用户名: 密码: 验证码:
氨选择性催化氧化铜基催化剂的制备及其性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氨气(NH3)是一种恶臭污染物,它对人体健康和生态环境构成巨大的威胁。随着合成氨工业排放的氨尾气日益增加,氨气污染的控制和治理引起人们的广泛关注。氨的选择性催化氧化技术(SCO)是治理氨气污染的一种理想的技术,同时具有高效性、清洁性和经济性等优点。
     本论文以氨选择性催化氧化技术的核心因素,即催化剂的选择为主要研究对象,旨在制备出一种同时具有高活性和高N2选择性的粉末催化剂。分别以Ti02粉末(P25)和活性氧化铝作为载体,Cu和Mn为活性组分,先采用浸渍法制备出Cu/Al2O3和Cu-Mn/TiO2以及不同负载量的Cu/TiO2催化剂,将它们用于氨的选择性催化氧化反应,并研究反应中影响催化剂性能的因素,NH3:02比例和空速大小。结果显示,Cu-Mn/TiO2的N2选择性较差,10%Cu/TiO2相比10%Cu/Al2O3催化剂具有更高的催化活性;NH3:02比例为1:250,空速为50000 h-1是采用10%Cu/TiO2催化剂催化氧化处理氨的最佳反应条件。
     为了进一步提高Cu基催化剂的活性,在Cu/TiO2基础上,借助于向Ti02中添加助剂Ce作为载体,并采用均相沉淀法负载活性组分Cu,在不同条件下制备出系列Cu/Ce-TiO2催化剂。通过对它们对氨催化氧化的活性进行评价,筛选出催化效果最优的催化剂,并与Cu/TiO2催化剂进行对比,结果显示,对于Cu/Ce-TiO2系列催化剂,当铜的负载量为10 wt%,Ce的负载量为9 wt%,并且尿素浓度为15g L-1时,催化活性达到最高,在250℃能将NH3完全转化,N2选择性能达到95%,并且50% NH3被转化时的温度仅为190℃,相比Cu/TiO2催化剂,降低了20℃。
     同时运用BET, XRD、XPS以及H2-TPR等表征手段对系列Cu/Ce-TiO2催化剂的性能进行了表征,以考察各因素对催化剂活性的影响。结果表明,表面高分散的Cu2+物种比体相大颗粒CuO和Cu+物种具有更高的氨选择性催化氧化活性。尿素浓度对Cu/Ce-TiO2催化剂活性的影响非常大,当尿素浓度为15 g L-1,部分Cu20物种转化成了Cu(OH)2物种,形成Cu2+→Cu+之间还原循环过程,同时Cu(OH)2物种也与NH3反应,并且由Cu(OH)2提供的Cu2+物种的还原能力更强,因而提高了该催化剂的氨选择性催化氧化活性。此外,当负载适量的Cu和Ce时,能使Cu组分呈高度分散态,抑制体相中大颗粒Cu组分的形成,而高分散的Cu物种更容易被还原,催化剂的活性随之提高。
Ammonia (NH3) is an inorganic odor-causing pollutant, and it not only endangers human health, but also threatens the ecological environment. With the increasing industrial ammonia waste stream, controling the NH3 pollution arouses great public concern. Selective catalytic oxidation of ammonia (SCO) is seen as an ideal technology to remove NH3 because of its high efficiency, cleanness and economic value.
     This paper focuses on the catalyst which is the core of SCO technology, and aims to prepare a kind of catalyst which has both high activity and N2 selectivity. The selective catalytic oxidations of ammonia were investigated over Cu/Al2O3, Cu/TiO2 catalysts with different Cu loadings and Cu-Mn/TiO2 catalyst, which were all prepared by an impregnation method, and the effects of NH3:O2 ratio and space velocity on SCO were also evaluated. The results showed that the selectivity to N2 was lower on Cu-Mn/TiO2 catalyst and 10% Cu/TiO2 catalyst has a much higher activity than Cu/Al2O3. When NH3:O2 ratio was 1:250 and space velocity was 50000h-1, the condition was optimum for Cu/TiO2 catalyst in the SCO of NH3.
     To further enhance the activity of copper-based catalyst, Cu/Ce-TiO2 catalysts under different conditions were prepared by a two-step method (added CeOx by the impregnation method and loaded Cu by homogeneous deposition precipitation) and their properties were tested in the selective catalytic oxidation of ammonia to nitrogen. The results showed that Cu/Ce-TiO2 (10 wt.%,9 wt.%,15 g L-1) catalyst exhibited the best performance for NH3 conversion and N2 selectivity, over which complete conversion of NH3 and the N2 selectivity of 95%were obtained at 250℃, moreover the temperature was only 190℃when 50% NH3 was converted, which descended 20℃compared to Cu/TiO2 catalyst.
     BET, XRD, XPS and H2-TPR have been used to characterize the states and reactivities of Cu/Ce-TiO2 catalysts for the oxidation of ammonia to nitrogen. The results indicated that the highly dispersed Cu2+species on the surface was more active than the large sized CuO particles in the bulk phase and Cu+species for the selective catalytic oxidation of ammonia. The concentration of urea greatly influenced the activity of Cu/Ce-TiO2 catalyst. When the concentration of urea was 15g L-1, part of Cu2O species changed into Cu(OH)2 species to form a Cu2+→Cu+reduction cycle, while Cu(OH)2 species could also react with NH3 and the reducibility of Cu2+species provided by Cu(OH)2 was higher. Therefore, the catalytic activity for selective catalytic oxidation of ammonia was improved. In addition, when appropriate amounts of Cu and Ce were loaded, Cu component was highly dispersed on the surface and the growth of bulk phase Cu component was inhibited. Due to the former was easier reduced, the catalytic activity increased accordingly.
引文
[1]贺泓,张丽,张长斌.低温氨选择性催化氧化催化剂:中国,200810103870.6[P].2009,10,14.
    [2]ENVIRONMENT C. Manure causing white haze[J]. Science and the Environment Bulletin,1999,12:5.
    [3]AMBLARD M, BURCH R, SOUTHWARD B W L. The selective conversion of ammonia to nitrogen on metal oxide catalysts under strongly oxidising conditions[J]. Applied Catalysis B: Environmental,1999,22(3):159-166.
    [4]BUIJSMAN E, ASMAN W A H. Zure regen (Acid rain, in Dutch)[J]. Chemisch Magazine, 1983,12:654-658.
    [5]ANDREAS F, ANGELIKA H F, LUDGER V D E, et al. Effects of atmospheric ammonia on vegetation-A review[J], Environmental Pollution,1994,1:43-82.
    [6]李珊红.恶臭气体的治理技术及其进展[J].四川环境,2005,24(4):48.
    [7]WESTSTRATE C J, BAKKER J W, RIENKS E D L, et al. Selective NH3 oxidation on (110) and (111) iridium surfaces[J]. Journal of Catalysis,2005,235:92-102.
    [8]ROBERT B, SOUTHWAR B W L. Low-temperature, clean catalytic combustion of N-bearing gasified biomass using a novel NH3 trapping catalyst[J]. Chemical Communications, 2000,1115-1116.
    [9]AMBLARD M, BURCH R, SOUTHWARD B W L. A study of the mechanism of selective conversion of ammonia to nitrogen on Ni/γ-Al2O3 under strongly oxidising conditions[J]. Catalysis Today,2000,59:365-371.
    [10]OLOFSSON G, WALLENBERG L R, ANDERSSON A. Selective catalytic oxidation of ammonia to nitrogen at low temperature on Pt/CuO/Al2O3[J]. Journal of Catalysis,2005,230:1-13.
    [11]LONG R Q, YANG R T. Selective catalytic oxidation of ammonia to nitrogen over Fe2O3;-TiO2 prepared with a sol-gel method[J]. Journal of Catalysis,2002,207:158-165.
    [12]LIPPITS M J, GLUHOI A C, NIEUWENHUYS B E. A comparative study of the selective oxidation of NH3 to N2 over gold, silver and copper catalysts and the effect of addition of Li2O and CeOx[J].Catalysis Today,2008,137:446-452.
    [13]GONG J L, OJIFINNI R A, KIM T S, et al. Selective catalytic oxidation of ammonia to nitrogen on atomic oxygen precovered Au(111)[J]. Journal of the American Chemical Society,2006,128:9012-9013.
    [14]WESTSTRATE C J, BAKKE J W, RIENKS E D L, et al. Ammonia oxidation on Pt (410) [J]. Journal of Catalysis,2006,242:184-194.
    [15]刘大壮,孙培勤.催化剂工艺开发[M].北京:气象出版社,2002.
    [16]张黎明,秦永宁,沈美庆,等.载体对Ni基氨分解催化剂催化性能的影响[J].燃烧科学与技 术,2000,6(1):70-72.
    [17]HE S L, ZHANG C B, YANG M, et al. Selective catalytic oxidation of ammonia from MAP decomposition[J]. Separation and Purification Technology,2007,58:173-178.
    [18]LI L, ZHU Z H, YAN Z F, et al. Catalytic ammonia decomposition over Ru/carbon catalysts:the importance of the structure of carbon support[J], Applied Catalysis A: General,2007,320:166-172.
    [19]LI Y J, ARMOR J N. Selective NH3 oxidation to in a wet stream[J]. Applied Catalysis B:Environmental,1997,13:131-139.
    [20]GANG L, ANDERSON B G, GRONDELLE V J, et al. NH3 oxidation to nitrogen and water at low temperatures using supported transition metal catalysts[J]. Catalysis Today,2000,61:179-185.
    [21]SAZONOVA N N, SIMAKOV A V, NIKORO T A, et al. Selective catalytic oxidation of ammonia to nitrogen[J]. Reaction Kineties and Catalysis Letters,1996,57(1):71-79.
    [22]TERESA C, SANDRA L, Copper exchanged beta zeolites for the catalytic oxidation of ammonia[J]. Chemical Communications,2003,1280-1281.
    [23]AKAH A, CUNDY C, GARFORTH A. The selective catalytic oxidation of NH3 over Fe-ZSM-5[J]. Applied Catalysis B:Environment,2005,59:221-226.
    [24]GOLODETS G I. Heterogeneous catalytic reactions involving molecular oxygen[J]. Studies in Surface Science and Catalysis, Elsevier, Amsterdam 1983.
    [25]PARK P W, LEDFORD J S. The influence of surface structure on the catalytic activity of alumina supported copper oxide catalysts. Oxidation of carbon monoxide and methane [J]. Applied Catalysis B:Environmental,1998,15:221-231.
    [26]LU G, GRONDELLE J V, ANDERSON B G, et al, Selective low temperature NH3 oxidation to N2 on coper-based catalysts[J]. Journal of Catalysis,1999,186:100-109.
    [27]YANG M, WU C Q, ZHANG CB, et al. Selective oxidation of ammonia over copper-silver-based catalysts[J]. Catalysi s Today,2004,90:263-267.
    [28]WOLLNER A, LANGE F, SCHMELZ H, et al. Characterization of mixed copper-manganese oxides supported on titania catalysts for selective oxidation of ammonia[J]. Applied Catalysis A:General,1993,94:181.
    [29]PARK T S, JEONG S W, HONG S H, et al. Selective catalytic reduction of nitrogen oxides with NH3 over natural manganese ore at low temperature[J]. Industrial& Engineering Chemistry Research,2001,40(21):4491-4495.
    [30]ARTURO M A, RENATO C, CONESA J C, et al. Effect of copper-ceria interactions on copper reduction in a Cu/Ce02/Al2O3 catalyst subjected to thermal treatments in CO[J].The Journal of Physical Chemistry B,1998,102(5):809-817.
    [31]ZHENG W Q, ZHANG J, GE Q J, et al. Effects of CeO2 addition on Ni/Al203 catalysts for the reaction of ammonia decomposition to hydrogen[J]. Applied Catalysis B: Environmental,2008,80:98-105.
    [32]HIROSHI M. Preparation of supported bimetallic catalysts by means of selective deposition using mobile metal compounds as precursors[J]. Catalysis Today,1996,28: 215-221.
    [33]GLUACIANE B N, CARIOS B A, CARLOS F O, et al. Reparation and Properties of Homogeneous V2O5-SiO2 Xerogel Composite Based on Inteprenetrating Polymer Newtork[J]. Journal of Solid State Chemistry,2004, (177):960-965.
    [34]GUO X Y, HUANG K, ZHANG D M, et al. Study of precursor preparation of dispersed nickel oxide with urea by homogeneous precipitation method[J]. The Journal of Central South University of Technology,1999,30(3):255-259.
    [35]梅燕,韩业斌,聂祚仁.用尿素作沉淀剂制备不同Ce02前驱体[J].化工学报,2006,57(9):2242-2244.
    [36]DAS D, MISHRA H K, PARIDA K M, et al. Preparation, Physicochemical Characterization and Catalytic Activity of Sulphated ZrO2-TiO2 Mixed Oxides[J]. Journal of Molecular Catalysis A:Chemical,2002,189:271-282.
    [37]AMBLARD M, BURCH R, SOUTHWARD B W L. A study of the mechanism of selective conversion of ammonia to nitrogen on Ni/γ-Al2O3 under strongly oxidising conditions [J]. Catalysis Today,2000,59:365-371.
    [38]BOER M de, HUISMAN H M, MOS R J M, et al. Selective oxidation of ammonia to nitrogen over Si02-supported MoO3 catalysts[J]. Catalysis Today,1993,17:189-200.
    [39]黄仲涛.工业催化[M],北京:化学工业出版社,1995.
    [40]韩德刚,高盘良.化学动力学基础[M],北京:北京大学出版社,1987.
    [41]周明罗.高浓度氨氮废水的吹脱及气相氨的催化氧化研究[D].昆明:昆明理工大学环境科学与工程学院,2005.
    [42]王晓燕.用蜂窝状金属丝网催化剂进行NH2选择性催化还原NOx的研究[D].哈尔滨:哈尔滨工业大学市政环境工程学院,2006.
    [43]廖克俭,戴跃玲,丛玉凤.石油化工分析[M],化工出版社,2005.
    [44]王幸宜.催化剂表征[M],华东理工大学出版社,2008
    [45]李玉敏.工业催化原理[M],天津大学出版社,1992.
    [46]刘粤惠,刘平安.X射线衍射分析原理及应用[M],北京:化学工业出版社,2003.
    [47]刘维桥,孙桂大.固体催化剂使用研究方法[M],北京:中国石化出版社,2000.
    [48]辛勤.固体催化剂研究方法[M],北京:科学出版社,2005.
    [49]PALANIVELU S, CHEN Y W. Preferential oxidation of CO in H2 stream on Au/CeO2-TiO2 catalysts[J]. International Journal of Hydrogen Energy,2009,34:7342-7347.
    [50]LUO M F, ZHONG Y J, YUAN X X, et al. TPR and TPD studies of CuO/CeO2 catalysts for low temperature CO oxidation[J]. Applied Catalysis A:general,1997,162:121-131.
    [51]ZHANG S M, HUANG W P, QIU X H, et al. Comparative study on catalytic properties for low temperature CO oxidation of Cu/CeO2 and CuO/CeO2 prepared via solvated metal atom impregnation and conventional impregnation[J]. Catalysis Letters,2002,80:41-46.
    [52]AVGOUROPOULOS G, IOANNIDES T. Effect of synthesis parameters on catalytic properties of CuO-CeO2[J]. Applied Catalysis B:Environmental,2006,67:1-11.
    [53]ZENG S H, BAI X, WANG X Y, et al. Valence state of active coppr in CuO,/CeO2 catalysts for CO oxidation[J]. Journal of rare earths,2006,24:177-181.
    [54]杨东.稀土金属氧化物负载氧化铜纳米催化材料对VOC燃烧的催化作用研究[D].北京:北京化工大学化工学院,2004.
    [55]LENIHAN S, CURTIN T. The selective oxidation of ammonia using copper-based catalysts: The effects of water[J]. Catalysis Today,2008,5814:1-5
    [56]SLAVINSKAYA E M, VENIAMINOV S A, NOTTE P, et al. Studies of the mechanism of ammonia oxidation into nitrous oxide over Mn-Bi-O/a-A12O3 catalyst[J]. Journal of Catalysis,2004,222:129.
    [57]CHMIELARZ L, KUSTROWSKI P, RAFALSKA L A, et al. Selective oxidation of ammonia to nitrogen on transition metal containing mixed metal oxides[J]. Applied Catalysis B: Environmental,2005,58:235-244.
    [58]AVGOROPOULOS G, IOANNIDES T. Selective CO oxidation over CuO-CeO2 catalysts prepared via the urea-nitrate combustion method[J]. Applied Catalysis A:general, 2003,244:117.
    [59]QIU L, LIU F, ZHAO L, et al. Comparative XPS study of surface reduction for nanocrystalline and microcrystalline ceria powder [J]. Applied Surface Science,2006,252: 4931.
    [60]SATYAJIT S, SUDIPTA S. Electroless Copper Coating of Zirconia Utilizing Palladium Catalyst[J]. Journal of the American Ceramic Society,2003,86(2):279.
    [61]MOULDER J F, STICKLE W F, SOBOT P E, et al. Bomben; p.220 in Handbook of X-ray Photoelectron Spectroscopy:A Reference Handbook of Standard Spectra for Identification and Interpretation of XPS Data. Edited by J. Chastain. Perkin-Elmer Co, Eden Prairie, MN,1992.
    [62]OU T C, CHANG F W, SELVA R L. Production of hydrogen via partial oxidation of methanol over bimetallic Au-Cu/TiO2 catalysts[J]. Journal of Molecular Catalysis A: Chemical,2008,293:8-16.
    [63]MEKHALIF Z, SINAPI F, LAFFINEUR F, et al. XPS and electrochemical characterisation of polycrystalline copper modified with 12-(N-pyrrolyl)-n-dodecanethiol[J]. Journal of Electron Spectroscopy and Related Phenomena,2001,121:149-161.
    [64]HERMAN R G, KLIER K, SIMMONS G W, et al. Catalytic synthesis of methanol from CO/H2: I. Phase composition, electronic properties, and activities of the Cu/Zn0/M203 catalysts[J]. Journal of Catalysis,1979,56:407-429.
    [65]严宣申.化学实验的启示与科学思维的训练[M].北京:北京大学出版社,1993.
    [66]李源,张香平,王蕾,等.用于低温液相合成甲醇的Cu/MgO/ZnO催化剂[J].过程工程学报,2010,10(4):782-787.
    [67]李德经,刘洪涛,谭丕亨,等.铜铬氧化物催化剂在苯乙酮加氢中的活性组成的研究[J].催化学报,1987,8(1):88-92.
    [68]刘超峰,胡行方,祖庸.以尿素为沉淀剂制备纳米氧化锌粉体[J].无机材料学报,1999,14(3):319-396.
    [69]DOW W P, WANG Y P, HUANG T J. Yttria-stabilized zirconia supported copper oxide catalyst:Ⅰ. Effect of oxygen vacancy of support on copper oxide reduction[J]. Journal of Catalysis,1996,160:155-170.
    [70]YAHIRO H, MURAWAKI K, SAIKI K, et al. Study on the supported Cu-based catalysts for the low-temperature water-gas shift react ion[J]. Catalysis Today,2007,126:436-440.
    [71]NATESAKHAWAT S, WATSON R B, WANG X Q, et al. Deactivation characteristics of lanthanide-promoted sol-gel Ni/Al2O3 catalysts in propane steam reforming[J]. Journal of Catalysis,2005,234:496.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700