用户名: 密码: 验证码:
母源性酵母硒与蛋氨酸对狼山鸡种蛋及后代鸡胸肉品质的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究选用52周龄健康种用狼山蛋鸡450只,随机分为9个处理组,每组50只,设5个重复,每个重复10只。采用二因素三水平有重复的析因试验设计。在玉米-豆粕型日粮基础上添加不同水平的酵母硒(以硒计0ppm、0.3ppm、0.6ppm)与蛋氨酸(0.32%,0.40%,0.54%),以不添加酵母硒和添加0.32%处理组为对照组。预试期30天,试验期70天。本试验的目的是研究(1)对种蛋抗氧化能力及物理品质的影响;(2)对后代鸡胸肉抗氧化能力、持抽性和肉色的影响;(3)对后代鸡胸肉肌原纤维蛋白生化特性、凝胶特性和乳化特性的影响。
     酵母硒和蛋氨酸对种蛋抗氧化能力和物理品质的改善有一定影响。(1)酵母硒与蛋氨酸对种蛋蛋黄的硒含量、谷胱甘肽过氧化物酶(GPx)活力、谷胱甘肽(GSH)含量、羟自由基抑制能力(IC_(·OH))和丙二醛(MDA)含量以及蛋清的GPx活力、羟自由基抑制能力、MDA和活性巯基含量均有互作效应(P<0.01),蛋清GSH含量和羰基含量无互作效应(P>0.05)。添加酵母硒显著提高种蛋蛋黄硒含量,添加酵母硒和提高饲料中蛋氨酸水平显著提高种蛋的羟自由基抑制能力和GSH含量,降低MDA和蛋白羰基含量,提高种蛋抗氧化能力。在提高种蛋抗氧化能力方面效果较佳的组合为0.3ppm酵母硒+0.4%蛋氨酸处理。(2)酵母硒和蛋氨酸对种蛋蛋白重、蛋白重比、蛋黄重、蛋壳重比、蛋形指数、蛋黄指数和哈夫单位无互作效应(P>0.05),蛋黄比重、蛋壳重和蛋白高度有互作效应(P<0.05)。饲料中添加0.3ppm的酵母硒能够提高狼山鸡种蛋的蛋白、蛋壳重和其比率,降低蛋黄重及其比率。饲料中添加0.54%水平的蛋氨酸明显提高种蛋蛋白重量比,降低蛋黄重及其比率,随着蛋氨酸水平的提高,蛋壳重及其比率逐渐降低。饲料中添加0.3ppm的酵母硒明显提高狼山鸡种蛋的蛋白高度和哈夫单位,高蛋氨酸水平饲料并不利于改善种蛋的蛋白高度和哈夫单位。
     母源性酵母硒和蛋氨酸影响后代鸡胸肉抗氧化能力、持水性和肉色的改善。(1)母源性酵母硒与蛋氨酸对后代30日龄公鸡胸肉的硒含量、羟自由基抑制能力、MDA和肌原纤维蛋白羰基含量以及母鸡胸肉的GSH含量、羟自由基抑制能力、MDA含量均有互作效应(P<0.05),30日龄公鸡胸肉GPx活力和GSH含量无互作效应(P>0.05)。适宜含量的母源性酵母硒和蛋氨酸更有利于提高后代公鸡胸肉的GSH含量和羟自由基抑制能力,酵母硒和高蛋氨酸处理明显减弱后代公鸡胸肉脂肪和肌原纤维蛋白氧化程度。(2)母源性酵母硒与蛋氨酸对后代30日龄公鸡胸肉的汁液损失和煮制损失以及母鸡胸肉的汁液损失均有互作效应(P<0.05),30日龄公鸡胸肉pH_(24h)和母鸡胸肉pH_(24h)、煮制损失无互作效应(P>0.05)。母源性酵母硒和高蛋氨酸处理有利于降低肌肉的汁液流失和煮制损失,提高后代公鸡胸肉的持水能力,但对母鸡没有效果。(3)母源性酵母硒与蛋氨酸对后代30日龄公鸡胸肉的肉色L~*、a~*、b~*值以及母鸡胸肉肉色L~*、b~*值均有互作效应(P<0.05),30日龄母鸡胸肉肉色a~*值无互作效应(P>0.05)。母源性酵母硒和高蛋氨酸处理有利于改善后代公鸡胸肉的肉色,0.6ppm母源性酵母硒和0.54%母源性蛋氨酸处理水平较大程度上提高了后代公鸡胸肉的肉色a~*值,降低了肉色L~*值。
     母源性酵母硒和蛋氨酸对后代鸡胸肉肌原纤维蛋白生化特性、凝胶特性和乳化特性有一定的影响。(1)母源性酵母硒与蛋氨酸对后代30日龄公鸡胸肉肌原纤维蛋白的总巯基、二硫键、羰基含量和Ca-ATPase、Na,K-ATPase活力以及母鸡胸肉肌原纤维蛋白的Ca-ATPase、Na,K-ATPase活力均有互作效应(P<0.05),30日龄公鸡胸肉肌原纤维蛋白活性巯基和母鸡胸肉肌原纤维蛋白的活性巯基、总巯基和二硫键含量无互作效应(P>0.05)。0.6ppm母源性酵母硒和0.54%母源性蛋氨酸处理较大程度上增加了后代公鸡胸肉肌原纤维蛋白的活性巯基、总巯基含量和Ca-ATPase、Na,K-ATPase活力,减少了公鸡胸肉肌原纤维蛋白的二硫键和蛋白羰基含量。(2)母源性酵母硒与蛋氨酸对后代30日龄公鸡胸肉肌原纤维蛋白的凝胶硬度、弹性和purge loss均有互作效应(P>0.05),凝胶保水性无互作效应(P>0.05)。0.3pp m母源性酵母硒和0.40%母源性蛋氨酸处理较大程度上增加了后代公鸡胸肉肌原纤维蛋白凝胶硬度、弹性和保水性。(3)母源性酵母硒与蛋氨酸对后代30日龄公鸡胸肉肌原纤维蛋白的乳化活性和乳化稳定性无互作效应(P>0.05)。母源性酵母硒和蛋氨酸一定程度上改善了后代胸肉肌原纤维蛋白的乳化活性和乳化稳定性,其中蛋氨酸处理对其影响程度较大,0.54%蛋氨酸处理组后代的胸肉肌原纤维蛋白的乳化活性明显高于其它处理组。
     综上所述,结合相关性分析,本研究认为种母鸡日粮中添加酵母硒和蛋氨酸明显提高了种蛋的抗氧化能力,该效应进一步持续到后代仔鸡生长早期,减弱30日龄仔鸡胸肉的脂肪氧化和肌原纤维蛋白氧化程度,一定程度上改善了后代鸡胸肉的持水性和肉色,提高了肌原纤维蛋白的凝胶特性和乳化特性。
The experiment was conducted using a total of 450 52-week-old Lang-shan hens to investigate the effects of adding organic selenium(0,0.3ppm,0.6ppm respectively) and methionine 0.32%, 0.40%, 0.54% respectively) to corn soybean diets on breeding egg quality and meat quality in offspring chickens and their interaction. Breeding hens were randomLy divided into 9 treatments (50 for each treatment, 10 for each replicate). A 3><3 (organic selenium×methionine) experiment with replicates was designed. No organic selenium and 0.32% methionine feed were used in control, and A 30-day adapting period and 70-day experiment period were used. The main research contents are as follows, (1) Effect of organic selenium and methionine on breeding hens performance and antioxidation capacity, physical qualities in breeding egg. (2) Effect of organic selenium and methionine on antioxidation capacity, water holding capacity and meat color in breast muscle of the offspring. (3) Effect of organic selenium and methionine on myofibrillar protein biochemical properties, gel properties and emulsifying properties in breast muscle of the offspring.
     The effect of organic selenium and methionine on antioxidation capacity, physical qualities in breeding egg were examined. There were significant effects of interaction between organic selenium and methionine on selenium content, GPx activity, GSH content, hydroxyl radical inhibiting capacity, and MDA content in yolk, GPx activity, hydroxyl radical inhibiting capacity, MDA content and active Sulfhydryl groups in albumen(P< 0.01). and no significant interactive effects on GSH content and carbonyl content in albumen (P > 0.05). Supplementing organic selenium in diets significantly incresed the selenium content of yolk. Supplementing organic selenium and enhancing methionine level in diets significantly increased hydroxyl radical inhibiting capacity and GSH content, decreased MDA content and carbonyl content, improved antioxidation activity of breeding egg. Analysis showed that, it was better for the test group to add 0.3ppm organic selenium and 0.4% methionine at the same time. (2) There were no significant effects of interaction between organic selenium and methionine on albumen weight, albumen weight ratio, yolk weight, egg hell weight ratio, egg shape index, yolk index and haugh unit (P > 0.05). and significant interactive effects on yolk weight ratio, egg hell weight and albumen height (P <0.05). Supplementing 0.3ppm organic selenium in diets increased albumen, egg hell weight and ratio, decreased yolk weight and ratio. Supplementing 0.54% methionine in diets increased albumen ratio, decreased yolk weight and ratio. With improvement of methionine level, egg hell weight and ratio had a decreased tendency. Albumen height and haugh unit were improved by Supplementing 0.3ppm organic selenium in diets. High methionine levels in diets were not favorable to albumen height and haugh unit.
     Effect of organic selenium and methionine on antioxidation capacity, water holding capacity and meat color in breast muscle of the offspring were examined. There were significant effects of interaction between maternal organic selenium and methionine on selenium content, hydroxyl radical inhibiting capacity, MDA content and carbonyl content of myofibrillar protein in 30-d-old male chicken breast, GSH content, hydroxyl radical inhibiting capacity, MDA content in 30-d-old female chicken breast (P<0.05). and no significant interactive effects on GPx activity and GSH content in 30-d-old male chicken breast (P > 0.05). Supplementing optimum content of organic selenium and methionine in maternal diets incresed the GSH content and hydroxyl radical inhibiting capacity in 30-d-old male chicken breast, decreased fat and myofibrillar protein oxidation. (2) There were significant effects of interaction between maternal organic selenium and methionine on drip loss and cook loss in 30-d-old male chicken breast, cook loss in 30-d-old female chicken breast (P < 0.05). and no significant interactive effects on pH_(24h) and cook loss in 30-d-old female chicken breast (P > 0.05). Supplementing optimum content of organic selenium and methionine in maternal diets was beneficial to improve water holding capacity in 30-d-old male chicken breast. (3) There were significant effects of interaction between maternal organic selenium and methionine on L~*, a~* and b~* value in 30-d-old male chicken breast, L~* and b~* value in 30-d-old female chicken breast (P < 0.05). and no significant interactive effects on a* value in 30-d-old female chicken breast (P>0.05). Supplementing 0.6ppm organic selenium and 0.54% methionine in maternal diets increased a~* value in 30-d-old male chicken breast, decreased L~* and b~* value. Supplementing optimum content of organic selenium and methionine in maternal diets was beneficial to improve meat color in 30-d-old male chicken breast.
     Effect of organic selenium and methionine on myofibrillar protein biochemical properties, gel properties and emulsifying properties in breast muscle of the offspring were examined. There were significant effects of interaction between maternal organic selenium and methionine on total Sulfhydryl groups, disulfide bonds, carbonyl content, Ca-ATPase、Na,K-ATPase activity in 30-d-old male chicken breast myofibrillar protein, Ca-ATPase、Na,K-ATPase activity in 30-d-old female chicken breast (P<0.05). and no significant interactive effects on active Sulfhydryl groups, total Sulfhydryl groups and disulfide bonds content in 30-d-old male chicken breast (P > 0.05). Supplementing 0.6ppm organic selenium and 0.54% methionine in maternal diets increased active Sulfhydryl groups, total Sulfhydryl groups, Ca-ATPase、Na,K-ATPase activity of myofibrillar protein in 30-d-old male chicken breast, decreased disulfide bonds and carbonyl content. (2) There were significant effects of interaction between maternal organic selenium and methionine on hardness, springness, and purge loss of myofibrillar protein gel in 30-d-old male chicken breast(P < 0.05), and no significant interactive effects on gel water holding capacity (P > 0.05). Supplementing 0.3ppm organic selenium and 0.40% methionine in maternal diets increased hardness, springness, and water holding capacity of myofibrillar protein gel in 30-d-old male chicken breast. (3) There were no significant effects of interaction between maternal organic selenium and methionine on emulsifying activity and emulsion stability of myofibrillar protein in 30-d-old male chicken breast(P > 0.05). Supplementing optimum content of methionine in maternal diets was more beneficial to improve emulsifying activity and emulsion stability of myofibrillar protein than that of organic selenium in 30-d-old male chicken breast. Supplementing 0.54% methionine in maternal diets had higher emulsifying activity of myofibrillar protein than other treats in 30-d-old male chicken breast.
     To sum up, Supplementing organic selenium and enhancing methionine level in diets improved antioxidation activity of breeding egg significantly, and this effect maintain to early development of chicks, decreased fat and myofibrillar protein oxidation, improved water holding capacity and color in breast muscle, also improved gel properties and emulsifying activity of myofibrillar protein.
引文
[1] 黄炎坤,李先芳.母体效应对雏鸡健康的影响[J].当代畜牧,1999,1:13,18.
    [2] 门正明编译,杨诗兴审校.动物的母体效应[M].兰州:兰州大学出版社,1991,30-31.
    [3] Mousseau, T. A., Fox C. M. The adaptive significance of maternal effects[J]. TREE. 1998, 13 (10): 403-407.
    [4] 梁虹.啮齿动物的母体效应[J].生物学通报,2003,(38)11:1-3.
    [5] Rasmussen, K M. Effects of under and ovemutrition on lactation in laboratory rats[J]. J. Nutr, 1998, 128: 390-393.
    [6] Qvamstrom, A, Price, T D. Maternal effects, paternal effects and sexual Selection[J]. Trends in Ecol Evol, 2001, 16(2) : 95-100.
    [7] Meikle D B. Adult male house mice bom to undernourished mothers are unattractive to oestrous females[J]. Anim Behav, 1995, 50: 753-758.
    [8] Kirkpatrick M, Lande R. The evolution of maternal effects[J]. Evolution, 1989, 43:485-503.
    [9] Trivers R L, Willard D E. Natural selection of parental ability to vary the sex ratio of offspring[J]. Science, 1973, 179:90-91.
    [10] Price T D. Maternal and paternal effects in birds: Effects on offspring fitness[M]. In: Mousseau TA, Fox CW (eds) Maternal effects as adaptations. New York, Oxford University Press, 1998, 202-226.
    [11] Mousseau, T. A. & Fox, C. W. (eds). Maternal Effects as Adaptations[M]. New York, Oxford University Press, 1998, 54-60
    [12] Spratt R. S., Lesson S.. Effect of protein and energy intake of broiler breeder hens on performance of broiler chicken offspring[J]. Poultry Sci. 1987, 66(9): 1489-1494.
    [13] Peebles, E. D., S. M. Doyle and T. Pansky et al. Effects of breeder age and dietary fat on subsequent broiler performance. 1. Growth, mortality, and feed conversion[J]. Poultry Sci. 1999, 78:505-511.
    [14] Peebles, E. D., S. M. Doyle and T. Pansky et al. et al. Effects of Breeder Age and Dietary Fat on Subsequent Broiler Performance. 2. Slaughter Yield[J]. Poultry Sci. 1999, 78, 512-515.
    [15] Peebles E. D., Zumwalt C. D., Gerard P. D. etal.. Market age live weight, carcass yield, and liver characteristics of broiler offspring from breeder hens fed diets differing in fat and energy contents [J]. Poult Sci. 2002, 81(1):23-29.
    [16] Lopez G, Leeson S. Response of broiler breeders to low-protein diets. 2. Offspring performance[J]. Poult Sci. 1995, 74(4):696-701.
    [17] Pinchasov Y. Relationship between the weight of hatching eggs and subsequent early performance of broiler chicks[J]. Br Poult Sci. 1991, 32(1): 109-115.
    [18] 康相涛,宋素芳,李明等.蛋鸡种蛋蛋重对孵化率和雏鸡生长发育的影响[J].中国家禽,2002,24(15):10-13.
    [19] Joel M. Durant. The influence of hatching orde:r on the thermoregulatory behaviour of barn owl Tyto alba nestlings[J]. Avian Science, 2002, 2 (3): 167-173.
    [20] Speake, B. K., Murray, A. M. B. and Noble, R. C. Transport and transformation of yolk lipidsduring development of the avian embryo[J]. Progress in Lipid Research. 1998, 37: 1-32.
    [21] Speake, B. K., Wood, N. A.. Timing of incorporation of docosahexaenoic acid into brain and muscle phospholipids during precocial and altricial modes of avian development[J]. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2005, 141 (2): 147-158.
    [22] Surai, P. F., Speake, B. K., Noble, R. C et al. Tissue-specific antioxidant profiles and susceptibility to lipid peroxidation of the newly hatched chick. [J]. Biology Trace Element Research, 1999a, 68: 63-78.
    [23] Noble, R. C. and Cocchi, M. Lipid metabolism in the neonatal chicken[J]. Progress in Lipid Research, 1990, 29:107-140.
    [24] Christon, R., Haloui, R. B. and Durand, G. Dietary polyunsaturated fatty acids and aging modulate glutathione-related antioxidants in rat liver. Journal of Nutrition[J], 1995, 125: 3062-3070.
    [25] Surai, P. F., Speake, B. K., Noble, R. C et al. Tissue-specific antioxidant profiles and susceptibility to lipid peroxidation of the newly hatched chick[J]. Biology Trace Element Research, 1999a, 68: 63-78.
    [26] Paton, N. D., Cantor, A. H., Pescatore, A. J. et al. Effect of dietary selenium source and level of inclusion on selenium content of incubated eggs[J]. Poulrry Science (Suppl), 2000, 79:40.
    [27] Surai, P. F.. Effect of the selenium and vitamin E content of the maternal diet on the antioxidant system of the yolk and the developing chick[J]. British Poulrry Science, 2000a, 41: 235-243.
    [28] Athanasios C. Pappas, Filiz Karadas, Peter F. Surai et al. The selenium intake of the female chicken influences the selenium status of her progeny[J]. Comparative Biochemistry and Physiology, 2005, 142 (4):465-74.
    [29] Bains, J. S. and Shaw, C. A.. Neurodegenerative disorders in humans: the role of glutathione in oxidative stress-mediated neuronal death[J]. Brain Research Reviews, 1997, 25: 335-358.
    [30] Christinsen, M. J. and Burgener, K. W. Dietary selenium stabilises glutathione peroxidase mRNA in rat liver[J]. Journal of Nutrition, 1992, 122:1620-1626.
    [31] Toyoda, H., Himeno, S. and Imura, N. Regulation of glutathione peroxidase mRNA level by dietary selenium manipulation[J]. Biochimica et Biophysica Acta, 1990, 1049:213-215.
    [32] Weiss, S. L., Evenson, J. K. Thompson, K. M. et al. Dietary selenium regulationofglutathione peroxidase mRNA and otherselenium-dependent parameters in male rats[J]. Journal of Nutritional Biochemistry, 1997, 8:85-91.
    [33] P. F. Surai, F. Karadas, A. C. Pappasand N. H. et al. Effect of organic selenium in quail diet on its accumulation in tissues and transfer to the progeny[J]. British Poultry Science, 2006, 47(1): 65-72.
    [34] 毛胜勇:酵母硒营养的研究进展[J].畜禽业,2000,3:20-22.
    [35] 袁建敏,呙于明.硒的生物学功能及其在蛋鸡生产中的应用[J].中国饲料,1998,17:7-9.
    [36] 井明艳,赵树盛,付亮剑.硒的生化特性与谷胱甘肽系统[J].饲料工业,2006,27(4):8-10.
    [37] Arteel GE, Sies H. The biochemistr of selenium and the glutathione system[J]. Environmental Toxicology and Pharmacol ogy. 2001,10:153-158.
    [38] 郭云霞,黄仁录,郝庆红等.夏季日粮中添加酵母硒对柴鸡生产性能及蛋中硒沉积的影响[J].河北农业大学学报,2006,29(2):96—99.
    [39] P. L. Utterback, C. M. Parsons, I. Yoon, and J. Butler. Effect of Supplementing Selenium Yeast in Diets of Laying Hens on Egg Selenium Content[J]. Poultry Science. 2005, 84:1900-1901.
    [40] M. Skrivan, J. Simane, G. Dlouha, J. Doucha. Effect of dietary sodium selenite, Se-enriched yeast and Se-enriched Chlorella on egg Se concentration, physical parameters of eggs and laying[J]. Czech J. Anim. Sci., 51, 2006 (4): 163-167.
    [41] 田志珍.不同硒水平对蛋 鸡产蛋性能及蛋品质的影响[J].饲料工业.2003,24(8):28-30.
    [42] R. L. Payne, T. K. Lavergne, and L. L. Southern. Effect of Inorganic Versus Organic Selenium on Hen Production and Egg Selenium Concentration[J]. Poultry Science. 2005, 84:232-237.
    [43] Apple J K, Maxwell C V, Derodas h, et al. Effect of mannesium mica on performance and carcass quality of growing-finishing swine[J]. J Anita Sci, 2000, 78:2135-2143.
    [44] Chan, K. M., Decker, E. A.. Endogenous skeletal muscle antioxidants [J]. Critical Reviews in Food Science and Nutrition, 1994(34): 403-426.
    [45] Stanley, D. W.. Biological membrane deterioration and associated quality losses in food tissues[J]. Critical Reviews in Food Science and Technology, 1991, 30: 487-553.
    [46] Devore, V. R., Colnago, G. L., Jensen, L. S. et al. Thiobarbituric acid values andglutathione peroxidase activity in meat from chickens fed a selenium-supplemented diet[J]. Journal of Food Science. 1983, 48: 300-301.
    [47] Ahn, C. N., Chae, H. S., Kim, D. W. etal. Effects of full fat flax seed, a-tocooherol, Ascorbic acid and selenium on the storage of broiler meats[J]. Journal of Livestock Science. 1998, 40: 96-102.
    [48] Edens, F. W. (1996) Organic selenium: from feathers to muscle integrity to drip loss. Five years onward: no more selenite. In: Biorechology in the Feed industry. Proceedings of Alltech's 12th Annual Symposium (Lyons T. P. and Jacques K. A., Eds.). Nottingham University Press, Nottingham, UK, pp. 165-185.
    [49] Edens, F. W. (2001) Involvement of Sel-Plex in physiological stability and performance of broiler chickens. In:Biotechnology in the Feed industry. Proceedings of Alltech's 17th Annual Symposium. (Lyons T. P. and Jacques T. A., Eds.). Nottingham University Press, Nottingham, UK, pp. 349-376.
    [50] Y-C Ryu, M-S Rhee, K-M Lee, B-C Kim. Effects of Different Levels of Dietary Supplemental Selenium on Performance, lipid oxidation, and color stability of broiler chicks[J]. Poultry Science, 2005, 84:809-815.
    [51] XiuAn Zhan, Min Wang, RuQian Zhao et al. Effects of different selenium source on selenium distribution, loin quality and antioxidant status !in finishing pigs[J]. Animal Feed Science and Technology, 2007, 132:202-211.
    [52] 刘升军,呙于明.肉仔鸡蛋氨酸营养的研究与应用进展[J],饲料工业,1999(20),1:14-17.
    [53] 王冉,周岩民.动物蛋氨酸营养研究进展[J].粮食与饲料工业,1999,4:27-30.
    54 J. D. Finkelstein The metabolism of homocysteine: pathways and regulation[J]. Eur J Pediatr. 1998, 157:S40-S44.
    [55] 霍湘,王安利,杨建梅.含硫氨基酸的抗氧化作用[J].生物学通报,2006,41(4):3-4.
    [56] Shih-Tsung Wang, Haw-Wen Chen, Lee-Yan Sheen and Chong-Kuei Lii. Methionine and Cysteine Affect Glutathione Level, Glutathione-Related Enzyme Activities and the Expression of Glutathione S-Transferase Isozymes in Rat Hepatocytes[J]. The Journal of Nutrition, 1997, 127 (11):2135-2141.
    [57] Helmut Sies. Glutathione and its role in cellular functions[J]. Free Radical Biology & Medicine, 1999, 27:916-921.
    [58] S. M. Liu and S. J. Eady. Glutathione: its implications for animal health, meat quality, and health benefits of consumers[J]. Australian Journal of Agricultural Research, 2005, 56:775-780.
    [59] 田园,曲宁,周燕等.克山病病区粮食中补充蛋氨酸对大鼠膳食硒生物利用的影响[J].卫生研究,2001,30(1):55-58.
    [60] 丁角立,呙于明,周毓平等.硒缺乏对肉仔鸡体内含硫化合物代谢的影响[J].中国动物营养学报,1992,4(2):37-44.
    [61] 刘秀丽,许立庆,曾宪惠等.低硒、低蛋氨酸对大鼠体内GPx及TBA值的影响[J].哈尔滨医科大学学报,1993,27(1):31-33.
    [62] 周葆初,许立庆,邹宁等.低硒环境下蛋氨酸对大鼠体内维生素E、硒及脂质过氧化物含量的影响[J].地方病通报,1992,7(2):7-9.
    [63] R. A. Mancini, M. C. Hunt. Current research in meat color[J]. Meat Science, 2005, 71:100-121
    [64] Kanner J. Oxidative processes in meat and meat products: Quality implications[J]. Meat Sci. 1994, 36:169.
    [65] Faustman C, Specht S M, Malkus L A, et al. Pigment oxidation in ground veal: Influence of lipid oxidation, iron and zinc[J]. Meat Sci., 1992, 31:351.
    [66] Faustman, C., Liebler, D. C., McClure, T. D. etal. Alpha, beta-unsaturated aldehydes accelerate oxymyoglobin oxidation[J]. Journal of Agricultural and Food Chemistry, 1999, 47(8):3140-3144.
    [67] Lynch, M. P. and Faustman, C. Effect of aldehyde lipid oxidation products on myoglobin[J]. Journal of Agricultural and Food Chemistry, 2000, 48(3):600-604.
    [68] Alderton, A. L., Faustman, C., Liebler, D. C., & Hill, D. W. Induction of redox instability of bovine myoglobin by adduction with 4-Hydroxy-2-Nonenal[J]. Biochemistry, 2003 42(15):4398-4405.
    [69] Tang, J., Faustman, C., Lee, S. et al. Effect of glutathione on oxymyoglobin oxidation[J]. Journal of Agricultural and Food Chemistry, 2003, 51 (6):1691-1695.
    [70] C. Faustman, W. K. M. Chan, D. M. Schaefer etal. Beef Color Update: The Role for Vitamin E[J]. J. Anita. Sci., 1998, 76:1019-1026.
    [71] 邹晓庭,郑根华,尹兆正等.不同硒源对肉鸡生长性能、胴体特性和肉质的影响[J].浙江大学学报(农业与生命科学版),2005,31(6):773-776.
    [72] 于福清,文杰,陈继兰等.日粮硒水平对熟化过程中牛肉氧化稳定性和抗氧化酶活力的影响[J].中国农业科学,2003,36(2):208-213.
    [73] 孙承锋,杨建荣,贺红军.苹果多酚对鲜肉色泽稳定性及脂肪氧化的影响[J].食品科学,2005,26(9):153-157.
    [74] Cheah, K. S., Chreah, A. M. and. Krausgrill, D. J. Effect of dietary supplementary vitamin E on pig meat quality[J]. Meat Sci., 1995, 39: 255-265.
    [75] Six, D. A.; Dennis, E. A. The expanding superfamily of phospholipase A(2) enzymes: classification and characterization[J]. Biochim. Biophys. Acta. 2000, 1488:1-19.
    [76] Dennis, E. A., Diversity of group types, regulation, and function of phospholipase A2[J]. Journal of Biological Chemistry, 1994, 269: 13057~13060.
    [77] Lambert, T. H., Nielsen, J. H., Andersen, H. J. et al. Cellular model for induction of drip loss in meat[J]. Journal of Agriculture Food and Chemistry, 2001, 49: 4876-4883.
    [78] Soares A L, Ida E I, Miyamoto, S. et al. Phospholipase A2 activity in poultry PSE, pale, soft, exudative meat[J]. Journal of Food Biochenistry, 2003, 27: 309-320.
    [79] Schmidt, J. M., Zhang, J., Lee, H. S. et al. Interaction of talin with actin: sensitive modulation of filament crosslinking activity[J]. Archives of Biochemistry and Biophysics, 1999, 366:139-150.
    [80] Kristensen. L. and Purslow, P.P. The effect of ageing on the water-holding capacity of pork: role of cytoskeletal proteins[J]. Meat Science, 2001, 58: 17-23.
    [81] Dvis, K.J., Sebranek, J.G. Huff-Lonergan, E.et al. The effects of ageing on moisture-enhanced pork loins[J]. Meat Sci, 2004, 66: 519-524.
    [82] Martinaud, A., Mercier, Y., Marinova, P. et al. Comparison of oxidative processes on myofibrillar proteins from beef during maturation and by different model oxidation systems[J]. Journal of Agricultural and Food Chemistry, 1997,45: 2481-2487.
    [83] Elisabeth Huff-Lonergan , Steven M. Lonergan. Mechanisms of water-holding capacity of meat: The role of postmortem biochemical and structural changes[J]. Meat Science, 2005,71: 194-204.
    [84] Donkeun Park, Youling L. Xiong, Amyl Alderton et al. Biochemical Changes in Myofibrillar Protein Isolates Exposed to Three Oxidizing Systems[J]. J. Agric. Food Chem. 2006, 54: 4445 -4451.
    [85] Stadtman, E. R. Oxidation of free amino acids and amino acids residues in proteins by radiolysis and by metal-catalyzed reactions[J]. Annual Review of Biochemistry, 1993,62: 797-821.
    [86] Stadtman, E. R. Metal ion-catalysed oxidation of proteins: biochemical mechanism and biological consequences[J]. Free RadicalsBioIogy and Medicine, 1990, 9:315-325.
    [87] Fre'de'rique Batifoulier, Yves Mercier, Philippe Gatellier et al. Influence of vitamin E on lipid and protein oxidation induced by H_2O_2-activated MetMb in microsomal membranes from turkey muscle[J]. Meat Science, 2002, 61:389-395.
    [88] Wang, S.F. and Smith, D.M. Poultry muscle proteins and heat induced gelation[J]. Poultry Sci. Rev. 1994a, 5: 145-167.
    [89] Itoh, Y., Yoshinaka, R., and Ikeda, S. Effects of cysteine and cystine on the gel formation of fish meats on heating[J]. Bull. Jap. Soc. Sci. Fish. 1979a, 45: 341-345.
    [90] Itoh, Y., Yoshinaka, R., and Ikeda, S. Behaviour of the Sulfhydryl groups of carp actomyosin by heating[J]. Bull. Jap. Soc. Sci. Fish. 1979b,45: 1019-1022.
    [91] Itoh, Y., Youshinaka, R., and Ikeda, S. Effects of thiol reagents on the gel formation of carp actomyosin on heating[J]. Bull. Jap. Soc. Sci. Fish. 1979c, 45: 1023-1025.
    [92] Sano, T., Ohno, T., Otsuka-Fuchino, H., Matsumoto, J.J., and Tsuchiya, T. Carp natural actomyosin; thermal denaturation mechanism[J]. J. Food Sci. 1994,59: 1002 -1008.
    [93] Foegeding, E.A., Dayton, W.R., and Allen, CA. Evaluation of molecular interactions in myosin, fibrinogen and myosin fibrinogen gels[J]. J. Agric. Food Chem. 1987, 35:559-563.
    [94] A.B. Smyth, D.M. Smith, and E. O'Neill. Disulfide Bonds Influence the Heat-induced Gel Properties of Chicken Breast Muscle Myosin[J]. J. Food Sci. 1998, 63( 4): 584-588.
    [95] Gerald Offer. Modelling of the formation of pale, soft and exudative meat: Effects of chilling regime and rate and extent of glycolysis[J].Meat Science, 1991, 30(2): 157-184.
    [96] Jiang, S., Hwang, D., & Chen, C. Effect of storage temperature on the formation of disulfides and denaturation of milkfish actomyosin (Chanos chanos) [J]. Journal of Food Science, 1988,53, 1333-1335.
    [97] MacDonald, G. A., Lelievre, J., & Wilson, N. D. C. Effect of frozen storage on the gel-forming properties of hoki (Macruronus novaezelandiae) [J]. Journal of Food Science, 1992,57: 69-71.
    [98] Soottawat Benjakul, Wonnop Visessanguan, Chutima Thongkaew. et al. Comparative study on physicochemical changes of muscle proteins from some tropical fish during frozen storage [J]. Food Research International, 2003,36:787-795.
    [99] Dusadee Tunhun, Yoshiaki Iton, Katsuji Morioka et al. Gel forming ability of fish meat oxidized during washing[J]. Fisheries Science,2002, 68: 662 -667.
    
    [100] Soottawat Benjakul, Chutima Thongkaew, Wonnop Visessanguan et al.Effect of reducing agents on physicochemical properties and gel-forming ability of surimi produced from frozen fish[J]. Eur Food Res Technol, 2005,220:316-321.
    [1] Speake, B. K., Murray, A. M. B. and Noble, R. C. Transport and transformation of yolk lipidsduring development of the avian embryo[J]. Progress in Lipid Research. 1998, 37: 1-32.
    [2] Brian K. Speake, Nicholas A. R. Wood. Timing of incorporation of docosahexaenoic acid into brain and muscle. phospholipids during, precocial and altricial modes of avian development[J]: Comparative Biochemistry and Physiology, 2005, Part B 141:147-158.
    [3] N. D. Paton, A. H. Cantor, A. J. Pescatore. etal. The Effect of Dietary Selenium Source and Level on the Uptake of Selenium by Developing Chick Embryos[J]. Poultry Science. 2002, 81: 1548-1554.
    [4] 霍湘,王安利,杨建梅.含硫氨基酸的抗氧化作用[J].生物学通报,2006,41(4):3-4.
    [5] Ellman, G. D. Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics[J], 1959, 82: 70-72.
    [6] Agne's Martinaud, Yves Mercier, Penka Marinova, Caroline Tassy, Philippe Gatellier, and Michel Renerre. Comparison of Oxidative Processes on Myofibrillar Proteins from Beef during Maturation and by Different Model Oxidation Systems[J]. Journal of Agricultural and Food Chemistry, 1997, 45:2481-2487.
    [7] P. L. Utterback, C. M. Parsons, I. Yoon, and J. Butler. Effect of Supplementing Selenium Yeast in Diets of Laying Hens on Egg Selenium Content[J]. Poultry Science, 2005, 84:1900-1901.
    [8] 郭云霞,黄仁录,郝庆红等.夏季日粮中添加酵母硒对柴鸡生产性能及蛋中硒沉积的影响[J].河北农业大学学报,2006,29(2):96-99.
    [9] 范石军,韩友文,李德发等.热应激对产蛋鸡自身及其后代机体组织的过氧化损伤以及抗氧化微营养素的调控效应[J].中国兽医学报,2001,21(2):195—199.
    [10] 宋志刚,呙于明.日粮硒碘添加剂量对蛋鸡淋巴细胞氧化应激的影响.中国农业大学学报2006,11(1):69-74.
    [11] 麻丽坤,谭利伟,卫振等.日粮蛋氨酸水平对开产蛋鸡体组织生长和产蛋性能的影响[J].浙江农业科学,2006,5:586-589.
    [12] 郭洪杞.日粮不同蛋氨酸水平对山鸡产蛋高峰期生产性能的影响[J].江苏农业科学,2006,5:107-109.
    [13] M. Skrivan, J. Simane, G. Dlouha et al. Effect of dietary sodium selenite, Se-enriched yeast and Se-enriched Chlorella on egg Se concentration, physical parameters of eggs and laying[J]. Czech J. Anita. Sci., 2006, 51 (4): 163-167.
    [14] 谭利伟,麻丽坤,卫振等.蛋氨酸对开产蛋鸡生产性能及蛋品质的影响[J].中国饲料,2007,3:32-34.
    [15] 田志珍.不同硒水平对蛋鸡产蛋性能及蛋品质的影响[J].饲料工业,2003,24(8):28-30.
    [16] R. L. Payne, T. K. Lavergne, and L. L. Southern. Effect of Inorganic Versus Organic Selenium on Hen Production and Egg Selenium Concentration[J]. Poultry Science, 2005, 84:232-237.
    [1] Lucas A: Programming by early nutrition: an experimental approach[J]. J Nutr 1998, 128: 401S-406S.
    [2] Surai, P. F. Effect of the selenium and vitamin E content of the maternal diet on the antioxidant system of the yolk and the developing chick[J]. British Poulrry Science. 2000, 41: 235-243.
    [3]. P. F. Surai, F. Karadas, A. C. Pappasand N. H. et al. Effect of organic selenium in quail diet on its accumulation in tissues and transfer to the progeny[J]. British Poultry Science, 2006, 47(1): 65-72.
    [4] 霍湘,王安利,杨建梅.含硫氨基酸的抗氧化作用[J].生物学通报,2006,41(4):3-4.
    [5] Jeacocke, R. E., Continuous measurement of the pH of beef muscle in intact beef carcasses[J]. J. Food Technol., 1977, 12:375-386.
    [6] Botsoglou, N. A., Fletouris, D. J., Papageorgiou, G. E. et al. Rapid, sensitive and specific thiobarbituric acid method for measuring lipid peroxidation in animal tissue, food and feedstuff samples[J]. Journal of Agricultural and Food Chemistry, 1994, 42:1931-1937.
    [7] Athanasios C. Pappas, Filiz Karadas, Peter F. Surai, Brian K. Speake. The selenium intake of the female chicken influences the selenium status of her progeny[J]. Comparative Biochemistry and Physiology. 2005, 142(4):465-74.
    [8].袁建敏,呙于明.硒的生物学功能及其在蛋鸡生产中的应用[J].中国饲料,1998,17:7-9.
    [9] 王冉,周岩民.动物蛋氨酸营养研究进展.粮食与饲料工业[J].1999,4:27-30.
    [10] 田园,曲宁,周燕等.克山病病区粮食中补充蛋氨酸对大鼠膳食硒生物利用的影响[J].卫生研究,2001,30(1):55-58.
    [11] Surai, P. F. (2000a) Effect of the selenium and vitamin E content of the maternal diet on the antioxidant system of the yolk and the developing chick[J]. British Poulrry Science 41: 235-243.
    [12] Cheah, K. S., Chreah, A. M. and. Krausgrill, D. J. Effect of dietary supplementary vitamin E on pig meat quality[J]. Meat Sci., 1995, 39: 255-265.
    [13] Lambert, T. H., Nielsen, J. H., Andersen, H. J. et al. Cellular model for induction of drip loss in meat[J]. Journal of Agriculture Food and Chemistry, 2001, 49: 4876-4883.
    [14] Martine Morzel, Philippe Gatellier, Thierry Sayd etal. Chemical oxidation decreases proteolytic susceptibility of skeletal muscle myofibrillar proteins[J]. Meat Science, 2006, 73:536-543.
    [15] Elisabeth Huff-Lonergan, Steven M. Lonergan Mechanisms of water-holding capacity of meat: The role of postmortem biochemical and structural changes[J]. Meat Sci., 2005, 71:194-204.
    [16] Kristensen. L. and Purslow, P. P. The effect of ageing on the water-holding capacity of pork: role of cytoskeletal proteins[J]. Meat Science 2001, 58: 17-23.
    [17] Elisabeth Huff-Lonergan, Steven M. Lonergan. Mechanisms of water-holding capacity of meat: The role of postmortem biochemical and structural changes[J]. Meat Science, 2005, 71: 194-204.
    [18] R. A. Mancini, M. C. Hunt. Current research in meat color[J]. Meat Science, 2005, 71: 100-121.
    [19] Yu L, Scanlin L, Wilson J, Schmidt G. Rosemary extracts as inhibitors of lipid oxidation and color change in cooked turkey products during refrigerated storage[J]. J Food Sci. 2002, 67:582-585.
    [20] Faustman C, Specht S M, Malkus L A, et al. Pigment oxidation in ground veal: Influence of lipid oxidation, iron and zinc[J]. Meat Sci., 1992, 31:351.
    [21] Faustman, C., Liebler, D. C., McClure, T. D. etal. Alpha, beta-unsaturated aldehydes accelerate oxymyoglobin oxidation[J]. Journal of Agricultural and Food Chemistry, 1999, 47(8):3140-3144.
    [22] Alderton, A. L., Faustman, C., Liebler, D. C. et al. Induction of redox instability of bovine myoglobin by adduction with 4-Hydroxy-2-Nonenal[J]. Biochemistry, 2003 42(15):4398-4405.
    [23] Tang, J., Faustman, C., Lee, S. etal. Effect of glutathione on oxymyoglobin oxidation[J]. Journal of Agricultural and Food Chemistry, 2003, 51 (6): 1691-1695.
    [24] 邹晓庭,郑根华,尹兆正等.不同硒源对肉鸡生长性能、胴体特性和肉质的影响[J].浙江大学学报(农业与生命科学版),2005,31(6):773-776..
    [25] Y-C Ryu, M-S Rhee, K-M Lee, B-C Kim. Effects of Different Levels of Dietary Supplemental Selenium on Performance, lipid oxidation, and color stability of broiler chicks[J]. Poultry Science, 2005, 84:809-815.
    [26] XiuAn Zhan, Min Wang, RuQian Zhao et al. Effects of different selenium source on selenium distribution, loin quality and antioxidant status in finishing pigs[J]. Animal Feed Science and Technology, 2007, 132:202-211..
    [1] Li, C. -T., & Wick, M. Improvement of the physicochemical properties of pale soft and exudative (PSE) pork meat products with an extract from mechanically deboned turkey meat [J]. Meat Science, 2001, 58:189-195.
    [2] Y. L. Xiong, E. A. Decker, G. H. Robe et al. Gelation of Crude Myofibrillar Protein Isolated From Beef Heart Under Antioxidative Conditions[J]. Journal of Food Science, 1993, 58 (6):1241-1244.
    [3] Dusadee Tunhun, Yoshiaki Itoh, Katsuji Morioka etat. Gel forming ability of fish meat oxidized during washing[J]. Fisheries Science, 2002, 68:662-671.
    [4] A. B. Smyth, D. M. Smith, and E. O'Neill. Disulfide Bonds Influence the Heat-induced Gel Properties of Chicken Breast Muscle Myosin[J]. Journal Of Food Science, 1998, 63(4):584-588.
    [5] Surai P. F.. Selenium in poultry nutritionl. Antioxidant properties, deficiency and toxicity[J]. World's Poultry Science Journal, 2002, 58(9):333-347.
    [6] 霍湘,王安利,杨建梅.含硫氨基酸的抗氧化作用[J].生物学通报,2006,41(4):3-4.
    [7] Surai, P. F. Effect of the selenium and vitamin E content of the maternal diet on the antioxidant system of the yolk and the developing chick[J]. British Poulrry Science. 2000, 41: 235-243.
    [8] Surai P. F., F. Karadas, A. C. Pappasand N. H. et al. Effect of organic selenium in quail diet on its accumulation in tissues and transfer to the progeny[J]. British Poultry Science, 2006, 47(1): 65-72.
    [9] Y. L. Xiong, X. Lou, C. Wang etal. Protein Extraction From Chicken Myofibrils Irrigated with Various Polyphosphate and NaCl Solutions[J]. Journal of Food Science, 2000, 65 (1):96-100.
    [10] J. Yongsawatdigul, J. W. Park. Thermal denaturation and aggregation of threadfin bream actomyosin[J]. Food Chemistry, 2003, 83:409-416.
    [11] Theodore W. Thannhauser, Yasuo Konishi, and Harold A. Scheraga. Analysis for Disulfide Bonds in Peptides and Proteins[J]. Methods In Enzymology, 1987, 143:115-119.
    [12] Agne's Martinaud, Yves Mercier, Penka Marinova, Caroline Tassy, Philippe Gatellier, and Michel Renerre. Comparison of Oxidative Processes on Myofibrillar Proteins from Beef during Maturation and by Different Model Oxidation Systems[J]. Journal of Agricultural and Food Chemistry, 1997, 45:2481-2487.
    [13] Olayide S. Lawal. Functionality of African locust bean (Parkia biglobossa) protein isolate: effects of pH, ionic strength and various protein concentrations[J]. Food Chemistry, 2004, 86: 345-355.
    [14] Stadtman, E. R. Oxidation of free amino acids and amino acids residues in proteins by radiolysis and by metal-catalyzed reactions[J]. Annual Review of Biochemistry, 1993, 62:797-821.
    [15] Sekine, T., & Yamaguchi, M. Effect of ATP on the binding of Nethylmaleimide to SH groups in the active site of myosin ATPase[J]. Journal of Biochemistry, 1963,54:196-198.
    [16] Tooru Ooizumi, Youling L. Xiong. Biochemical Susceptibility of Myosin in Chicken Myofibrils Subjected to Hydroxyl Radical Oxidizing Systems[J]. J. Agric. Food Chem., 2004, 52:4303-4307.
    [17] Eric A.Decker, Youling L. Xiong, John T. Calvert.etal. Chemical, Physical, and Functional Properties of Oxidized Turkey White Muscle Myofibrillar Proteins[J]. J. Agric. Food Chem.1993, 41, 180-189.
    [18] G. Liu, Y.L. Xiong, and D.A. Butterfield. Chemical, Physical, and Gel-forming Properties of Oxidized Myofibrils and Whey- and Soy-protein Isolates[J]. Journal of Food Science, 2000, 65(5):811-818.
    [19] Gang Liu, Youling L. Xiong. Contribution of Lipid and Protein Oxidation to Rheological Differences between Chicken White and Red Muscle Myofibrillar Proteins[J]. J. Agric. Food Chem. 1996,44:779-784.
    [20] L. Zhang and S. Barbut. Rheological characteristics of fresh and frozen PSE, normal and DFD chicken breast meat[J]. British Poultry Sci., 2005,46 (6): 687-693.
    [21] Dusadee Tunhun, Yoshiaki Itoh, Katsuji Morioka et al. Gel forming ability of fish meat oxidized during washing[J]. Fisheries Science, 2002,68: 662 -667.
    [22] Soottawat Benjakul, Chutima Thongkaew, Wonnop Visessanguan et al.Effect of reducing agents on physicochemical properties and gel-forming ability of surimi produced from frozen fish[J]. Eur Food Res Technol,2005, 220:316-321.
    [23] Omer Zorba, Sukru Kurt. Optimization of emulsion characteristics of beef, chicken and turkey meat mixtures in model system using mixture design[J]. Meat Science, 2006,73 (4) 611-618.
    [24] J.K. Parkington, Y.L. Xiong, S.P. Blanchard et al. Chemical and Functional Properties of Oxida- tively Modified Beef Heart Surimi Stored at 2 ℃[J]. Journal of Food Science, 2000,65(3):428-433.
    [1] Athanasios C. Pappas, Filiz Karadas Peter F. Surai, Brian K. Speake. The selenium intake of the female chicken influences the selenium status of her progeny[J]. Comparative Biochemistry and Physiology.2005,142(4): 465-74.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700