用户名: 密码: 验证码:
PKCα在Ⅶa-TF/PAR2促进SW620细胞增殖、迁移与生存中的作用探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:在结肠癌SW620细胞系中,探讨protein kinase Cα (PKCα)在TF-Ⅶa-PAR2信号转导轴中是否被激活以及其在结肠癌细胞株增殖、迁移与生存中的作用;进一步分析该过程中PKCa的下游信号分子及其调控的效应分子,以阐明TF-Ⅶa-PAR2-PKCa促进SW620细胞增殖、迁移与生存的分子机制。
     方法:(1)采用因子Ⅶa (10nM)、PAR2激动剂(PAR2-AP,100μM)以及PKC激动剂佛波酯(PMA,100nM)等处理SW620细胞不同时间,western blot检测其PKCα与p-PKCα的表达,免疫荧光试验观察PKCα的分布情况。(2)借助抑制抗体(α-TF、α-PAR2)同型对照抗体(mopc-21)、PKCα抑制剂(safingol,10μM)及ERK1/2抑制剂(U0126,10μM)进行抑制试验,western blot检测其PKCα与p-PKCα, ERK1/2与p-ERK1/2以及NF-κB与P-NF-κB的表达,探讨PKCα_上下游的信号分子。(3)采用PMA(100nM), Ⅶa (10nM)及PKCα印制剂(safingol,10μM)等不同组合刺激SW620细胞后,MTT探测细胞增殖能力,Transwell试验检测细胞迁移潜能,流式细胞术(FCM)评估细胞的生存能力。(4)采用Ⅶa (10nM) PKCα抑制剂(safingol,10μM)以及NF-κB抑制剂(PDTC,5μM)等不同组合刺激SW620细胞后,实时荧光定量PCR与western blot检测MMP-9, caspase-3, TF,与Bcl-2/Bax的表达,TF活性检测试剂盒检测TF活性。
     结果:(1)与]medium组比较,Ⅶa (10nM)、PAR2-AP (100μM)及PMA (100nM)均能明显促进PKCα的磷酸化,而对PKCα的表达没有显著性影响。免疫荧光结果表明,medium组PKCα主要分布在胞浆,分布无明显规律,核内未探测到PKCα的表达;Ⅶα、 PAR2-AP、PMA处理组的PKCα主要分布在核周,并且核内亦有少量表达。(2)与medium组比较,抗TF或抗PAR2抗体均能明显减弱Ⅶa与PAR2-AP诱导的p-PKCα的表达(p<0.05),而同型对照抗体(mopc-21)则没有这种抑制效果(P>0.05)。与Ⅶa处理组比较,PKCα抑制剂(safingol,10μM)能显著抑制Ⅶa对下游信号分子ERK1/2及NF-κB的磷酸化(p<0.05)。(3)与medium组比较,Ⅶa (10nM)及PMA (100nM)均能明显促进细胞的增殖、迁移与生存(p<0.05);这一促进增强作用能被PKCα印制剂(safingol,10μM)阻断(p<0.05)。(4)与medium组比较,Ⅶa (10nM)能诱导caspase-3与Bax表达明显下调,MMP-9、TF与Bcl-2表达以及TF活性明显上调,这一诱导作用能被PKCα抑制剂(safingol,10μM)与NF-κB抑制剂(PDTC,5μM)阴断(p<0.05)
     结论:(1)在结肠癌细胞株SW620中,PKCα能够被因子Ⅶa与PAR2-AP激活。
     (2)Ⅶa依赖TF及PAR2激活PKCα,进而活化下游的ERK1/2与NF-KB。
     (3)PKCα激活对于因子Ⅶa促进SW620细胞的增殖、迁移与生存是非常必要的。
     (4)PKCα激活参与了因子VIIa诱导的MMP-9、caspase-3、TF与Bcl-2/Bax效应分子表达。
Objective:To explore whether the protein kinase Ca (PKCa) is activated in the TF-VIIa-PAR2signal transduction axis as well as its roles in the proliferation, migration and survival of colon cancer cell lines SW620, and to further analyze upstream and downstream signaling molecules of PKCa and its regulation of effector molecules in the process to clarify the underlying molecular mechanism that TF-VIIa-PAR2-PKCa promotes SW620cell proliferation, migration, and survival.
     Methods:(1) SW620cells were treated with factor Ⅶa (10nM), protease activated receptor-2agonists (PAR2-AP,100μM), phorbol-12-myristate-13-acetate (PMA,100nM) and medium for different times, and the expression of PKC a and p-PKC a was detected by Western blot, and meanwhile the distribution of PKC a was observed by immunofluorescence assay, respectively.(2) With inhibition antibody (a-TF, a-PAR2), isotype control antibody (mopc-21), PKC a inhibitor (safingol,10μM) and ERK1/2inhibitor (U0126,10μM), inhibition experiments were carried out and western blot was used to detect the expression of PKCa and p-PKCa, ERK1/2and p-ERK1/2as well as NF-κB and p-NF-KB, so as to explore upstream and downstream signaling molecules of PKCa.(3) After SW620cells were treated with different combinations of PMA (100nM), Ⅶa (10nM) and PKC a inhibitor(safingol,10μM), the cell proliferation ability was detected by MTT assay, the cell migratory potential was tested by transwell experiment and the cell survival ability was assessed by flow cytometry.(4) After SW620cells were treated with different combinations of VIIa(10nM), PKC α inhibitor(safingol,10μM) and NF-κB inhibitor (PDTC,5μM), real-time fluorescence quantitative PCR and western blot were used to detect the expression of MMP-9, caspase-3, TF, and Bcl-2/Bax, and TF activity kits was used to detect TF activity.
     Results:(1) Compared with the medium group,Ⅶa (10nM), PAR2-AP (100μM) and PMA (100nM, positive control) could obviously induced phosphorylation of PKCα (p-PKCα) but did not affect the expression of total PKCα. Immunofluorescence results showed that PKCα was distributed mostly in the cytoplasm with irregularity but not detected in the nucleus in untreated cells; while in the Ⅶa or PAR2-AP or PMA treated cells, PKCα was mainly localized in the perinuclear region with slight distribution in the nucleus.(2) Compared with the medium group, α-TF or α-PAR2could dramatically attenuate phosphorylation of PKCα (p-PKCα) induced by Ⅶa (p<0.05, compared to Ⅶa treatment alone), which was not found in pretreatment with isotype control antibody (Mopc-21). Compared with the Ⅶa treatment alone group, PKCα inhibitor (safingol,10μM) significantly inhibited Ⅶa-induced downstream signaling molecules ERK1/2and NF-κB phosphorylation (p<0.05).(3) The cell proliferation ability, migratory potential and survival ability were significantly enhanced by stimulation with Vila or PMA (p<0.05, compared to medium control). However, the enhanced effects by Vila or PMA on cell proliferation, migration and survival were blocked by safingol (p<0.05, compared to Vila or PMA treatment alone).(4) Compared with the medium group, obvious downregulation of caspase-3and Bax expression and significant upregulation of MMP-9, TF and Bcl-2expression as well as TF activity were elicited by Vila (p<0.05). However, the induced effects by Vila were dramatically neutralized by safingol or PDTC treatment (p<0.05, compared to Vila treatment alone).
     Conclusions:
     (1) Activation of PKCa can be caused by PAR2-AP and Vila in SW620cells.
     (2) Ⅶa-induced PKCa activation is dependent on TF and PAR2, and consequently activates downstream of ERK1/2and NF-κB.
     (3) PKCa activation is necessary for the proliferation, migration and survival of SW620cells stimulated by Ⅶa.
     (4) PKCa activation is involved in the expression of MMP-9, caspase-3, TF, and Bcl-2/Bax induced by Vila.
引文
[1]Mackman N, Tilley RE, and Key NS. Role of the extrinsic pathway of blood coagulation in hemostasis and thrombosis. Arterioscler Thromb Vase Biol,2007, 27(8):1687-1693.
    [2]Jiang X, Bailly MA, Panetti TS, et al. Formation of tissue factor-factor Ⅶa-factor Xa complex promotes cellular signaling and migration of human breast cancer cells. J Thromb Haemost,2004,2(1):93-101.
    [3]Mackman N. Role of tissue factor in hemostasis, thrombosis, and vascular development. Arterioscler Thromb Vase Biol,2004,24(6):1015-1022.
    [4]Mackman N. The many faces of tissue factor. J Thromb Haemost,2009,7 (Suppl 1):136-139.
    [5]Schaffner F, Ruf W. Tissue factor and PAR2 signaling in the tumor microenvironment. Arterioscler Thromb Vase Biol,2009,29(12):1999-2004.
    [6]Bushell T.The emergence of proteinase-aetivated receptor-2 as a novel target for the treatment of inflammation-related CNS disorders. J Physiol,2007,581 (Pt 1):7-16.
    [7]Kirkland JG, Cottrell GS, Bunnett NW, et al. Agonists of protease-activated receptors 1 and 2 stimulate electrolyte secretion from mouse gallbladder. Am J Physiol Gastrointest Liver Physiol,2007,293(1):G335-G346.
    [8]Hjortoc GM, Petersen LC, Albrektsen T, et al. Tissue factor-factor Ⅶa-specific up-regulation of IL-8 expression in MDA-MB-231 cells is mediated by PAR-2 and results in increased cell migration. Blood,2004,103(8):3029-3037.
    [9]. Poon RT, Lau CP, Ho JW, et al. Tissue factor expression correlates with tumor angiogenesis and invasiveness in human hepatocellular carcinoma. Clin Cancer Res,2003,9(14):5339-45.
    [10]. Lindholm PF, Lu Y, Adley BP, et al.Role of monocyte-lineage cells in prostate cancer cell invasion and tissue factor expression. Prostate,2010,70(15):1672-82.
    [11]. Ueno T, Toi M, Koike M, et al. Tissue factor expression in breast cancer tissues: its correlation with prognosis and plasma concentration. Br J Cancer, 2000,83(2):164-70.
    [12]. Jahan I, Fujimoto J, Alam SM, et al.Role of protease activated receptor-2 in tumor advancement of ovarian cancers. Ann Oncol,2007,18(9):1506-12.
    [13]Zhou H, Hu H, Shi W, et al. The expression and the functional roles of tissue factor and protease-activated receptor-2 on SW620 cells. Oncol Rep,2008,20(5): 1069-1076.
    [14]胡红心,周红,土婷.蛋白酶激活受体1和2在结肠癌细胞的表达及其作用初探.江苏大学学报(医学版),2007,17(1):23-27.
    [15]石文霞,周红,李娜,等.凝血因子Ⅶa促进SW620细胞增殖与迁移的机制探讨.中华肿瘤杂志,2009,31(7):485-489.
    [16]Zhou H, Shi WX, Zhou BC, et al. Tissue factor-factor Ⅶa regulates interleukin-8, tissue factor and caspase-7 expression in SW620 cells through protease-activated receptor-2 activation. Mol Med Rep,2010,3(2):269-274.
    [17]石文霞,周红,李娜,等Ⅶa依赖TF及因子X活化PAR2上调SW620细胞IL-8表达.血栓与止血,2009,15(2):53-56.
    [18]郭东琳,周红NF-κB在蛋白酶激活受体介导的信号通路中的作用研究进展.临床检验杂志,2010,28(6):453-454.
    [19]Guo D, Zhou H, Wu Y, et al.Involvement of ERK1/2/NF-κB signal transduction pathway in TF/FVIIa/PAR2-induced proliferation and migration of colon cancer cell sw620. Tumour Biol,2011,32(5):921-930.
    [20]Wu Y, Zhang X, Zhou H, et al. Factor viia regulates the expression of caspase-3, mmp-9, and cd44 in sw620 colon cancer cells involving par2/mapks/nf-kappab signaling pathways. Cancer Invest,2013,31(1):7-16.
    [21]Urtreger AJ, Kazanietz MG, Bal de Kier Joffe ED.Contribution of individual pkc isoforms to breast cancer progression. IUBMB Life,2012,64(1):18-26.
    [22]Dekker L. V, Parker P. J. Protein kinase C-a question of specificity. Trends Biochem Sci,1994,19(2),73-77.
    [23]. Nishizuka, Y. Protein kinase C and lipid signaling for sustained cellular responses. FASEB J,1995,9(7),484-496.
    [24]Castagna M, Takai Y, Kaibuchi K, et al. Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters. J BiolChem,1982,257(13):7847-51.
    [25]Niedel JE, Kuhnand LJ, Vandenbark GR. Phorbol diester receptor copurifies with protein kinase C. Proc Natl Acad Sci USA,1983,80(1):36-40.
    [26]Koivunen J, Aaltonen V, Koskela S, et al. Protein kinase C alpha/beta inhibitor Go6976 promotes formation of cell junctions and inhibits invasion of urinary bladder carcinoma cells.CancerRes,2004,64(16):5693-5701.
    [27]Gokmen-Polar Y, Murray NR, Velasco MA, et al. Elevated protein kinase C betall is an early promotive event in colon carcinogenesis. Cancer Res,2001, 61(4):1375-1381.
    [28]Walsh MF, Woo RK, Gomez R, et al. Extracellular pressure stimulates colon cancer cell proliferation via a mechanism requiring PKC and tyrosine kinase signals. Cell Prolif,2004,37(6):427-441.
    [29]Masur K, Lang K, Niggemann B, et al. High PKC alpha and low E-cadherin expression contribute to high migratory activity of colon carcinoma cells. Mol BiolCell,2001,12(7):1973-1982.
    [30]Edgington TS, Mackman N, Brand K, et al. The structural biology of expression and function of tissue factor. Thromb Haemost,1991,66(1):67-79.
    [31]Bach R. Mechanism of tissue factor activation on cells. Blood Coagul Fibrinolys, 1998,9(Suppl 1):S37-43.
    [32]Dorfleutner A, Hintcrmann E, Tarui T, et al. Cross-talk of integrin alpha3bctal and tissue factor in cell migration. Mol Biol Cell.2004,15(10):4416-4425.
    [33]Ott I, Weigand B, Michl R, et al. Tissue factor cytoplasmic domain stimulates migration by activation of the GTPase Rael and the mitogen-activated protein kinase p38. Circulation.2005.111(3):349-355.
    [34]Ahamed J, Niessen F, Kurokawa T, et al.Regulation of macrophage procoagulant responses by the tissue factor cytoplasmic domain in endotoxemia.Blood, 2007,109(12):5251-5259.
    [35]. Ruf W, Dorfleutner A, Riewald M. Specificity of coagulation factor signaling. J Thromb Haemost,2003,1 (7):1495-1503.
    [36]Kahn ML, Hammes SR, Botka C, et al. Gene and locus structure and chromosomal localization of the protease-activated receptor gene family. J Biol Chem,1998,273(36):23290-23296.
    [37]Luo W, Wang Y, Reiser G. Protease-activated receptors in the brain:receptor expression, activation, and functions in neurodegeneration and neuroprotection. Brain Res Rev,2007,56(2):331-345.
    [38].Fujimoto D, Hirono Y, Goi T, et al. Expression of protease activated receptor-2 (PAR-2) in gastric cancer. J Surg Oncol,2006,93(2):139-144.
    [39]Yada K, Shibata K, Matsumoto T, et al. Protease-activated receptor-2 regulates cell proliferation and enhances cyclooxygenase-2 mRNA expression in human pancreatic cancer cells. J Surgl Oncol,2005,89(2):79-85.
    [40]Darmoul D, Marie JC, Devaud H, et al. Initiation of human colon cancer cell proliferation by trypsin acting at protease-activated receptor-2. Br J Cancer,2001, 85(5):772-779.
    [41]Kaufmann R, Oettel C, Horn A, et al. Met receptor tyrosine kinase transactivation is involved in proteinase-activated receptor-2-mediated hepatocellular carcinoma cell invasion. Carcinogenesis,2009,30(9):1487-1496.
    [42]Shibata K, Yada K, Matsumoto T, et al. Protease-activating-receptor-2 is frequently expressed in papillary adenocarcinoma of the gallbladder. Oncol Rep, 2004,12(5):1013-1016.
    [43]Cenac N. Garcia-Villar R, Ferrier L, et al. Proteinase-activated receptor-2-induced colonic inflammation in mice:possible involvement of afferent neurons, nitric oxide, and paracellular permeability. J Immunol, 2003,170(8):4296-4300.
    [44]Vergnolle N. Protease-activated receptors as drug targets in inflammation and pain. Pharmacol Ther,2009,123(3):292-309.
    [45]Sorensen BB, Rao LVM, Tornehave D, et al. Anti-apoptotic effect of coagulation factor Vila. Blood,2003,102(5):1708-15.
    [46]. Tian M, Wan Y, Tang J, et al. Depletion of tissue factor suppresses hepatic metastasis and tumor growth in colorectal cancer via the downregulation of MMPs and the induction of autophagy and apoptosis. Cancer Biol Ther, 2011,12(10):896-907.
    [47]Morris DR, Ding Y, Ricks TK, et al.Protease-activated receptor-2 is essential for factor Vila and Xa-induced signaling, migration, and invasion of breast cancer cells. Cancer Res,2006,66(1):307-14.
    [48]Jia ZC, Wan YL, Tang JQ, et al. Tissue factor/activated factor Vila induces matrix metalloproteinase-7 expression through activation of c-Fos via ERK1/2 and p38 MAPK signaling pathways in human colon cancer cell. Int J Colorectal Dis.,2012,27(4):437-45.
    [49]Lars Christian Petersen. Microarray studies of factor Vila-activated cancer cells. Thrombosis Res,2008,122(Suppl 1):S11-3.
    [50]Kasthuri RS, Taubman MB, Mackman N. Role of tissue factor in cancer. J Clin Oncol,2009,27(29):4834-4838.
    [51]Liu Y, Mueller BM. Protease-activated receptor-2 regulates vascular endothelial growth factor expression in MDA-MB-231 cells via MAPK pathways. Biochemical Biophys Res Commun,2006,344(4):1263-1270.
    [52]Albrektsen T, S rensen B, Hjortoe G, et al. Transcriptional program induced by factor Ⅶa-tissue factor, PAR1 and PAR2 in MDA-MB-231 cells. J Thromb Haemost,2007,5(8):1588-1597.
    [53]Kubota Y, Takubo K, Shimizu T, et al. M-CSF inhibition selectively targets pathological angiogenesis and lymphangiogenesis. J Exp Med,2009,206(5): 1089-1102.
    [54]Caruso R, Pallone F, Fina D, et al. Protease-activated receptor-2 activation in gastric cancer cells promotes epidermal growth factor receptor trans-activation and proliferation. Am J Pathol,2006,169(1):268-278.
    [55]Versteeg HH, Spek CA, Richel DJ, et al. Coagulation factors Ⅶa and Xa inhibit apoptosis and anoikis. Oncogene,2004,23(2):410-417.
    [56]Zoudilova M, Kumar P, Ge L, et al. Beta-arrestin-dependent regulation of the cofilin pathway downstream of protease-activated receptor-2. J Biol Chem,2007, 282(28):20634-20646.
    [57]Noue M, Kishimoto A, Takai Y, et al. Studies on a cyclic nucleotide-independent protein kinase and its proenzyme in mammalian tissues. Ⅱ. Proenzyme and its activation by calcium-dependent protease from rat brain. J Biol Chem,1977, 252(21):7610-7616.
    [58]Kanashiro CA, Khalil RA.Signal transduction by protein kinase C in mammalian cells. Clin Exp Pharmacol Physiol,1998,25(12):974-985.
    [59]Newton AC. Protein kinase C. structure, function, and regulation. J Biol Chem, 1995,270(48):28495-28498.
    [60]Mellor H, Parker PJ. The extended protein kinase C superfamily. Biochem J.1998; 332 (Pt 2):281-292.
    [61]Hug H, Sarre TF. Protein kinase C isoenzymes:Divergence in signal transduction? Biochem J,1993,291 (Pt 2):329-343.
    [62]Pears CJ, Kour G, House C, et al. Mutagenesis of the pseudosubstrate site of protein kinase C leads to activation. Eur J Biochem,1990,194(1):89-94.
    [63]Parekh DB, Ziegler W, Parker PJ. Multiple pathways control protein kinase C phosphorylation. EMBOJ,2000,19(4):496-503.
    [64]Parker PJ, Murray-Rust J. Pke at a glance. J Cell Sci,2004.117 (Pt 2):131-132.
    [65]Engers R, Mrzyk S, Springer E, et al. Protein kinase C in human renal cell carcinomas:Role in invasion and differential isoenzyme expression. Br J Cancer,2000,82(5):1063-1069.
    [66]Parsons M, Keppler MD, Kline A, et al. Site-directed perturbation of protein kinase C-integrin interaction blocks carcinoma cell chemotaxis. Mol Cell Biol,2002,22(16):5897-5911.
    [67]Lahn M, Sundell K, Kohler G. The role of protein kinase C-alpha in hematologic malignancies. Acta Haematol,2006,115 (1-2):1-8.
    [68]Ng T, Squire A, Hansra G, et al. Imaging protein kinase C alpha activation in cells. Science,1999,283(5410):2085-2089.
    [69]Kerfoot C, Huang W, Rotenberg SA. Immunohistochemical analysis of advanced human breast carcinomas reveals downregulation of protein kinase C alpha. J Histochem Cytochem,2004,52(3):419-422.
    [70]Ainsworth PD, Winstanley JH, Pearson JM, et al. Protein kinase C alpha expression in normal breast, ductal carcinoma in situ and invasive ductal carcinoma. Eur J Cancer,2004,40(15):2269-2273.
    [71]Coward J, Ambrosini G, Musi E, et al. Safingol (1-threo-sphinganine) induces autophagy in solid tumor cells through inhibition of PK.C and the P13-kinase pathway. Autophagy,2009,5(2):184-193.
    [72]Ahamed J, Ruf W. Protease-activated receptor 2-dependent phosphorylation of the tissue factor cytoplasmic domain. J Biol Chem,2004,279(22):23038-23044.
    [73]Widmann C, Gibson S, Jarpe MB, et al. Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev,1999, 79(1):143-180.
    [74]Sivaraman VS. Wang H, Nuovo GJ, et al. Hyperexpression of mitogen-activated protein kinase in human breast cancer. J Clin Invest,1997,99(7):1478-1483.
    [75]Mansour SJ, Matten WT, Hermann AS. et al. Transformation of mammalian cells by constitutively active MAP kinase kinase. Science,1994, 265(5174):966-970.
    [76]Boldt S, Weidle UH, Kolch W. The role of MAPK pathways in the action of chemotherapeulic drugs. Carcinogenesis,2002,23(11):1831-1838.
    [77]Zheng L, Ren JQ, Zhang L, et al.Overexpression of HER2/neu downregulates wild p53 protein expression via PI3K and Ras/Raf/MEK/ERK pathways in human breast cancer cells. Zhonghua Bing Li Xue Za Zhi,2004,33(4):358-362.
    [78]Siddiqa A, Long LM, Li L, et al. Expression of HER-2 in MCF-7 breast cancer cells modulates anti-apoptotic proteins Survivin and Bcl-2 via the extracellular signal-related kinase (ERK) and phosphoinositide-3 kinase (P13K) signalling pathways. BMC Cancer,2008,8:129.
    [79]Sen R, Baltimore D. Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell,1986,46(5):705-716.
    [80]Panwalkar A, Verstovsek S, Giles F. Nuclear factor-KappaB modulation as a therapeutic approach in hematologic malignancies. Cancer,2004,100(8): 1578-1589.
    [81]史艳晖,卢圣栋.转录因子NF-κB的研究现状及其应用前景.中国生物工程杂志,2007,27(4):110-114.
    [82]Jost PJ, Ruland J. Aberrant NF-kappaB signaling in lymphoma:mechanisms, consequences, and therapeutic implications. Blood,2007,109(7):2700-2707.
    [83]Haffner MC, Berlato C, Doppler W.Exploiting our knowledge of NF-kappaB signaling for the treatment of mammary cancer. J Mammary Gland Biol Neoplasia,2006,11(1):63-73.
    [84]Mut M, Amos S, Hussaini IM. PKC alpha phosphorylates cytosolic NF-kappaB/p65 and PKC delta delays nuclear translocation of NF-kappaB/p65 in U1242 glioblastoma cells. Turk Neurosurg,2010,20(3):277-285.
    [85]LinC W, Shen SC, Chien CC,etal.12-O-tetradecanoylphorbol-13-acetate-induced invasion/migration of glioblastoma cells through activating PKCalpha/ERK/NF-kappaB-dependent MMP-9 expression. J Cell Physiol,2010, 225(2):472-481.
    [86]Braz JC, Bueno OF, De Windt LJ, et al. PKC alpha regulates the hypertrophic growth of cardiomyocytes through extracellular signal-regulated kinase 1/2 (ERK1/2). J Cell Biol,2002,156(5):905-919.
    [87]Syeda F, Grosjean J, Houliston RA, et al. Cyclooxygenase-2 induction and prostacyclin release by protease-activated receptors in endothelial cells require cooperation between mitogen-activated protein kinase and NF-kappaB pathways. J Biol Chem,2006,281(17):11792-11804.
    [88]. Adam E, Hansen KK, Astudillo Fernandez O, et al. The house dust mite allergen Der p 1, unlike Der p 3, stimulates the expression of interleukin-8 in human airway epithelial cells via a proteinase-activated receptor-2-independent mechanism. J Biol Chem,2006,281(11):6910-6923.
    [89]Park GH, Jeon SJ, Ryu JR, et al. Essential role of mitogen-activated protein kinase pathways in protease activated receptor 2-mediated nitric-oxide production from rat primary astrocytes. Nitric Oxide,2009,21(2):110-119.
    [90]Ledgerwood EC, Morison IM. Targeting the apoptosome for cancer therapy. Clin Cancer Res,2009,15(2):420-424.
    [91]Debatin KM. Apoptosis pathways in cancer and cancer therapy. Cancer Immunol Immunother,2004,53(3):153-9.
    [92]Larmonier CB, Amould L, Larmonier N, et al. Kinetics of tumor cell apoptosis and immune cell activation during the regression of tumors induced by lipid A in a rat model of colon cancer. Int J Mol Med,2004,13(3):355-61.
    [93]Cakir E, Yilmaz A, Demirag F, et al. Prognostic significance of micropapillary pattern in lung adenocarcinoma and expression of apoptosis-related markers: caspase-3, bcl-2, and p53. APMIS,2011,119(9):574-80.
    [94]Tsujimoto Y. Finger LR, Yunis J, et al. Cloning of the chromosome breakpoint of neoplastic B cells with the t(14;18) chromosome translocation. Science,1984, 226(4678):1097-1099.
    [95]Tsujimoto Y, Croce CM. Analysis of the structure, transcripts, and protein products of bcl-2. the gene involved in human follicular lymphoma. Proc Natl Acad Sci U S A.1986.83(14):5214-5218.
    [96]Oltvai ZN, Milliman CL, Korsmeyer SJ. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell,1993, 74(4):609-619.
    [97]Kuwana T, Mackey MR, Perkins G, et al. Bid, Bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell,2002, 111(3):331-342.
    [98]Saito M, Korsmeyer SJ, Schlesinger PH.BAX-dependent transport of cytochrome c reconstituted in pure liposomes. Nat Cell Biol,2000,2(8):553-555.
    [99]Jayanthi S, Deng X, Bordelon M, et al. Methamphetamine causes differential regulation of pro-death and anti-death Bcl-2 genes in the mouse neocortex. FASEB J,2001,15(10):1745-1752.
    [100]Harris MH, Thompson CB. The role of the Bcl-2 family in the regulation of outer mitochondrial membrane permeability. Cell Death Differ,2000, 7(12):1182-1191.
    [101]Kerkela E, Saarialho-Kere U. Matrix metalloproteinases in tumor progression: focus on basal and squamous cell skin cancer. Exp Dermatol,2003, 12(2):109-125.
    [102]Bergers G, Brekken R, McMahon G, et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol,2000,2(10):737-744.
    [103]Zhao F, Zhang Q, Kang C, et al Suppression of matrix metalloproteinase-9 expression by RNA interference inhibits SGC7901 gastric adenocarcinoma cell growth and invasion in vitro and in vivo. Med Oncol 2010.27(3):774-784.
    [104]Zhang JF, Zhang YP, Hao FY, et al. DNA ploidy analysis and expression of MMP-9, TIMP-2, and E-cadherin in gastric carcinoma. World J Gastroenterol,2005,11(36):5592-5600.
    [105]Tummalapalli P, Spomar D, Gondi CS. et al. RNAi-mediated abrogation of cathepsin B and MMP-9 gene expression in a malignant meningioma cell line leads to decreased tumor growth, invasion and angiogenesis. Int J Oncol,2007, 31(5):1039-1050.
    [106]Kunigal S, Lakka SS, Gondi CS, ct al. RNAi-mediated downregulation of urokinase plasminogen activator receptor and matrix metalloprotease-9 in human breast cancer cells results in decreased tumor invasion, angiogenesis and growth. Int J Cancer,2007,121(10):2307-16.
    [107]Yang P, Yuan W, He J, et al. Overexpression of EphA2, MMP-9, and MVD-CD34 in hepatocellular carcinoma:Implications for tumor progression and prognosis. Hepatol Res,2009,39(12):1169-1177.
    [108]Zhi YH, Song MM, Wang PL, et al. Suppression of matrix metalloproteinase-2 via RNA interference inhibits pancreatic carcinoma cell invasiveness and adhesion. World J Gastroenterol,2009,15(9):1072-1078.
    [109]Jain S, Chakraborty G, Kundu GC. The crucial role of cyclooxygenase-2 in osteopontin-induced protein kinase C alpha/c-Src/IkappaB kinase alpha/beta-dependent prostate tumor progression and angiogenesis. Cancer Res, 2006,66(13):6638-6648.
    [110]Kirkland JG, Cottrell GS, Bunnett NW, et al. Agonists of protease-activated receptors 1 and 2 stimulate electrolyte secretion from mouse gallbladder. Am J Physiol Gastrointest Liver Physiol,2007,293(1):G335-346.
    [111]Nakashima S. Protein kinase C alpha (PKC alpha):regulation and biological function. J Biochem,2002,132(5):669-675.
    [112]von Knethen A, Soller M, Tzieply N, et al.PPARgammal attenuates cytosol to membrane translocation of PKCalpha to desensitize monocytes/macrophages. J Cell Biol,2007,176(5):681-694.
    [113]Yang RC, Jao HC, Huang LJ, et al. The essential role of PKCalpha in the protective effect of heat-shock pretreatment on TNFalpha-induced apoptosis in hepatic epithelial cell line, Exp Cell Res,2004,296(2):276-284.
    [114]Le Quement C, Guenon I, Gillon JY, et al. MMP-12 induces IL-8/CXCL8 secretion through EGFR and ERK1/2 activation in epithelial cells. Am.1 Physiol Lung Cell Mol Physiol,2008.294(6):L1076-1084.
    [115]Zhang W, Liu HT. MAPK signal pathways in the regulation of cell proliferation in mammalian cells.Cell Res,2()02,12(I):9-18.
    [116]Lange-Carter CA, Pleiman CM, Gardner AM, et al. A divergence in the MAP kinase regulatory network defined by MEK kinase and Raf. Science,1993, 260(5106):315-319.
    [117]林明群,张宗粱.蛋白激酶C的激活转位和它介导的信号通路.生命科学,1996,(1):15-18
    [118]Varga A, Czifra G, Tallai B, et al. Tumor grade-dependent alterations in the protein kinase C isoform pattern in urinary bladder carcinomas. Eur Urol,2004, 46(4):462-465.
    [119]Koren R, Ben Meir D, Langzam L, et al. Expression of protein kinase C isoenzymes in benign hyperplasia and carcinoma of prostate. Oncol Rep,2004, 11(2):321-326.
    [120]Fournier DB, Chisamore M, Lurain JR, et al.Protein kinase C alpha expression is inversely related to ER status in endometrial carcinoma:possible role in AP-1-mediated proliferation of ER-negative endometrial cancer. Gynecol Oncol,2001,81(3):366-372.
    [121]Lu IJ, Lee KZ, Lin JT, et al. Capsaicin administration inhibits the abducent branch but excites the thyroarytenoid branch of the recurrent laryngeal nerves in the rat. J Appl Physiol,2005,98(5):1646-1652.
    [122]Ways DK, Kukoly CA, deVente J, et al. MCF-7 breast cancer cells transfected with protein kinase C-alpha exhibit altered expression of other protein kinase C isoforms and display a more aggressive neoplastic phenotype. J Clin Invest,1995, 95(4):1906-1915.
    [123]Lonne GK, Cornmark L, Zahirovic IO, et al.PKCalpha expression is a marker for breast cancer aggressiveness. Mol Cancer,2010,9:76.
    [124]Martin EC, Elliott S, Rhodes LV, et al. Preferential star strand biogenesis of pre-miR-24-2 targets PKC-alpha and suppresses cell survival in MCF-7 breast cancer cells. Mol Carcinog,2012.
    [125]Nowak G, Bakajsova D. Protein kinase C-alpha activation promotes recovery of mitochondrial function and cell survival following oxidant injury in renal cells. Am J Physiol Renal Physiol,2012.303(4):F515-526.
    [126]Cryns V, Yuan J. Proteases to die for.Genes Dev,1998,12(11):1551-1570.
    [127]Communal C, Sumandea M, de Tombe P, et al. Functional consequences of caspase activation in cardiac myocytes. Proc Natl Acad Sci U S A,2002, 99(9):6252-6256.
    [128]Enari M, Sakahira H, Yokoyama H, et al. caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD.Nature,1998, 391(6662):43-50.
    [129]Waterhouse NJ, Ricci JE, Green DR. And all of a sudden it's over: mitochondrial outer-membrane permeabilization in apoptosis. Biochimie,2002, 84(2-3):113-121.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700