用户名: 密码: 验证码:
铜基催化剂选择催化氧化氨性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氨气作为一种典型的有毒有害工业气态污染物之一,如何净化氨气引起人们的广泛关注。目前治理氨气的技术有很多,选择性催化氧化法是治理氨气污染的有效措施之一
     本论文采用等体积浸渍法制备了Cu/γ-Al2O3和Cu/CeO2等Cu基催化剂,获得了高活性和高稳定性的催化材料,在固定床反应器中进行选择性催化氧化NH3 (NH3-SCO)的研究。系统的考察了反应温度、负载量、煅烧温度、前躯体对催化剂活性的影响,利用XRD、H2-TPR、ESR、UV-Vis、Raman、TEM等表征测试技术,研究Cu基催化剂的物相结构、可还原性能和分散性等,深入分析影响NH3-SCO反应的活性物种。并在此基础上研究了蜂窝状金属丝网催化剂Cu/CeO2/Al2O3的反应性能。实验结果如下所示:
     (1)活性金属Cu的负载量和催化剂煅烧温度会影响Cu/CeO2催化剂的结构及其在NH3-SCO反应中的活性。CeO2载体的负载容量为1.2 mmol/100 m2,当Cu负载量未达到载体负载容量时,催化剂上的Cu物种以铜铈固溶体形式和CuO物种形式高度分散在CeO2载体上,此时催化剂的反应活性会随负载量的增加而增强;当Cu负载量超过负载容量后,催化剂上开始有晶相CuO出现,催化剂的反应活性不再随负载量变化。煅烧温度会影响Cu/CeO2催化剂上CeO2晶粒的大小,随着煅烧温度升高,晶粒尺寸增大,但是煅烧温度对催化剂Cu/CeO2在NH3-SCO反应中的活性影响不大。将催化剂表面相结构与催化剂活性相联系,发现高分散的CuO相有利于NH3-SCO反应。
     (2)不同前躯体和煅烧温度会导致Cu/γ-Al2O3催化剂表面相存在状态和分散性的差异,从而影响其在NH3-SCO反应中的催化性能。研究发现:醋酸铜前躯体制备的Cu/γ-Al2O3催化剂反应活性最佳,硝酸盐次之,硫酸盐最差;煅烧温度以600℃为宜,温度偏低(400℃)或偏高(800℃)都会导致催化剂活性下降。醋酸铜前躯体易于形成CuO相,硫酸铜倾向于形成CuAl2O4相;Cu/γ-Al2O3催化剂的煅烧温度的升高有利于催化剂表面相的分散。将催化剂表面相结构和分散状态与催化剂活性相联系,发现高分散的CuO相更有利于NH3-SCO反应。
     (3)粉末状Cu/CeO2催化剂以及蜂窝状金属丝网催化剂Cu/CeO2/Al2O3在NH3-SCO反应中均表现出良好催化性能和稳定性,在260℃可保持99%NH3转化,并在24 h内保持稳定。
Ammonia as one of typical toxic and hazardous industrial gaseous pollutants shows very harmful effect on the human health and ecological environment. Therefore, the purification of ammonia has attracted widespread concern. At present, there are many technologies to eliminate ammonia, and Selective Catalytic Oxidation (NH3-SCO) is an effective method for NH3 removal.
     In this paper, the Cu based catalysts such as Cu/γ-Al2O3 and Cu/CeO2 were prepared by wet impregnation method, and the SCO activity measurements was performed in a fixed-bed quartz reactor. We systematically investigated the influences of the reaction temperature, copper loading, calcination temperature and precursor and analyzed the crystal structures, reducibility and dispersion of the catalysts using XRD、H2-TPR、ESR、UV-Vis、Raman、TPD and TEM techniques. The activity measurement over the Cu/CeO2/Al2O3 wire-mesh honeycomb was also investigated.
     (1) Copper loading obviously affected the copper species distribution of the Cu/CeO2 catalysts and its activity in NH3-SCO reaction. The load capacity of CeO2 was 1.2 mmol/100 m2 when the copper loading was lower than the capacity, and the copper species was highly dispersed on the surface of the catalysts with the form of Cu-Ce-O solid solution or dispersed CuO. The activity of the catalysts was enhanced with the increase of copper loading. When the copper loading was above the capacity, the crystalline CuO phase appeared, and the activity would not change with the increase of copper loading. Calcination temperature had little effect on the activity of the Cu/CeO2 catalysts, although with the increase of calcination temperature, the particle size of CeO2 was dereasing. Linking the surface structure to the catalyst activity, it was believed that highly dispersed Cu species was active in NH3-SCO, while crystalline CuO contributed little in NH3-SCO reaction.
     (2) Different precursors and calcination temperatures affected the Cu species distribution on the catalysts, thus influenced their activity in NH3-SCO reaction. It was found that a mixture of CuO phase and cupric spinel CUAl2O4 phase formed on the Cu/γ-Al2O3 catalysts. More CuO phase was observed on the catalyst using the cupric acetate as precursor, however the cupric sulfate was inclined to form cupric spinel CUAl2O4 phase. Calcination temperature at 600℃favored for the dispersion CuO phase on the support. Activity measurement suggested that the well-dispersed CuO phase formed on the support related to its high activity in the NH3-SCO reaction.
     (3) Cu/CeO2 catalyst and wire mesh honeycomb catalyst Cu/CeO2/Al2O3 showed excellent activity and stability in NH3-SCO reaction, the NH3 conversion stayed 99% at 260℃for 24h.
引文
[1]KRUPA S V. Effects of atmospheric ammonia (NH3) on terrestrial vegetation:A review [J]. Environmental Pollution,2003,124(2):179-221.
    [2]RENARD J J, CALIDONNA S E, HENLEY M V. Fate of ammonia in the atmosphere--a review for applicability to hazardous releases [J]. Journal of Hazardous Materials,2004,108(1-2):29-60.
    [3]BUSCA G, PISTARINO C. Abatement of ammonia and amines from waste gases:A summary [J]. Journal of Loss Prevention in the Process Industries,2003,16(2):157-163.
    [4]CRITOPH R E. Multiple bed regenerative adsorption cycle using the monolithic carbon-ammonia pair [J]. Applied Thermal Engineering,2002,22(6):667-677.
    [5]KELLEHER B P, LEAHY J J, HENIHAN A M, et al. Advances in poultry litter disposal technology-a review [J]. Bioresource Technology,2002,83(1):27-36.
    [6]苏玉蕾,王少波,宋刚详,等.氨分解制氢催化剂研究进展[J].舰船科学技术,2010,32(4):138-143.
    [7]OLOFSSON G, REINE W L, ANDERSSON A. Selective catalytic oxidation of ammonia to nitrogen at low temperature on Pt/CuO/Al2O3 [J]. Journal of Catalysis,2005,230(1):1-13.
    [8]GANG L, ANDERSON B G, VAN G J, et al. Selective low temperature NH3 oxidation to N2 on copper-based catalysts [J]. Journal of Catalysis,1999,186(1):100-109.
    [9]DARVELL L I, HEISKANEN K, JONES J M, et al. An investigation of alumina-supported catalysts for the selective catalytic oxidation of ammonia in biomass gasification [J]. Catalysis Today,2003,81(4):681-692.
    [10]ZAWADZKI J. The mechanism of ammonia oxidation and certain analogous reactions [J]. Discussions of the Faraday Society,1950, (8):140-152.
    [11]II'CHENKO N I. Catalytic oxidation of ammonia [J]. Russ. Chem. Rev,1976,45(12): 2168-2195.
    [12]ZHANG L, He H. Mechanism of selective catalytic oxidation of ammonia to nitrogen over Ag/Al2O3 [J]. Journal of Catalysis,2009,268(1):18-25.
    [13]BRADLEY J M, HOPKINSON A, KING D A. Control of a biphasic surface-reaction by oxygen coverage-the catalytic-oxidation of ammonia over Pt(100) [J]. Journal of Physical Chemistry, 1995,99(46):17032-17042.
    [14]CHMIELARZ L, KUSTROWSKEI P, RAFALSKA-LASOCHA A, et al. Selective oxidation of ammonia to nitrogen on transition metal containing mixed metal oxides [J]. Applied Catalysis B: Environmental,2005,58(3-4):235-244.
    [15]TROMBETTA M, RAMIS G, BUSCA G, et al. Ammonia adsorption and oxidation on Cu/Mg/Al mixed oxide catalysts prepared via hydrotalcite-type precursors [J]. Langmuir,1997, 13(17):4628-4637.
    [16]RAMIS G, YI L, BUSCA G. Ammonia activation over catalysts for the selective catalytic reduction of nox and the selective catalytic oxidation of NH3. An FT-IR study [J]. Catalysis Today, 1996,28(4):373-380.
    [17]AMOUES J G, ESCRIBANO V S, RAMIS G, et al. An FT-IR study of ammonia adsorption and oxidation over anatase-supported metal oxides [J]. Applied Catalysis B:Environmental,1997, 13(1):45-58.
    [18]AMBLARD M, BURCH R, SOUTHWARD B W L. A study of the mechanism of selective conversion of ammonia to nitrogen on Ni/γ-Al2O3 under strongly oxidising conditions [J]. Catalysis Today,2000,59(3-4):365-371.
    [19]GANG L, ANDERSON B G, VAN G J, et al. Low temperature selective oxidation of ammonia to nitrogen on silver-based catalysts [J]. Applied Catalysis B:Environmental,2003,40(2): 101-110.
    [20]GANG L, ANDERSON B G, VAN G J, et al. Intermediate species and reaction pathways for the oxidation of ammonia on powdered catalysts [J]. Journal of Catalysis,2001,199(1):107-114.
    [21]LONG R Q, YANG R T. Selective catalytic oxidation of ammonia to nitrogen over Fe2O3-TiO2 prepared with a sol-gel method [J]. Journal of Catalysis,2002,207(2):158-165.
    [22]L B Kong, T S Zhang, J Ma, et al. Mullite phase formation in oxide mixtures in the presence of Y2O3, La2O3 and CeO2 [J]. Journal of Alloys and Compounds.,2004,372(1-2):290-299.
    [23]AKAH A, CUNDY C, GARFORTH A. The selective catalytic oxidation of NH3 over Fe-ZSM-5 [J]. Applied Catalysis B:Environmental,2005,59(3-4):221-226.
    [24]LONG R Q, YANG R T. Selective catalytic oxidation (SCO) of ammonia to nitrogen over Fe-exchanged zeolites [J]. Journal of Catalysis,2001,201(1):145-152.
    [25]LONG R Q, YANG R T. Superior ion-exchanged ZSM-5 catalysts for selective catalytic oxidation of ammonia to nitrogen [J]. Chemical Communications,2000, (17):1651-1652.
    [26]LONG R Q, YANG R T. Noble metal (Pt, Rh, Pd) promoted Fe-ZSM-5 for selective catalytic oxidation of ammonia to N2 at low temperatures [J]. Catalysis Letters,2002,78(1):353-357.
    [27]QI G S, GATT J E, YANG R T. Selective catalytic oxidation (SCO) of ammonia to nitrogen over Fe-exchanged zeolites prepared by sublimation of FeCl3 [J]. Journal of Catalysis,2004,226(1): 120-128.
    [28]LI Y J, ARMOR J N. Selective NH3 oxidation to N2 in a wet stream [J]. Applied Catalysis B: Environmental,1997,13(2):131-139.
    [29]GANG L, ANDERSON B G, VAN G J, et al. NH3 oxidation to nitrogen and water at low temperatures using supported transition metal catalysts [J]. Catalysis Today,2000,61(1-4): 179-185.
    [30]ZHANG L, ZHANG C. B., He H. The role of silver species on Ag/Al2O3 catalysts for the selective catalytic oxidation of ammonia to nitrogen [J]. Journal of Catalysis,2009,261(1): 101-109.
    [31]Amblard M, Burch R, SOUTHWORD B W L. The selective conversion of ammonia to nitrogen on metal oxide catalysts under strongly oxidising conditions [J]. Applied Catalysis B: Environmental,1999,22(3):L159-L166.
    [32]GANG L, ANDERSON B G, VAN G J, et al. Alumina-supported Cu-Ag catalysts for ammonia oxidation to nitrogen at low temperature [J]. Journal of Catalysis,2002,206(1):60-70.
    [33]YANG M, WU C Q, ZHANG C B, et al. Selective oxidation of ammonia over copper-silver based catalysts [J]. Catalysis Today,2004,90(3-4):263-267.
    [34]HE S L, ZHANG C B, YANG M, et al. Selective catalytic oxidation of ammonia from map decomposition [J]. Separation and Purification Technology,2007,58:173-178.
    [35]KUSAR H M J, ERSSON A G, VOSECK M, et al. Selective catalytic oxidation of NH3 to N2 for catalytic combustion of low heating value gas under lean/rich conditions [J]. Applied Catalysis B: Environmental,2005,58(1-2):25-32.
    [36]LIPPITS M J, GLUHOI A C, NIEUWENHUYS B E. A comparative study of the selective oxidation of NH3 to N2 over gold, silver and copper catalysts and the effect of addition of Li2O and CeOx [J]. Catalysis Today,2008,137(2-4):446-452.
    [37]YANG K S, CHOI J S, LEE S H, et al. Development of Al/Al2O3-coated wire-mesh honeycombs for catalytic combustion of volatile organic compounds in air [J]. Industrial & Engineering Chemistry Research,2004,43(4):907-912.
    [38]FARRAUTO R J, VOSS K E Monolithic diesel oxidation catalysts [J]. Applied Catalysis B-Environmental,1996,10(1-3):29-51.
    [39]GEUS J W, VAN GIEZEN J C. Monoliths in catalytic oxidation [J]. Catalysis Today,1999, 47(1-4):169-180.
    [40]JIANG Z D, CHUNG K S, KIM G R, et al. Mass transfer characteristics of wire-mesh honeycomb reactors [J]. Chemical Engineering Science,2003,58(7):1103-1111.
    [41]杨伟兴.改进金属载体催化剂的开发[J].小型内燃机,21(3).
    [42]AHLSTROM-SILVERSAND A F, ODENBRAND C U I. Thermally sprayed wire-mesh catalysts for the purification of flue gases from small-scale combustion of bio-fuel catalyst preparation and activity studies [J]. Applied Catalysis A:General,1997,153(1-2):177-201.
    [43]王亚军,曾庆轩,冯长根.汽车尾气净化催化剂载体[J].工业催化,1999,6:3-7.
    [44]YANG K, S, JIANG Z D, CHUNG J S. Electrophoretically Al-coated wire mesh and its application for catalytic oxidation of 1,2-dichlorobenzene. [J]. Surface and Coatings Technology, 2003,168(2-3):103-110.
    [45]RAO K N, BHARALI P, THRIMRUTHULU G, et al. Supported copper-ceria catalysts for low temperature co oxidation [J]. Catalysis Communications,2010,11(10):863-866.
    [46]GOEZ-CORTES A, MAQUEZ Y, ARENAS-ALATORRE J, et al. Selective CO oxidation in excess of H2 over high-surface area CuO/CeO2 catalysts [J]. Catalysis Today,133-135:743-749.
    [47]YANG W L, LI D, XU D M, et al. Effect of CeO2 preparation method and Cu loading on CuO/CeO2 catalysts for methane combustion [J]. Journal of Natural Gas Chemistry,2009,18(4): 458-466.
    [48]KUNDAKOVIC L, FLYTZANI-STEPHANOPOULOS M. Cu-and Ag-modified cerium oxide catalysts for methane oxidation [J]. Journal of Catalysis,1998,179(1):203-221.
    [49]LI L, ZHAN Y Y, ZHENG Q, et al. Water-gas shift reaction over CuO/CeO2 catalysts:Effect of the thermal stability and oxygen vacancies of CeO2 supports previously prepared by different methods [J]. Catalysis Letters,2009,130(3):532-540.
    [50]RODRIGUEZ J A, LIU P, WANG X, et al. Water-gas shift activity of Cu surfaces and Cu nanoparticles supported on metal oxides [J]. Catalysis Today,2009,143(1-2):45-50.
    [51]CHEN J F, ZHU J J, ZHAN Y Y, et al. Characterization and catalytic performance of CuO/CeO2 and Cu/MgO-CeO2 catalysts for NO reduction by CO [J]. Applied Catalysis A:General,2009, 363(1-2):208-215.
    [52]CHEN J, ZHAN Y Y, ZHU J J,. The synergetic mechanism between copper species and ceria in NO abatement over CuO/CeO2 catalysts [J]. Applied Catalysis A:General,377(1-2):121-127.
    [53]TANG X L, ZHANG B C, LI Y, et al. CuO/CeO2 catalysts:Redox features and catalytic behaviors [J]. Applied Catalysis A:General,2005,288(1-2):116-125.
    [54]XU J, YANG X P, LIU Y H, et al. Vasopeptidase inhibitor omapatrilat provides greater cardioprotection in mice with myocardial infarction:Role of kinins [J]. Journal of Hypertension, 2002,20:S286-S286.
    [55]ZIMMER P, TSCHOPE A, BIRRINGER R Temperature-programmed reaction spectroscopy of ceria-and Cu/ceria-supported oxide catalyst [J]. Journal of Catalysis,2002,205(2):339-345.
    [56]LUO M F, SONG Y P, LU J Q, et al. Identification of CuO species in high surface area CuO/CeO2 catalysts and their catalytic activities for CO oxidation [J]. The Journal of Physical Chemistry C,2007,111(34):12686-12692.
    [57]PARK P W, LEDFORD J S. The influence of surface structure on the catalytic activity of alumina supported copper oxide catalysts. Oxidation of carbon monoxide and methane [J]. Applied Catalysis B:Environmental,1998,15(3-4):221-231.
    [58]KUNDAKOVIC L, FLYTZANI-STEPHANOPOULOS M. Reduction characteristics of copper oxide in cerium and zirconium oxide systems [J]. Applied Catalysis A:General,1998,171(1): 13-29.
    [59]ZHENG X C, ZHANG X L, WANG X Y, et al. Preparation and characterization of CuO/CeO2 catalysts and their applications in low-temperature CO oxidation [J]. Applied Catalysis A:General, 2005,295(2):142-149.
    [60]Hung C. M. Preparation and characterization of nano-rare earth composite materials:Application in selectivity catalytic oxidation of ammonia and its cytotoxicity study [J]. Journal of Rare Earths, 2010,28:362-366.
    [61]HU Y H, DONG L, WANG J, et al. Activities of supported copper oxide catalysts in the NO+CO reaction at low temperatures [J]. Journal of Molecular Catalysis A:Chemical,2000,162(1-2): 307-316.
    [62]DELIMARIS D, IOANNIDES T. VOC oxidation over CuO/CeO2 catalysts prepared by a combustion method [J]. Applied Catalysis B:Environmental,2009,89(1-2):295-302.
    [63]ABOUKAIS A, GALTAYRIES A, ABI-AAD E, et al. Spectroscopic and surface potential variations study of a CuCe oxide catalyst using H2S as a probe molecule [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,1999,154(3):335-342.
    [64]JIA L W, SHEN M Q, Wang J, et al. Dynamic oxygen storage and release over Cu0.1Ce0.9Ox and Cu0.1Ce0.6Cr0.3Ox complex compounds and structural characterization [J]. Journal of Alloys and Compounds,2009,473(1-2):293-297.
    [65]JIA A P, JIANG S Y, LU J Q, et al. Study of catalytic activity at the CuO/CeO2 interface for CO oxidation [J]. The Journal of Physical Chemistry C,2010:null-null.
    [66]CHEN J F, ZHAN Y Y, ZHU J J, et al. The synergetic mechanism between copper species and ceria in NO abatement over CuO/CeO2 catalysts [J]. Applied Catalysis A:General,2010,377(1-2): 121-127.
    [67]LIU W, FLYTZANI-STEPHANOPOULOS M. Transition metal-promoted oxidation catalysis by fluorite oxides:A study of CO oxidation over CuO/CeO2 [J]. The Chemical Engineering Journal and the Biochemical Engineering Journal,1996,64(2):283-294.
    [68]GURBANI A, AYASTUY J L, GONZAEZ-MARCOS M P, et al. CuO/CeO2 catalysts synthesized by various methods:Comparative study of redox properties [J]. International Journal of Hydrogen Energy,2010,35(20):11582-11590.
    [69]FRANCISCO M S P, MASTELARO V R, NASCENTE P A P, et al. Activity and characterization by XPS, HR-TEM, Raman spectroscopy, and BET surface area of CuO/CeO2-TiO2 catalysts [J]. The Journal of Physical Chemistry B,2001,105(43):10515-10522.
    [70]MARTINEZ-ARIAS A, GAMARRA D, FERNADEZ-GARCIA M, et al. Comparative study on redox properties of nanosized CeO2 and CuO/CeO2 under CO/O2 [J]. Journal of Catalysis,2006, 240(1):1-7.
    [71]PARK P W, LEDFORD J. S. The influence of surface structure on the catalytic activity of cerium promoted copper oxide catalysts on alumina:Oxidation of carbon monoxide and methane [J]. Catalysis Letters,1998,50(1):41-48.
    [72]LU C Y, WEY M Y, FU Y H. The size, shape, and dispersion of active sites on AC-supported copper nanocatalysts with polyol process:The effect of precursors [J]. Applied Catalysis A: General,2008,344(1-2):36-44.
    [73]KIM T W, SONG M W, KOH H L, et al. Surface properties and reactivity of Cu/y-Al2O3 catalysts for NO reduction by C3H6:Influences of calcination temperatures and additives [J]. Applied Catalysis A:General,2001,210(1-2):35-44.
    [74]XU B, DONG L, CHEN Y. Influence of CuO loading on dispersion and reduction behavior of CuO/TiO2 (anatase) system [J]. Journal of the Chemical Society, Faraday Transactions,1998, 94(13):1905-1909.
    [75]PRALIAUD H, MIKHAILENKO S, CHAJAR Z, et al. Surface and bulk properties of Cu-ZSM-5 and Cu/Al2O3 solids during redox treatments. Correlation with the selective reduction of nitric oxide by hydrocarbons [J]. Applied Catalysis B:Environmental,1998,16(4):359-374.
    [76]JIN L Y, HE M, LU J Q, et al. Comparative study of CuO species on CuO/Al2O3, CuO/CeO2/Al2O3 and CuO/La2O-Al2O3 catalysts for CO oxidation [J]. Chinese Journal of Chemical Physics,2007,20(5):582.
    [77]DOW W P, Wang Y P, HANG T J. Yttria-stabilized zirconia supported copper oxide catalyst:I. Effect of oxygen vacancy of support on copper oxide reduction [J]. Journal of Catalysis,1996, 160(2):155-170.
    [78]LI G, DIMITRIJEVIC N, CHEN L, et al. Role of surface/interfacial Cu2+sites in the photocatalytic activity of coupled CuO/TiO2 nanocomposites [J]. The Journal of Physical Chemistry C,2008,112(48):19040-19044.
    [79]SCHOLZ G, LUCK R, Sto, et al. Copper-oxygen coordination in Cu"-heteropolyanion compounds:Electron paramagnetic resonance studies and CNDO/2 calculations [J]. Journal of the Chemical Society, Faraday Transactions,1991,87(5):717-725.
    [80]BELLIDO J.D.A, ASSAG E. Reduction of NO by CO on Cu/ZrO2/Al2O3 catalysts: Characterization and catalytic activities [J]. Fuel,2009,88(9):1673-1679.
    [81]LARSSON P, ANDERSSON A. Oxides of copper, ceria promoted copper, manganese and copper manganese on Al2O3 for the combustion of CO, ethyl acetate and ethanol [J]. Applied Catalysis B:Environmental,2000,24(3-4):175-192.
    [82]LOPEZ-SUAREZ F E, BUENO-LOEZ A, ILLAN-GOMEZ M J. Cu/Al2O3 catalysts for soot oxidation:Copper loading effect [J]. Applied Catalysis B:Environmental,2008,84(3-4):651-658.
    [83]AGUILA G, GRACIA F, CORTES J, et al. Effect of copper species and the presence of reaction products on the activity of methane oxidation on supported CuO catalysts [J]. Applied Catalysis B: Environmental,2008,77(3-4):325-338.
    [84]HUNG C. M. Honeycomb cordierite-carriers Pt-Pd-Rh ternary composite for ammonia removal [J]. Aerosol and Air Quality Research,2010,10(2):119-124.
    [85]HUNG C. M. Cordierite-supported Pt-Pd-Rh ternary composite for selective catalytic oxidation of ammonia [J]. Powder Technology,2010,200(1-2):78-83.
    [86]HUNG C. M. Characterization and performance of Pt-Pd-Rh cordierite monolith catalyst for selectivity catalytic oxidation of ammonia [J]. Journal of Hazardous Materials,2010,180(1-3): 561-565.
    [87]SUN H, ZHANG Y B, Quan X, et al. Wire-mesh honeycomb catalyst for selective catalytic reduction of NOX under lean-burn conditions [J]. Catalysis Today,2008,139(1-2):130-134.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700