用户名: 密码: 验证码:
蜂窝状金属丝网催化剂进行NH_3选择性催化还原NO_X的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮氧化物(NOX)是大气的首要污染物之一,对人体健康和生态环境具有严重危害。中国的NOX排放量不断增加,氮氧化物的污染控制和治理迫在眉睫。选择性催化还原(SCR)技术由于具有高效率、高选择性和高经济性,成为NOX治理的主流技术之一。
     本论文以SCR技术的核心问题即催化剂为研究对象,制备蜂窝状金属丝网催化剂。以金属丝网为基体,用电泳沉积法(EPD)在金属丝网上负载Al粉,通过烧结加煅烧形成多孔的Al2O3薄层,将直片和弯片交替捆绑形成蜂窝状金属丝网模件,采用溶胶-凝胶法负载TiO2和浸渍法负载活性组分V2O5和WO3/MoO3,制成具有三维通透结构的蜂窝状金属丝网催化剂。
     以NH3选择性催化还原NO为模型反应,考察了催化剂制备过程中各参数对催化剂性能的影响。结果表明,当TiO2的负载量为0.4g时可将8g的金属丝网模件完全覆盖;二元催化剂的最佳组分为V(1%)-W(3%)/TiO2(摩尔百分含量)(简写为V(1)-W(3)/TiO2);若在一定范围内增大金属丝网的目数,有利于提高NO去除率;加入Mo组分形成三元催化剂,当活性组分配比为V(1)-W(3)-Mo(6)/TiO2时,大大改善了催化剂的性能。
     通过研究SCR反应中影响催化剂性能的因素发现,低温下NO去除率随温度上升而增大,通过对SCR反应动力学的初步研究,表明此时反应符合一级反应动力学特征。反应一定温度范围内效果最好,温度继续升高,NO去除率下降;反应中低温下减小空速对SCR反应有利;进料气中最佳氨氮比为1:1。
     采用扫描电镜(SEM)、X射线衍射(XRD)、能量弥散X射线(EDX)能谱分析、X射线光电子能谱对制备的催化剂的体相结构和表面特性进行了表征。结果表明金属丝网负载Al2O3后比表面积从0.2m2/g增大到13m2/g,TiO2以锐钛矿型存在,平均粒径为15nm,活性组分在催化剂载体上以非晶态存在,活性组分生成量很少,可能形成单层分散,催化剂中的氧是由TiO2和金属氧化物的氧以及一定量的吸附氧组成。
Nitrogen oxide (NOx) is one of the main pollutants in atmosphere. It does harm to human health and enviroment seriously. The amount of the NOx discharging is getting more and more. So it is a great of urgency to control the NOx pollution. Due to high efficiency, selection and economic value, selective catalytic reduction (SCR) is one technology for NOx control.
     The objective of this paper focuses on the catalyst which is the key question of SCR technology. Electrophoretic deposition (EPD) method was used to coat a porous aluminum layer on wiremeshes. Thermal sintering treatment and calcining process result in the formation of a thin Al2O3 layer in the outer surface of each deposited aluminum particle. Band flat sheets and the curved sheets was put together to form a honeycomb module with three-dimensional structure. The sol-gel method was adopted to load TiO2 and the dipping method to load V2O5 and WO3/ MoO3.
     Selective Catalytic Reduction (SCR) of NO with NH3 was used as model reaction. By testing the influence of the parameters on SCR in the course of catalyst preparation, it was found that when the loading amount of TiO2 was 0.4g, the module which weight 8g can be covered completely. The best loading amount of the active ingredient was V(1)-W(3)/TiO2 for binary catalyst. It was good for the SCR reaction to increase the mesh number of the catalyst in a certain extent. If Mo was added to the catalyst to form a ternary catalyst, the catalyst activity was improved evidently when the loading amount was V(1)-W(3)-Mo(6)/TiO2.
     The effect of reaction temperature, space velocity and NH3/NO ratio on SCR efficiency were evaluated. The result showed that the convertions of NO were increased with the temperature increasing. Through the preliminary research of the kinetics of the SCR reaction, it is found that the SCR reaction accorded with the first-order reaction. If the temperature was too high, with the temperature increasing, the efficiency would get worse; meanwhile, the increase of the space velocity would make the NO conversions reduced; the best NH3/NO ratio was 1:1.
     XRD, SEM, EDX energy spectrum, XPS analytical method were applied to
引文
1 贾双燕, 路涛. 选择性催化还原烟气脱硝技术及其在我国的应用研究. 电力环境保护. 2004, 20(1):19~21
    2 Kenzi Tamaru, G. Alexander, Mills. Cataysts for Control of Exhaust Emissions. Catalysis Today. 1994, 22(2):349~360
    3 田贺忠, 郝吉明, 陆永祺, 朱天乐. 中国氮氧化物排放清单及分布特征. 中国环境科学. 2001, 21(6):493~497
    4 V. A. Sadykov, L. A. Isupova, I. A. Zolotarskii, et al. Oxide Catalysts for Ammonia Oxidation in Nitric Acid Production: Properties and Perspective. Application Catalysts A: General, 2000, 204(1):59
    5 魏菱, 邓新华, 刘仲秋. 四川省酸雨污染现状及趋势分析. 四川环境. 2001, 20(4):63~65
    6 赵惠富. 污染气体NOX的形成和控制. 科学出版社. 1993
    7 Varga. et. al. Modified ZSM-5 Zeolite as DENOX Catalyst. Environmental Pollution. 1998, 102(S1):691~695
    8 谢媚. “九五”广州地区酸雨污染基本特征研究. 环境科学研究. 2001, 10:24~25
    9 许春丽, 李保新. 日本大气污染控制对策及现状. 环境科学动态. 2001, 3:33~36
    10 Eduard K. Tungsten Found Key to Enhance SCR NOX Catalytic Activity. Applied Catalysis. 1997, 11(2):18
    11 G. Schaub, J. Wang. Kinetic Analysis of Selective Catalytic NOX Reduction (SCR) in A Catalytic Filter. Chemical Engineering and Processing. 2003, 42(5):365
    12 孙锦宜, 林西平. 环保催化材料与应用. 化学工业出版社. 2002, 106~110
    13 W. Sjoerd Kijlstra, S. Danny Brands, K. Eduard Poels, Alfred Bliek. Kinetics of the Selective Catalytic Reduction of NO with NH3 over MnOX /A12O3 Catalysts at Low Temperature. Catalysis Today. 1999, 12(50):133~240
    14 李哲, 靳英, 刘振宇. 以金属氧化物及钙钛矿结构化合物为活性组分的 ZSM-5 催化剂上 NOX 选择性还原研究. 分子催化. 2000, 14(5):24~26
    15 万颖, 王正, 马建新. 含金属分子筛上 NOX 选择性催化还原研究进展:含贵金属分子筛体系和 HC-SCR 反应机理. 分子催化. 2001, 16(3):13~14
    16 朱天乐, 郝吉明, 崔翔宇. 富氧条件下碳氢化合物选择性催化还原 NO 研究进展. 环境污染治理技术与设备. 2000, 1(2): 26~38
    17 Guido Busca, Luca Lietti, Gianguido Ramis, Francesco Berti. Review Chemical and Mechanistic Aspects of the Selective Catalytic Reduction of NOX by Ammonia over Oxide Catalysts. A Review Applied Catalysis B: Environmental 1998, (18):1~36
    18 O. Yu. Khyzhun. XPS, XES and XAS Studies of the Electronic Structure of Tungsten Oxides. Journal of Alloys and Compounds. 2005, (305):1~6
    19 许越等. 催化剂设计与制备工艺. 化学工业出版社. 2003, 4~5
    20 Yan Liu. Zhaobin Wei, Zhaochi Feng. et al. Oxidative Destruction of Chlorobenzene and o-Dichlorobenzene on A Highly Active Catalyst: MnOX/TiO2-Al2O3. Journal of Catalysis. 2001, (202):200~204
    21 V. Parvulescu, C. Anastasescu, C. Constantin, B. L. Su. Mono (V, Nb) or Bimetallic (V-Ti, Nb-Ti) Ions Modified MCM-41 Catalysts: Synthesis, Characterization and Catalysis in Oxidation of Hydrocarbons (Aromatics and Alcohols). Catalysis Today. 2003, (78):477~485
    22 蒋晓原, 于庆瑞, 郑小明等. 催化氧化法处理甲硫醇废气. 中国环保科学. 1995, 15(3):222~224
    23 Kaixi Li, Licheng Ling, Chunxiang Lu, et al. Catalytic Removal of SO2 over Ammonia-activated Carbon Fibers. Carbon. 2001, (39):1803~1808
    24 A. Dmitri Bulushev, Lioubov Kiwi-Minsker, Igor Yuranov, et al. Structured Au/FeOX/C Catalysts for Low-Temperature CO Oxidation. Journal of Catalysis. 2002, (210):149~159
    25 B. Clayton Maugans, Aydin Akgerman. Catalytic Wet Oxidation of Phenol in A Trickle Bed Reactor over a Pt/TiO2 Catalyst. Water Research. 2003, 37:319~328
    26 A. Nikolopoulos, Stergioula ES, Efthimiadis EAetal. Selective Catalytic Reduction of NO by Propenein Excess Oxygen on Pt- and Rh-supported Alumina Catalysts. Catalysis Today. 1999, (54):439~450
    27 P. Forzatti. Present Statusand Perspective Sinde-NOx SCR Catalysis. Applied Catalysis A: General, 2001, (222):221~236
    28 F. Seyedeyn-Azad, Zhang Dong ke. Selective Catalytic Reduction of Nitric Oxide over Cuand CoIon-exchanged ZSM-5 Zeolite: the Effect of SiO2/Al2O3 Ratioand Cation Loading. Catalysis Today. 2001, (68):161~171
    29 Wang X, Chen HY, Sachtler WMH. Selective Reduction of NO withHydrocarbons over Co/MFIP Repared by Sublimation of CoBr2 and Other Methods. Applied Catalysis B: Environmental. 2001, (29):47~60
    30 Z. Schay. Decomposition and Selective Catalytic Reduction of NO by Propane on Cu-ZSM-5 Zeolites: A Mechanistic Study. Journal of Molecular Catalysis A: Chemical. 2000, (162):191~198
    31 M. D. Amiridis, R. V. Duevel, I. E. Wachs. The Effect of Metal Oxide Additives on the Activity of V2O5/TiO2 Catalysts for the Selective Catalytic Reduction of Nitric Oxide by Ammonia. Applied Catalysis B: Environmental. 1999, (20):111~122
    32 E. Finocchio, M. Baldi, Buscaa Getal. A Study of the Abatement of VOC over V2O5-WO3-TiO2 and Alternative SCR Catalysts. Catalysis Today. 2000,(59):261~268
    33 Hiroshi Miura. Preparation of Supported Bimetallic Catalysts by Means of Selective Deposition Using Mobile Metal Compounds as Precursors. Catalysis Today. 1996, (28):215~221
    34 N. Glauciane Barbosa, A. Carlos Brunello, F. O. Carlos, Graeff, Herenilton P.Oliveira. Reparation and Properties of Homogeneous V2O5–SiO2 Xerogel Composite Based on Interpenetrating Polymer Network. Journal of Solid State Chemistry. 2004, (177):960~965
    35 D. Das ,H. K. Mishra , K. M. Parida , A. K. Dalai. Preparation, Physicochemical Characterization and Catalytic Activity of Sulphated ZrO2–TiO2 Mixed Oxides. Journal of Molecular Catalysis A: Chemical . 2002, (189):271~282
    36 Ki-Suk Chung, Zhidong Jiang, Bong-Seok Gill, Jong-Shilk Chung. Oxidative Decomposition of o-Dichlorrobenzene over V2O5/TiO2 Catalyst Washcoated onto Wire-mesh Honeycombs. Applied Catalysis A: General. 2002, (237):81~89
    37 J. S. Chung, Jiang Zh D, G. R.Kim. A Method for Manufacturing Three Direction ν Honeycomb Module for Solid Catalyst Support or Dispersant and Three Direction—Honeycomb Module Manufactured from This Method. Korean Patent: 64152 , 2000, (25):125~132
    38 H. Bosch, F. Janssen. Catalytic Reduction of Nitrogen Oxides, A Review in the Fundamentals and Technology. Catal. Today, 1988, (2):369–532
    39 V. A. Sadykov, L. A. Isupova, I. A. Zolotarskii, et al. Oxide Catalysts for Ammonia Oxidation in Nitric Acid Production: Properties and Perspective. ApplCatal A: General. 2000, 204(1):59
    40 H. Bosch, F. Janssen Catalytic Reduction of Nitrogen Oxides—A Review on the Fundamentals and Technology. Catal Today. 1987, 2(4):368
    41 G. T. Went, L. V. J. Leu, A. T. Bell Quantitative Structural Analysis of Dispersed Vanadia Species in TiO2(Anatase) Supported V2O5. Catal. 1992, 134(2):479
    42 L. Lietti, P. Forzatti. Temperature Programmed Desorption/ Reaction of Ammonia over V2O5/TiO2 DeNOxing Catalysis. J Catal. 1994, 147(1):241
    43 M. Inomata, A. Miyamoto, Y. Murakami. Review Chemical and Mechanistic Aspects of the Selective Catalytic Reduction of NOX by Ammonia over Oxide Catalysts. Catal. 1980, 62(1):140~148
    44 K. M. Eriksen, C. K. Jensen, S. B. Rasmussen, C. Oehler, B. S. Balzhinimaev, R. Fehrman. EPR Sectroscopix Characterization of DeNOX and SO2 Oxidation Catalysts and Model systems. Catalysis Today. 1999, 54:465~472
    45 Raziyed Khodayari, C. U. Ingemar Odenbrand, Regeneration of Commercial SCR Catalysts by Washing and Sulphation: Effector Sulphate Groups on the Activity. Applied catalysis B: 2001, 33:277~291
    46 N. W. Cant, A. D. Cowan, I. O. Y. Liu, Satsuma. The Reactions of Possible Intermediates in the Selective Catalytic Reduction of Nitrogen Oxides by Hydrocarbons. Catalysis Today. 1999, 54:473~482
    47 Mikaela Wallin, Stefan Forser, Peter Thormahlen, and Magnus Skoglundh. Screening of TiO2-Supported Catalysts for Selective NOX Reduction with Ammonia. Ind. Eng. Chem. Res. 2004, 43:7723~7731
    48 Ram S. Shukla. Ruthenium Complex Catalyst System for Selective Oxidation of Cyclohexane to Cyclohexanone by Molecular Oxygen. React.Kinet. Catal. Lett. 2005, 84(1):109~114
    49 R. M. Caraba, S. G. Masters, K. M. Eriksen, R. Fehrmann. Selective Catalytic Reduction of NO by NH3 over High Surface Area Vanadia-silica Catalysts. Applied Catalysis B: Environmental. 2001, 34:191~200
    50 L. Jimmie Williams. Monolith structures, Materials, Properties and Uses. Catalysis Today. 2001, 69:3~9
    51 Landong Li, Jixin Chen, Shujuan Zhang, Naijia Guan, Tianyou Wang and Shuliang Liu. Selective Catalytic Reduction of Nitrogen Oxides over Cu-TS-1/ Cordierite and LaCu-TS-1/Cordierite, React, Kinet. Catal. Lett. 2005,84(1):115~120
    52 Michael Kleemann, Martin Elsener, Manfred Koebel, Alexander Wokaun. Investigation of the Ammonia Adsorption on Monolithic SCR Catalysts by Transient Response Analysis. Applied Catalysis B: Environmental. 2000. 27:231~242

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700