氧化的生化机制.生命的化学,2007,27(6):516-520
    [74]Squier TC. Oxidative Stress and protein aggregation during biological aging. Exp Gerontol,2001,36(9):1539-1550
    [75]Winterbourn CC. Toxicity of iron and hydrogen peroxide:the Fenton reaction. Toxicol Lett.1995,82-83:969-974
    [76]Michael JD. Protein and peptide alkoxyl radicals call give rise to C-terminal decarboxylation and backbone cleavage. Arch Biochem Biophys,1996,336(1): 163-172
    [77]文镜,张春华,董雨等.蛋白质羰基含量与蛋白质氧化损伤.食品科学,2003,24(10):153-157
    [78]Levine RL, Wehr N, Williams JA, et al. Determination of carbonyl groups in oxidized proteins. Methods Mol Biol,2000,99:15-24
    [79]Finch C. Regulators of iron balance in humans. Blood,1994,84(6):1697-1702
    [80]Papanikolaou G, Pantopoulos K. Iron metabolism and toxicity. Toxicol Appl Pharmacol,2005,202(2):199-211
    [81]Graham RM, Chua AC, Herbison CE, et al. Liver iron transport. World J Gastroenterol,2007,13(35):4725-4736
    [82]Tsiftsoglou AS, Tsamadou AI, Papadopoulou LC. Heme as key regulator of major mammalian cellular functions:molecular, cellular, and pharmacological aspects. Pharmacol Ther,2006,111(2):327-345
    [83]Wijayanti N, Katz N, Immenschuh S. Biology of heme in health and disease. Curr Med Chem,2004,11(8):981-986
    [84]Alayash Al, Patel RP, Cashon RE. Redox reactions of hemoglobin and myoglobin:biological and toxicological implications. Antioxid Redox Signal, 2001,3(2):313-327
    [85]Galaris D, Pantopoulos K. Oxidative stress and iron homeostasis:mechanistic and health aspects. Crit Rev Clin Lab Sci,2008,45(1):1-23
    [86]Welch KD, Davis TZ, Van Eden ME, et al. Deleterious iron-mediated oxidation of biomolecules. Free Radic Biol Med,2002,32(7):577-583
    [87]Stadtman ER, Oliver CN. Metal-catalyzed oxidation of proteins. Physiological consequences. J Biol Chem,1991,266(4):2005-2008
    [88]李海玲,张燕,卢乃浩等.铁过载促进小鼠肝组织发生蛋白质酪氨酸硝化.中国生物化学与分子生物学报,2008,24(6):569-573
    [89]Cornejo P, Varela P, Videla LA, et al. Chronic iron overload enhances inducible nitric oxide synthase expression in rat liver. Nitric Oxide,2005,13(1): 54-61
    [90]Goldstein S, Merenyi G, Samuni A. Kinetics and mechanism of NO2 reacting with various oxidation states of myoglobin. J Am Chem Soc,2004,126(48): 15694-15701
    [91]Su J, Groves JT. Direct detection of the oxygen rebound intermediates, ferryl Mb and NO2, in the reaction of metmyoglobin with peroxynitrite. J Am Chem Soc,2009,131(36):12979-12988
    [92]Romero N, Radi R, Linares E, et al. Reaction of human hemoglobin with peroxynitrite. Isomerization to nitrate and secondary formation of protein radicals. J Biol Chem,2003,278(45):44049-44057
    [93]Mehl M, Daiber A, Herold S, et al. Peroxynitrite reaction with heme proteins. Nitric Oxide,1999,3(2):142-152
    [94]Beckman JS, Ischiropoulos H, Zhu L, et al. Kinetics of superoxide dismutase-and iron-catalyzed nitration of phenolics by peroxynitrite. Arch Biochem Biophys,1992,298(2):438-445
    [95]Daiber A, Bachschmid M, Beckman JS, et al. The impact of metal catalysis on protein tyrosine nitration by peroxynitrite. Biochem Biophys Res Commun, 2004,317(3):873-881
    [96]Zhang H, Bhargava K, Keszler A, et al. Transmembrane nitration of hydrophobic tyrosyl peptides. Localization, characterization, mechanism of nitration, and biological implications. J Biol Chem,2003,278(11):8969-8978
    [97]Gunther MR, Hsi LC, Curtis JF, et al. Nitric oxide trapping of the tyrosyl radical of prostaglandin H synthase-2 leads to tyrosine iminoxyl radical and nitrotyrosine formation. J Biol Chem,1997,272(27):17086-17090
    [98]Emerit J, Beaumont C, Trivin F. Iron metabolism, free radicals, and oxidative injury. Biomed Pharmacother,2001,55(6):333-339
    [99]Stadman ER. Oxidation of free amino acids and amino acid residues in protein by radiolysis and by metal-catalyzed reaction. Annu Rev Biochem,1993,62: 797-821
    [100]Nagababu E, Rifkind JM. Reaction of hydrogen peroxide with ferrylhemoglobin:superoxide production and heme degradation. Biochemistry, 2000,39(40):12503-12511
    [101]Swaminathan S, Fonseca VA, Alam MG, et al. The role of iron in diabetes and its complications. Diabetes Care,2007,30(7):1926-1933
    [102]Fernandez-Real JM, Lopez-Bermejo A, Ricart W. Cross-talk between iron metabolism and diabetes. Diabetes,2002,51(8):2348-2354
    [103]Tam TF, Leung-Toung R, Li W, et al. Iron chelator research:past, present, and future. Curr Med Chem,2003,10(12):983-995
    [104]Cozar O, Leopold N, Jelic C, et al. IR, Raman and surface-enhanced Raman study of desferrioxamine B and its Fe (III) complex, ferrioxamine B. J Mol Struct,2006,788(1-3):1-6
    [105]Summers MR, Jacobs A, Tudway D, et al. Studies in desferrioxamine and ferrioxamine metabolism in normal and iron-loaded subjects. Br J Haematol, 1979,42(4):547-555
    [106]Chaston TB, Richardson DR. Iron chelators for the treatment of iron overload disease:relationship between structure, redox activity, and toxicity. Am J Hematol,2003,73(3):200-210
    [107]Minqin R, Rajendran R, Pan N, et al. The iron chelator desferrioxamine inhibits atherosclerotic lesion development and decreases lesion iron concentrations in the cholesterol-fed rabbit. Free Radic Biol Med,2005,38(9):1206-1211
    [108]Oury TD, Piantadosi CA, Crapo JD. Cold-induced brain edema in mice: involvement of extracellular superoxide dismutase and nitric oxide. J Biol Chem,1993,268(21):15394-15398
    [109]Sarco DP, Becker J, Palmer C, et al. The neuroprotective effect of deferoxamine in the hypoxic-ischemic immature mouse brain. Neurosci Lett,2000,282(1-2): 113-116
    [110]Meulenbelt J, Dormans JA., van Bree L, et al. Desferrioxamine treatment reduces histological evidence of lung damage in rats after acute nitrogen dioxide (NO2) intoxication. Hum Exp Toxicol,1993,12(5):389-395
    [111]Pedchenko TV, Levine SM. Desferrioxamine suppresses experimental allergic encephalomyelitis induced by MBP in SJL mice. J Neuroimmunol,1998,84(2): 188-197
    [112]Auer M, Pfister LA, Leppert D, et al. Effects of clinically used antioxidants in experimental pneumococcal meningitis. J Infect Dis,2000,182(1):347-350
    [113]Denicola A, Souza JM, Gatti RM, et al. Desferrioxamine inhibition of the hydroxyl radical-like reactivity of peroxynitrite:Role of hydroxamic groups. Free Radic Biol Med,1995,19(1):11-19
    [114]Bartesaghi S, Trujillo M, Denicola A, et al. Reaction of desferrioxamine with peroxynitrite-derived carbonate and nitrogen dioxide radicals. Free Radic Biol Med,2004,36(4):471-483
    [115]Goldstein S, Czapski G. A reinvestigation of the reaction of desferrioxamine with superoxide radicals:a pulse radiolysis study. Free Radic Res Commun, 1990,11(4-5):231-240
    [116]Hoe S, Rowley DA, Halliwell B. Reactions of ferrioxamine and desferrioxamine with the hydroxyl radical. Chem Biol Interact,1982,41(1): 75-81
    [117]Green E S, Evans H, Rice-Evans P, et al. The efficacy of monohydroxamates as free radical scavenging agents compared with di-and trihydroxamates. Biochem Pharmacol,1993,45(2):357-366
    [118]Schaal S, Beiran I, Rozner H, et al. Desferrioxamine and zinc-desferrioxamine reduce lens oxidative damage. Exp Eye Res,2007,84(3):561-568
    [119]Mordente A, Meucci E, Miggiano GA, et al. Prooxidant action of desferrioxamine:enhancement of alkaline phosphatase inactivation by interaction with ascorbate system. Arch Biochem Biophys,1990,277(2): 234-240
    [120]Sakagami H, Satoh K, Fukuchi K, et al. Effect of an iron-chelator on ascorbate-induced cytotoxicity. Free Radic Biol Med,1997,23(2):260-270
    [121]Rouault T, Rao K, Harford J, et al. Hemin, chelatable iron, and the regulation of transferrin receptor biosynthesis. J Biol Chem,1985,260(27):14862-14866
    [122]Baysal E, Monteiro HP, Sullivan SG, et al. Desferrioxamine protects human red blood cells from hemin-induced hemolysis. Free Radic Biol Med,1990,9(1): 5-10
    [123]Sullivan SG, Baysal E, Stern A. Inhibition of hemin-induced hemolysis by desferrioxamine:binding of hemin to red cell membranes and the effects of alteration of membrane sulfhydryl groups. Biochim Biophys Acta,1992, 1104(1):38-44
    [124]王镜岩,朱圣庚,徐长法.生物化学.北京:高等教育出版社,2004,78-79
    [125]Pancholi V. Multifunctional a-enolase:its role in diseases. Cell Mol Life Sci, 2001,58(7):902-920
    [126]Aaronson RM, Graven KK, Tuccim M, et al. Non-neuronal enolase is an endothelial hypoxic stress protein. J Biol Chem,1995,270(46):27752-27757
    [127]Nomura M, Kato K, Nagasaka A, et al. Serum β-enolase in acute myocardial infarction. Br Heart J,1987,58(1):29-33
    [128]Stanley WC, Lopaschuk GD, McCormack JG. Regulation of energy substrate metabolism in the diabetic heart. Cardiovasc Res,1997,34(1):25-33
    [129]Kanski J, Behring A, Pelling J, et al. Proteomic identification of 3-nitrotyrosine-containing rat cardiac proteins:effects of biological aging. Am J Physiol Heart Circ Physiol,2005,288(1):H371-H381
    [130]Casoni F, Basso M, Massignan T, et al. Protein nitration in a mouse model of familial amyotrophic lateral sclerosis. J Biol Chem,2005,280(16): 16295-16304
    [131]Sultana R, Poon HF, Cai J, et al. Identification of nitrated proteins in Alzheimer's disease brain using a redox proteomics approach. Neurobiol Dis, 2006,22(1):76-87
    [132]Sultana R, Boyd-Kimball D, Poon HF, et al. Redox proteomics identification of oxidized proteins in Alzheimer's disease hippocampus and cerebellum:an approach to understand pathological and biochemical alterations in AD. Neurobiol Aging,2006,27(11):1564-1576
    [133]Zimmet P, Alberti KG, Shaw J. Global and societal implications of the diabetic epidemic. Nature,2001,414(13):782-787
    [134]Brownlee M. The pathobiology of diabetic complications:a unifying mechanism. Diabetes,2005,54(6):1615-1625
    [135]Oberley LW. Free radicals and diabetes. Free Radic Biol Med,1988,5(2): 113-124
    [136]Honing M L, Morrison P J, Banga J D, et al. Nitric oxide availability in diabetes mellitus. Diabetes Metab Rev,1998,14(3):241-249
    [137]Torres SH, De Sanctis JB, de L Briceno M, et al. Inflammation and nitric oxide production in skeletal muscle of type 2 diabetic patients. J Endocrinol,2004,
    181.(3):419-427
    [138]Stadler K, Bonini M G, Dallas S, et al. Involvement of inducible nitric oxide synthase in hydroxyl radical-mediated lipid peroxidation in streptozotocin-induced diabetes. Free Radic Biol Med,2008,45(6):866-874
    [139]Pacher P, Szabo C. Role of peroxynitrite in the pathogenesis of cardiovascular complications of diabetes. Curr Opin Pharmacol,2006,6(2):136-141
    [140]Mastrocola R, Restivo F, Vercellinatto I, et al. Oxidative and nitrosative stress in brain mitochondria of diabetic rats. J Endocrinol,2005,187(1):37-44
    [141]Matata BM, Galinanes M. Cardiopulmonary bypass exacerbates oxidative stress but does not increase proinflammatory cytokine release in patients with diabetes compared with patients without diabetes:regulatory effects of exogenous nitric oxide. J Thorac Cardiovasc Surg,2000,120(1):1-11
    [142]Aydin A, Orhan H, Sayal A, et al. Oxidative stress and nitric oxide related parameters in type II diabetes mellitus:effects of glycemic control. Clin Biochem,2001,34(1):65-70
    [143]Ceriello A, Mercuri F, Quagliaro L, et al. Detection of nitrotyrosine in the diabetic plasma:evidence of oxidative stress. Diabetologia,2001,44(7): 834-838
    [144]Ceriello A, Quagliaro L, Catone B, et al. Role of hyperglycemia in nitrotyrosine postprandial generation. Diabetes Care,2002,25(8):1439-1443
    [145]Ceriello A, Taboga C, Tonutti L, et al. Evidence for an independent and cumulative effect of postprandial hypertriglyceridemia and hyperglycemia on endothelial dysfunction and oxidative stress generation:effects of short-and long-term simvastatin treatment. Circulation,2002,106(10):1211-1218
    [146]Hoeldtke RD, Bryner KD, McNeill DR, et al. Peroxynitrite versusnitric oxide in early diabetes. Am J Hypertens,2003,16(9):761-766
    [147]Hoeldtke RD, Bryner KD, McNeill DR, et al. Oxidative stress and insulin requirements in patients with recent-onset type 1 diabetes. J Clin Endocrinol Metab,2003,88(4):1624-1628
    [148]Tannous M, Rabini RA, Vignini A, et al. Evidence for iNOS-dependent peroxynitrite production in diabetic platelets. Diabetologia,1999,42(5): 539-544
    [149]Mabley JG, Southan GJ, Salzman AL, et al. The combined inducible nitric oxide synthase inhibitor and free radical scavenger guanidinoethyldisulfide prevents multiple low-dose streptozotocin- induced diabetes in vivo and interleukin-1 beta-induced suppression of islet insulin secretion in vitro. Pancreas,2004,28(2):e39-44
    [150]Suarez-Pinzon WL, Mabley JG, Strynadka K, et al. An inhibitor of inducible nitric oxide synthase and scavenger of peroxynitrite prevents diabetes development in NOD mice. J Autoimmun,2001,16(4):449-455
    [151]Suarez-Pinzon WL, Szabo C, Rabinovitch A. Development of autoimmune diabetes in NOD mice is associated with the formation of peroxynitrite in pancreatic islet beta-cells. Diabetes,1997,46(5):907-911
    [152]Szabo C, Mabley JG, Moeller SM, et al. Part I:pathogenetic role of peroxynitrite in the development of diabetes and diabetic vascular complications:studies with FP15, a novel potent peroxynitrite decomposition catalyst. Mol Med,2002,8(10):571-580
    [153]Zou MH, Shi C, Cohen RA. High glucose via peroxynitrite causes tyrosine nitration and inactivation of prostacyclin synthase that is associated with thromboxane/prostaglandin H(2) receptor-mediated apoptosis and adhesion molecule expression in cultured human aortic endothelial cells. Diabetes,2002, 51(1):198-203
    [154]Quagliaro L, Piconi L, Assaloni R, et al. Intermittent high glucose enhances apoptosis related to oxidative stress in human umbilical vein endothelial cells:
    the role of protein kinase C and NAD(P)H-oxidase activation. Diabetes,2003, 52(11):2795-2804
    [155]Cosentino F, Eto M, De Paolis P, et al. High glucose-causes upregulation of cyclooxygenase-2 and alters prostanoid profile in human endothelial cells:role of protein kinase C and reactive oxygen species. Circulation,2003,107(7): 1017-1023
    [156]Pricci F, Leto G, Amadio L, et al. Oxidative stress in diabetes-induced endothelial dysfunction involvement of nitric oxide and protein kinase C. Free Radic Biol Med,2003,35(6):683-694
    [157]Soriano FG, Virag L, Szabo C. Diabetic endothelial dysfunction:role of reactive oxygen and nitrogen species production and poly-(ADP-ribose) polymerase activation. J Mol Med,2001,79(8):437-448
    [158]Stadler K, Jenei V, von Bolcshazy G, et al. Increased nitric oxide levels as an early sign of premature aging in diabetes. Free Radic Biol Med,2003,35(10): 1240-1251
    [159]Brodsky SV, Gealekman O, Chen J, et al. Prevention and reversal of premature endothelial cell senescence and vasculopathy in obesity-induced diabetes by ebselen. Circ Res,2004,94(3):377-384
    [160]Rabini RA, Vignini A, Salvolini E, et al. Activation of human aortic endothelial cells by LDL from Type 1 diabetic patients:an in vitro study. Atherosclerosis, 2002,165(1):69-77
    [161]Szabo C, Zanchi A, Komjati K, et al. Poly(ADP-ribose) polymerase is activated in subjects at risk of developing type 2 diabetes and is associated with impaired vascular reactivity. Circulation,2002,106(21):2680-2686
    [162]Kossenjans W, Eis A, Sahay R, et al. Role of peroxynitrite in altered fetal-placental vascular reactivity in diabetes or preeclampsia. Am J Physiol Heart Circ Physiol,2000,278(4):H1311-H1319
    [163]Lyall F, Gibson JL, Greer IA, et al. Increased nitrotyrosine in the diabetic placenta:evidence for oxidative stress. Diabetes Care,1998,21(10):1753-1758
    [164]Turko IV, Li L, Aulak_KS, et al. Protein tyrosine nitration in the mitochondria from diabetic mouse heart. Implications to dysfunctional mitochondria in diabetes. J Biol Chem,2003,278(36):33972-33977
    [165]Kajstura J, Fiordaliso F, Andreoli AM, et al. IGF-1 overexpression inhibits the development of diabetic cardiomyopathy and angiotensin II-mediated oxidative stress. Diabetes,2001,50(6):1414-1424
    [166]Turko IV, Marcondes S, Murad F. Diabetes-associated nitration of tyrosine and inactivation of succinyl-CoA:3-oxoacid CoA-transferase. Am J Physiol Heart Circ Physiol,2001,281(6):H2289-H2294
    [167]Ceriello A, Quagliaro L, D'Amico M, et al. Acute hyperglycemia induces nitrotyrosine formation and apoptosis in perfused heart from rat. Diabetes,2002, 51(4):1076-1082
    [168]Di Filippo C, Cuzzocrea S, Marfella R, et al. M40403 prevents myocardial injury induced by acute hyperglycaemia in perfused rat heart. Eur J Pharmacol, 2004,497(1):65-74
    [169]Frustaci A, Kajstura J, Chimenti C, et al. Myocardial cell death in human diabetes. Circ Res,2000,87(12):1123-1132
    [170]Forbes JM, Cooper ME, Thallas V, et al. Reduction of the accumulation of advanced glycation end products by ACE inhibition in experimental diabetic nephropathy. Diabetes,2002,51(11):3274-3282
    [171]Ishii N, Patel KP, Lane PH, et al. Nitric oxide synthesis and oxidative stress in the renal cortex of rats with diabetes mellitus. J Am Soc Nephrol,2001,12(8): 1630-1639
    [172]Onozato ML, Tojo A, Goto A, et al. Oxidative stress and nitric oxide synthase in rat diabetic nephropathy:effects of ACEI and ARB. Kidney Int,2002,61:
    186-194
    [173]Thuraisingham RC, Nott CA, Dodd SM, et al. Increased nitrotyrosine staining in kidneys from patients with diabetic nephropathy. Kidney Int,2000,57: 1968-1972
    [174]El-Remessy AB, Abou-Mohamed G, Caldwell RW, et al. High glucose-induced tyrosine nitration in endothelial cells:role of eNOS uncoupling and aldose reductase activation. Invest Ophthalmol Vis Sci,2003,44:3135-3143
    [175]Ellis EA, Guberski DL, Hutson B, et al. Time course of NADH oxidase, inducible nitric oxide synthase and peroxynitrite in diabetic retinopathy in the BBZ/WOR rat. Nitric Oxide,2002,6(3):295-304
    [176]Du Y, Smith MA, Miller CM, et al. Diabetes-induced nitrative stress in the retina, and correction by aminoguanidine. J Neurochem,2002,80(5):771-779
    [177]Obrosova IG, Pacher P, Szabo C, et al. Aldose reductase inhibition counteracts oxidative-nitrosative stress and poly(ADP-ribose) polymerase activation in tissue sites for diabetes complications. Diabetes,2005,54(1):234-242
    [178]Kowluru RA. Effect of reinstitution of good glycemic control on retinal oxidative stress and nitrative stress in diabetic rats. Diabetes,2003,52(3): 818-823
    [179]El-Remessy AB, Behzadian MA, Abou-Mohamed G, et al. Experimental diabetes causes breakdown of the blood-retina barrier by a mechanism involving tyrosine nitration and increases in expression of vascular endothelial growth factor and urokinase plasminogen activator receptor. Am J Pathol,2003, 162(6):1995-2004
    [180]Coppey LJ, Gellett JS, Davidson EP, et al. Effect of M40403 treatment of diabetic rats on endoneurial blood flow, motor nerve conduction velocity and vascular function of epineurial arterioles of the sciatic nerve. Br J Pharmacol, 2001,134(1):21-29
    [181]Coppey LJ, Gellett JS, Davidson EP, et al. Effect of antioxidant treatment of streptozotocin induced diabetic rats on endoneurial blood flow, motor nerve conduction velocity, and vascular reactivity of epineurial arterioles of the sciatic nerve. Diabetes,2001,50(8):1927-1937
    [182]Coppey LJ, Gellett JS, Davidson EP, et al. Preventing superoxide formation in epineurial arterioles of the sciatic nerve from diabetic rats restores endothelium-dependent vasodilation. Free Radic Res,2003,37(1):33-40
    [183]Cheng C, Zochodne DW. Sensory neurons with activated caspase-3 survive long-term experimental diabetes. Diabetes,2003,52(9):2363-2371
    [184]Obrosova IG, Mabley JG, Zsengeller Z, et al. Role for nitrosative stress in diabetic neuropathy:evidence from studies with a peroxynitrite decomposition catalyst. FASEB J,2005,19(3):401-403
    [185]Hoeldtke RD, Bryner KD, McNeill DR, et al. Nitrosative stress, uric acid, and peripheral nerve function in early type 1 diabetes. Diabetes,2002,51(9): 2817-2825
    [186]Poladia DP, Bauer JA. Early cell-specific changes in nitric oxide synthases, reactive nitrogen species formation, ubiquitinylation during diabetes-related bladder remodeling. Diabetes Metab Res Rev,2003,19(4):313-319
    [187]Martin-Gallan P, Carrascosa A, Gussinye M, et al. Biomarkers of diabetes-associated oxidative stress and antioxidant status in young diabetic patients with or without subclinical complications. Free Radic Biol Med,2003, 34(12):1563-1574
    [188]Agarwal S, Kulshreshtha P, Bambah Mukku D, et al. a-Enolase binds to human plasminogen on the surface of Bacillus anthracis. Biochim Biophys Acta,2008, 1784(7-8):986-994
    [189]E.哈洛,D.莱恩.抗体技术实验指南.北京:科学出版社,2002,165-177
    [190]Zhang Y, Lu N, Gao Z. Hemin-H2O2-NO2- induced protein oxidation and tyrosine nitration are different from those of SIN-1:A study on glutamate dehydrogenase nitrative/oxidative modification. Int J Biochem Cell Biol,2009, 41(4):907-915
    [191]Brewer JM. Specificity and mechanism of action of metal ions in yeast enolase. FEBS Lett,1985,182(1):8-14
    [192]Lee ME, Nowak T. Metal ion specificity at the catalytic site of yeast enolase. Biochemistry,1992,31(7):2172-2180
    [193]Comporti M, Signorini C, Buonocore G, et al. Iron release, oxidative stress and erythrocyte ageing. Free Radic Biol Med,2002,32(7):568-576
    [194]Ninfali P, Perini MP, Bresolin N, et al. Iron release and oxidant damage in human myoblasts by divicine. Life Sci,2000,66(6):85-91
    [195]Chen HJ, Chang CM, Lin WP, et al. H2O2/nitrite-induced post-translational modifications of human hemoglobin determined by mass spectrometry:redox regulation of tyrosine nitration and 3-nitrotyrosine reduction by antioxidants. Chembiochem,2008,9(2):312-323
    [196]Crow JP. Manganese and iron porphyrins catalyze peroxynitrite decomposition and simultaneously increase nitration and oxidant yield:implications for their use as peroxynitrite scavengers in vivo. Arch Biochem Biophys,1999,371(1): 41-52
    [197]Mahammed A, Gross Z. Iron and manganese corroles are potent catalysts for the decomposition of peroxynitrite. Angew Chem Int Ed Engl,2006,45(39): 6544-6547
    [198]Reed GH, Poyner RR, Larsen TM, et al. Structural and mechanistic studies of enolase. Curr Opin Struct Biol,1996,6(6):736-743
    [199]Wolna E. Inactivation of enolase with tetranitromethane. Acta Biochim Pol, 1980,27(3-4):365-370
    [200]Kornblatt MJ, Ghanim AA, Kornblatt JA. The effects of sodium perchlorate on rabbit muscle enolase. Eur J Biochem,1996,236(1):78-84
    [201]Olas B, Nowak P, Kolodziejczyk J, et al. Protective effects of resveratrol against oxidative/nitrative modifications of plasma proteins and lipids exposed to peroxynitrite. J Nutr Biochem,2006,17(2):96-102
    [202]Halliwell B. Protection against tissue damage in vivo by desferrioxamine:what is its mechanism of action? Free Radic Biol Med,1989,7(6):645-651
    [203]Reeder BJ, Hider RC, Wilson MT. Iron chelators can protect against oxidative stress through ferryl heme reduction. Free Radic Biol Med,2008,44(3): 264-273
    [204]Crow JP, Ischiropoulos H. Detection and quantitation of nitrotyrosine residues in patients:in vivo marker of peroxynitrite. Methods Enzymol,1996,233: 185-195
    [205]高平章,卢乃浩,高中洪.蛋白质酪氨酸硝化检测方法.化学进展,2007,19(4):590-597
    [206]Re R, Pellegrini N, Proteggente A, et al. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med, 1999,26(9-10):1231-1237
    [207]Sohn OS, Fiala ES. Analysis of nitrite/nitrate in biological fluids: Denitrification of 2-nitropropane in F344 rats. Anal Biochem,2000,279(2): 202-208
    [208]蒋萌阳,包淼清.格里斯试剂法测定NO2-的一点改进.浙江化工,2003,34:14-18
    [209]Fleischer EB, Wang JH. The Detection of a type of reaction intermediate in the combination of metal ions with porphyrins. J Am Chem Soc,1960,82(14): 3498-3502
    [210]Borg DC, Schaich KM. Prooxidant action of desferrioxamine:Fenton-like production of hydroxyl radicals by reduced ferrioxamine. J Free Radic Biol
    Med,1986,2(4):237-243
    [211]Klebanoff SJ, Waltersdorph AM, Michel BR, et al. Oxygen-based free radical generation by ferrous iron and deferoxamine. J Biol Chem,1989,264(33): 19765-19771
    [212]Niihara Y, Ge J, Shalev O, et al. Desferrioxamine decreases NAD redox potential of intact red blood cells:evidence for desferrioxamine as an inducer of oxidant stress in red blood cells. BMC Clin. Pharmacol.2002,2:8
    [213]Bergamini S, Rota C, Staffieri M, et al. Prooxidant activity of ferrioxamine in isolated rat hepatocytes and linoleic acid micelles. Chem Res Toxicol,1999, 12(4):365-370
    [214]Van Dyke BR, Saltman P. Hemoglobin:A mechanism for the generation of hydroxyl radicals. Free Radic Biol Med,1996,20(7):985-989
    [215]Aft RL, Mueller GC. Hemin mediated oxidative degradation of proteins. J Biol Chem,1984,259(1):301-305
    [216]Goodwin JF, Whitten CF. Chelation of ferrous sulphate solutions by desferrioxamine B. Nature,1965,205:281-283
    [217]Dutta K, Mukhopadhyay S, Bhattacharjee S, et al. Chemical oxidation of methylene blue using a Fenton-like reaction. J Hazard Mater,2001,84(1): 57-71
    [218]Li AS, Bandy B, Tsang S, et al. DNA breakage induced by 1,2,4-benzenetriol: relative contributions of oxygen-derived active species and transition metal ions. Free Radic Biol Med,2001,30(9):943-956
    [219]Cohen HJ, Chovaniec ME. Superoxide generation by digitonin-stimulated guinea pig granulocytes. A basis for a continuous assay for monitoring superoxide production and for the study of the activation of the generating system. J Clin Invest,1978,61(4):1081-1087
    [220]Van Gelder B, Slater EC. The extinction coefficient of cytochrome c. Biochim Biophys Acta,1962,58:593-595
    [221]Bradford MM. A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem,1976,72:248-254
    [222]Chavko M, Auker CR, McCarron RM. Relationship between protein nitration and oxidation and development of hyperoxic seizures. Nitric Oxide,2003,9(1): 18-23
    [223]Barreiro E, Garcia-Martinez C, Mas S, et al. UCP3 overexpression neutralizes oxidative stress rather than nitrosative stress in mouse myotubes. FEBS Lett, 2009,583(2):350-356
    [224]Schroeder P, Klotz LO, Buchczyk DP, et al. Epicatechin selectively prevents nitration but not oxidation reactions of peroxynitrite. Biochem Biophys Res Commun,2001,285(3):782-787
    [225]Cenini G, Sultana R, Memo M, et al. Effects of oxidative and nitrosative stress in brain on p53 proapoptotic protein in amnestic mild cognitive impairment and Alzheimer disease. Free Radic Biol Med,2008,45(1):81-85
    [226]Cenini G, Sultana R, Memo M, et al. Elevated levels of pro-apoptotic p53 and its oxidative modification by the lipid peroxidation product, HNE, in brain from subjects with amnestic mild cognitive impairment and Alzheimer's disease. J Cell Mol Med,2008,12(3):987-994
    [227]Yohannes E, Chang J, Christ GJ, et al. Proteomics analysis identifies molecular targets related to diabetes mellitus-associated bladder dysfunction. Mol Cell Proteomics,2008,7(7):1270-1285
    [228]Cai L. Suppression of nitrative damage by metallothionein in diabetic heart contributes to the prevention of cardiomyopathy. Free Radic Biol Med,2006, 41(6):851-861

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700