用户名: 密码: 验证码:
低维无机纳米材料空心结构的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在有着各种形态和结构的低维无机材料制备中,具有空心纳米结构的新型材料正越来越引起广泛的关注并得到长足的发展。这类材料在光学器件、药物传输、活性胶囊、离子插层、长效催化/负载、表面功能化以及尺寸选择性反应等方面都有广泛的应用。然而对于制备零维金属空球和一维非圆形纳米管方面,进展却很有限。基于这种情况,我们就单质银空球和方形三氧化钨纳米管的制备作了一些尝试性的创新工作。具体研究内容和结果如下:
     (1)以相变乳液为模板,制备出了单分散银质空球。这种模板的前期阶段被通过简单的乳化过程而得到,然后乳液中的油相(这里我们选用的是蜂蜡)在超声场中凝固成硬模板。在相变过程中,AgBr粒子作为Pickering乳化剂与CTAB共同稳定相变乳液。相变结束后得到AgBr粒子包覆的固体乳胶粒子,其数均直径为160.5nm,多分散指数为1.046。接下来,AgBr粒子被通过一种“照相化学”的方法还原成单质银粒子。当更多的AgNO_3加入到反应体系,初始形成的单质银粒子此时作为固体催化剂催化还原处于它周围的银离子,直到固体乳胶粒子被完全包覆。固体乳胶粒子周围的银壳厚度可以通过控制AgNO_3的加入量而进行方便地调节。最后,银壳下的蜂蜡核被热乙醇溶出,并被收集提纯以循环利用。因为蜂蜡是多种小分子的聚集体,它可以被有效的从银壳孔隙中溶出,在实验过程中未发现银壳的塌缩和破裂。
     该方法结合了软模板方法(容易获得模板)和硬模板法(在反应过程中微球不易产生变形,且对反应环境不敏感)的优点。此外,反应结束后,蜂蜡能被方便地回收,避免了模板溶出后对环境的污染,因此该方法是一种环境友好的方法
     (2)我们在插层PANI的帮助下制备了WO_3.H_2O方形纳米管。首先,采用双乳液法制备了WO_3.H_2O纳米片和PANI分子,在WO_3.H_2O纳米片的形成过程过程中,同时质子化的聚苯胺分子通过离子交换对WO_3.H_2O纳米片实现了插层。然后我们选择形态规则的纳米片作为前驱物,在60℃密闭反应六天,结果显示纳米片卷曲为纳米管。根据在不同反应时间段的XRD分析,可以得出WO_3.H_2O纳米片的层间距不断减小的结论;而TGA数据表明这种减小并不是因为WO_3.H_2O结晶水或层间PANI分子的脱除;但是通过FTIR分析,我们发现PANI分子在层间被原位氧化,这种氧化所带来的构象和构型的变化又被UV-vis-near IR分析所证明。在一系列的对比试验后,证实了APS对PANI分子的氧化是卷曲的驱动力,而驱动是通过层间PANI分子构象或构型改变所引起的分子链转动来实现的。在PANI分子和WO_3.H_2O纳米片的协同运动下,PANI分子实现了卷曲形态向平板形态的转变,而WO_3.H_2O纳米片也同时卷曲为管。这种制备纳米管的方法最大的特点在于制备过程的比较温和,且纳米片直接卷曲成管而无需经历“纳米卷轴”阶段。
     通过该方法制备的WO_3.H_2O纳米管的磁化率在90K时,迅速由正值变为负值。这个有趣的现象与普通的PANI和WO_3.H_2O都不相同,这暗示着WO_3.H_2O纳米管在电磁器件方面可能有潜在的应用。
Among the many lower-dimension inorganic materials with distinct structural and geometrical features, freestanding hollow micro-, meso-, and nanostructures represent an important class of novel materials attracting special interest, due to their potential scale-dependent applications such as in photonic devices, drug delivery, active material encapsulation, ionic intercalation, surface functionalization, robust catalysts/carriers, and size-selective reactions. However, there has been only little progress in the synthesis of one-dimension noncircular nanotubes and zero-dimension metal hollow sphere, particularly in hollow silver spheres and rectangular nanotubes. Based on the current situation, we attempt some new methods to prepared hollow silver spheres and rectangular tungstic oxide nanotubes. The detail research contents and results are summarized as follows:
     (1) Monodisperse hollow silver spheres were synthesized by using phase-change emulsion as template. The preceeding state of this template could be obtained via simple emulsification like the soft-template method, and then the oil-phase (here we select beeswax) underwent coagulation process to achieve a kind of hard-template under ultrasonic treatment. It is proposed that AgBr "seeds" (precursor of silver nanoparticle) here performed a role of Pickering emulsifier. They successfully cooperated with CTAB molecules to stabilize the emulsions during the phase transition. The mean diameter of the resultant AgBr-coated solid emulsion beads is 160.5nm and the polydispersity index is 1.046. AgBr "seeds" were sequently reduced to form silver particles just like in the standard photographic procedure. When more silver nitrate solution was added, primary silver particles make silver ions around them initiated catalytic reduction until the integrated silver shell was completed. The silver wall-thickness can be conveniently modulated through change the content of AgNO_3. Our results show that not only is this approach simple but also the removal of the template is high efficient since beeswax is a aggregate of multiple small molecules which are easily transfer from inside to outside. Moreover, the natural beeswax template can be recycled, so the whole process is environmentally friendly.
     (2) We prepare rectangular WO_3.H_2O nanotubes by the aid of intercalated PANI. Firstly, as compared to conventional synthetic process of intercalated materials, the oxidative polymerization of aniline and the intercalation of nanosheets formed at the same time along with concomitant ion exchange by means of double-emulsion method. We choose the resultant uniform nanosheets as precusor followed by continuous stirring for six days at 60℃. According to different morphologies we observed at different reaction time stage, we found PNAI-intercalated WO_3.H_2O nanosheets rolling into nanotubes. Furthermore, we also found the corresponding interlayer distances of WO_3.H_2O layers decreases as the reaction time is increased. FTIR data indicates that the degree of in-situ oxidation of PANI increased with increasing reaction time. At the same time, UV/Vis-near IR monitors polymer conformational change between layers. So the decreases of interlayer distances depicted in XRD could not be ascribed to water loss or emigration of PANI from a kinetic point of view but to change of configuration in PANI under oxidation. Further, this change in cross-sectional area and arrangement of PANI also bring out curling movement of WO_3.H_2O layers. The uniqueness of this method is that not only the preparation is made under a relatively mild condition, but also the nanosheets directly roll into rectangular cross-sectional nanotubes without suffering nanoscrolls stage.
     The reciprocal magnetic susceptibility of PANI-intercalated WO_3.H_2O nanotubes rapidly decreased from positive to negative at 90k, which endowed them with potential material for electromagnetic device.
引文
[1]Caruso,F,Trau,D,Mohwald,H,Renneberg,R.Enzyme Encapsulation in Layer-by-Layer Engineered Polymer Multilayer Capsules.[J].Langmuir,2000,16(4):1485-1488.
    [2]Kim S W,Kim M,Lee,W Y,Hyeon T.Fabrication of Hollow Palladium Spheres and Their Successful Application to the Recyclable Heterogeneous Catalyst for Suzuki Coupling Reactions.[J].J.Am.Chem.Soc,2002,124(26):7642-7643.
    [3]Caruso F,Caruso R A,Mohwald H.Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating[J].Science,1998,282:1111-1114
    [4]宋彩霞,王德宝,古国华,傅洵,胡正水.无机空心球材料的乳胶粒模板法制备及应用[J].材料导报,2003,7:32-34.
    [5]刘鹏,田军,刘维民,薛群基.空心聚合物纳米球研究进展[J].化学进展,2004,16(1):15-20.
    [6]Caruso R A,Susha A,Caruso F.Multilayered Titania,Silica,and Laponite Nanoparticle Coatings on Polystyrene Colloidal Templates and Resulting Inorganic Hollow Spheres[J].Chem.Mater.,2001,13(2):400-409.
    [7]Caruso F,Shi X,Caruso R A,Susha A.Hollow Titania Spheres from Layered Precursor Deposition on Sacrificial Colloidal Core Particles[J].Adv.Mater.,2001,13(10):740-744.
    [8]Caruso F,Caruso R A,Mohwald H.Production of Hollow Microspheres from Nanostructured Composite Particles[J].Chem.Mater.,1999,11(11):3309-3314.
    [9]Caruso F,Mohwald H.Preparation and Characterization of Ordered Nanoparticle and Polymer Composite Multilayers on Colloids[J].Langmuir,1999,15(23):8276-8281.
    [10]Caruso F,Spasova M,Susha A,Giersig M,Caruso R A.Magnetic Nanocomposite Particles and Hollow Spheres Constructed by a Sequential Layering Approach[J].Chem.Mater.,2001,13(1):109-116.
    [11]Caruso F,Susha A S,Giersig M,Mohwald H.Magnetic Core-Shell Particles:Preparation of Magnetite Multilayers on Polymer Latex Microspheres[J]Adv.Mater.,1999,11(11):950-953.
    [12]Caruso F.Hollow Capsule Processing through Colloidal Templating and Self-Assembly[J].Chemistry - A European Journal,2000,6(3):413-419.
    [13]Wang L Z,Sasaki T,Ebina Y.Fabrication of controllable ultrathin hollow shells by layer-by-layer assembly of exfoliated titania nanosheets on polymer templates [J]. Chem. Mater., 2002, 14(11): 4827-4832.
    
    [14] Valtchev V. Silicalite-1 Hollow Spheres and Bodies with a Regular System of Macrocavities [J]. Chem. Mater, 2002,14(10): 4371-4377.
    
    [15] Yang Z Z, Niu Z W, Lu Y F, Hu Z B, Han C C. Templated Synthesis of Inorganic Hollow Spheres with a Tunable Cavity Size onto Core-Shell Gel Particles [J]. Angewandte Chemie International Edition., 2003,42(17): 1943-1945.
    
    [16] Zhang Y, Guan Y, Yang S, Xu J, Han C C. Fabrication of Hollow Capsules Based on Hydrogen Bonding [J]. Advanced Materials, 2003, 15(10): 832-835.
    
    [17] Mandal T K, Fleming M S, Walt D R. Production of Hollow Polymeric Microspheres by Surface-Confined Living Radical Polymerization on Silica Templates [J]. Chem. Mater., 2000, 12(11): 3481-3487.
    
    [18] Imhof A. Preparation and Characterization of Titania-Coated Polystyrene Spheres and Hollow Titania Shells [J]. Langmuir, 2001, 17(12): 3579-3585.
    
    [19] Kim S W, Kim M, Lee W Y, Hyeon T. Fabrication of Hollow Palladium Spheres and Their Successful Application to the Recyclable Heterogeneous Catalyst for Suzuki Coupling Reactions [J]. J. Am. Chem. Soc, 2002, 124(26): 7642-7643.
    
    [20] Mandal T K, Fleming M S, Walt D R. Production of Hollow Polymeric Microspheres by Surface-Confined Living Radical Polymerization on Silica Templates [J]. Chem. Mater., 2000, 12(11): 3481-3487.
    
    [21] Tissot I, Reymond J P, Lefebvre F, Bourgeat L E. SiOH-Functionalized Polystyrene Latexes. A Step toward the Synthesis of Hollow Silica Nanoparticles [J]. Chem. Mater., 2002, 14(3): 1325-1331.
    
    [22] Chen X Y, Yang W L, Wang S. Amorphous Ni-B hollow spheres synthesized by controlled organization of Ni-B nanoparticles over PS beads via surface seeding/electroless plating [J]. New J. Chem., 2005, 29, 266-268.
    
    [23] Sun X M, Li Y D. Ga_2O_3 and GaN Semiconductor Hollow Spheres [J]. Angewandte Chemie International Edition, 2004, 43(29): 3827-3831.
    
    [24] Chen Z, Zhan P, Wang , Z L, Zhang J H, Zhang W Y. Two- and Three-Dimensional Ordered Structures of Hollow Silver Spheres Prepared by Colloidal Crystal Templating [J]. Advanced Materials,2004,16(5):417-422.
    [25]Lu L,Sun G,Xi S,Wang,H,Zhang H,Wang T,Zhou X.A Colloidal Templating Method To Hollow Bimetallic Nanostructures[J].Langmuir,2003,19(7):3074-3077.
    [26]Lu W S,Wang W,Su Y L,Li J R,Jiang L.Formation of polydiacetylene-NH_2-gold hollow spheres and their ability in DNA immobilization[J].Nanotechnology,2005,16:2582-2586.
    [27]Zhao Y B,Chen T T,Zou J H,Shi W F.Fabrication and characterization of monodisperse zinc sulfide hollow spheres by gamma-ray irradiation using PSMA spheres as templates[J].Journal of Crystal Growth,2005,275(3-4):521-527.
    [28]Liz-Marzan L M,Giersig M,Mulvaney P.Synthesis of Nanosized Gold-Silica Core-Shell Particles[J].Langmuir,1996,12(18):4329-4335.
    [29]Shiho H,Kawahashi N.Iron Compounds as Coatings on Polystyrene Latex and as Hollow Spheres[J].Journal of Colloid and Interface Science,2000,226(1):91-97.
    [30]Ung T,Liz-Marzan L M,Mulvaney P.Controlled Method for Silica Coating of Silver Colloids.Influence of Coating on the Rate of Chemical Reactions[J].Langmuir,1998,14(14):3740-3748.
    [31]Hanprasop W A,Srinivasan S,Sault A G,Datye A K.Titania Coatings on Monodisperse Silica Spheres(Characterization Using 2-Propanol Dehydration and TEM)[J].Langmuir,1996,12(13):3173-3179.
    [32]Guo X C,Dong P.Multistep Coating of Thick Titania Layers on Monodisperse Silica Nanospheres[J].Langmuir,1999,15(17):5535-5540.
    [33]Tissot I,Novat C,Lefebvre F,Bourgeat-Lami E.Hybrid Latex Particles Coated with Silica[J].Macromolecules,2001,34(17):5737-5739.
    [34]Neves M C,Trindade T.Synthetic hollow zinc oxide microparticles[J].Materials Research Bulletin,36(5-6):1099-1108.
    [35]袁建军,程时远,封麟先.嵌段共聚物自组装及其在纳米材料制备中的应用(上)[J].高分子通报,2002,1:6-15.
    [36]Hall S R,Davis S A,Mann S.Cocondensation of Organosilica Hybrid Shells on Nanoparticle Templates:A Direct Synthetic Route to Functionalized Core-Shell Colloids[J].Langmuir,2000,16(3):1454-1456.
    [37] Banmolker H, Nitzen B, Gura S, Margel S. New solid and hollow, magnetic and non-magnetic, organic- inorganic monodispersed hybrid microspheres: synthesis and characterization [J]. Journal of Materials Science Letters, 1997, 16(16): 1412-1415.
    
    [38] Li Y S, Shi J L, Hua Z L, Chen H R, Ruan M L, Yan D S. Hollow Spheres of Mesoporous Aluminosilicate with a Three-Dimensional Pore Network and Extraordinarily High Hydrothermal Stability [J]. Nano Lett., 2003, 3(5): 609-612.
    
    [39] Jang J, Ha H. Fabrication of Hollow Polystyrene Nanospheres in Microemulsion Polymerization Using Triblock Copolymers [J]. Langmuir, 2002, 18(14): 5613-5618.
    
    [40] Sato Y, Kawashima Y. In vivo evaluation of riboflavin-containing microballoons for floating controlled drug delivery system in healthy human volunteers [J]. Journal of Controlled Release, 2003, 93(1): 39-47.
    
    [41] Murthy V S, Cha J N, Stucky G D, Wong M S. Charge-Driven Flocculation of Poly(L-lysine)-Gold Nanoparticle Assemblies Leading to Hollow Microspheres [J]. J. Am. Chem. Soc, 2004, 126(16): 5292-5299.
    
    [42] Wong M S, Cha J N, Choi K S, Deming T J, Stucky G D. Assembly of Nanoparticles into Hollow Spheres Using Block Copolypeptides [J]. Nano Lett., 2002, 2(6): 583-587.
    
    [43] Cha J N, Bartl M H, Wong M S. Microcavity Lasing from Block Peptide Hierarchically Assembled Quantum Dot Spherical Resonators [J]. Nano Lett., 2003, 3(7): 907-911.
    
    [44] Cha J N, Birkedal H, Euliss L E. Spontaneous Formation of Nanoparticle Vesicles from Homopolymer Polyelectrolytes [J]. J. Am. Chem. Soc, 2003, 125(27): 8285-8289.
    
    [45] Ma Y, Qi L, Ma J, Cheng H, Shen W. Synthesis of Submicrometer-Sized CdS Hollow Spheres in Aqueous Solutions of a Triblock Copolymer [J]. Langmuir, 2003, 19(21): 9079-9085.
    
    [46] Du J, Chen Y, Fischer K, Schmidt M. Organic/Inorganic Hybrid Vesicles Based on A Reactive Block Copolymer [J]. J. Am. Chem. Soc, 2003, 125(48): 14710-14711.
    
    [47] Chang Y, Teo J J, Zeng H C. Formation of Colloidal CuO Nanocrystallites and Their Spherical Aggregation and Reductive Transformation to Hollow Cu_2O Nanospheres [J]. Langmuir, 2005,21(3): 1074-1079.
    
    [48] Liu B, Zeng H C. Symmetric and Asymmetric Ostwald Ripening in the Fabrication of Homogeneous Core-Shell Semiconductors [J]. Small, 2005, 1(5): 566-571.
    
    [49] Yin Y D, Rioux R M, Erdonmez C K. Formation of Hollow Nanocrystals Through the Nanoscale Kirkendall Effect[J].Science,2004,304:711-714.
    [50]Liu B,Zeng H C.Fabrication of ZnO "Dandelions" via a Modified Kirkendall Process[J].J.Am.Chem.Soc.,2004,126(51):16744-16746.
    [51]Mokari T,Aharoni A,Popov I,Banin U.Diffusion of Gold into InAs Nanocrystals[J].Angew.Chem.Int.Ed.,2006,45:8001-8005.
    [52]李国强,陈日耀,郑曦.化学制备一维无机纳米材料的几种方法[J].化学通报,2006,69:29-35.
    [53]Zhu Y Q,Hu W B,Hsu W K.A simple route to silicon based nanostructures[J].Adv.Mater.,1999,11(10):844-847.
    [54]Chang K W,Wu J J.Low temperature catalytic synthesis of gallium nitride nanowires[J].J.Phys.Chem.,2002,106(32):7796-7799.
    [55]Chen C C,Yeh C C,Large scale catalytic synthesis of crystalline gallium nitride nanowires [J].Adv.Mater.,2000,12(10):738-741.
    [56]李永军,刘春艳.一维无机纳米材料的研究进展[J].感光科学与光化学,2003,21(6):446-468.
    [57]Morales A M,Lieber C M.A laser ablation method for the synthesis of crystalline semiconductor nanowires[J].Science,1998,279:208-211.
    [58]张亚利,郭玉国,孙典亭.纳米管的研究进展:制备与生长机理[J].材料科学与工程学报,2001,19(1):131-136.
    [59]Keller N,Pham-Huu C,Ehret C.Synthesis and characterization of medium surface area silicon carbide nanotubes[J].Carbon,2003,41,2131-2139.
    [60]Peng H Y,Zhou X T,Wang N.Bulk-quantity GaN nanotubes synthesized from hot filament chemical vapor deposition[J].Chem.Phys.Lett.,2000,327,263-270.
    [61]Buffat P,Borel J P.Size effect on the melting temperature of gold particles[J].Phys.Rev.A,1976,13(6):2287-2298.
    [62]Hu J Q,Bando Y,Golberg D.Growth of Single-Crystalline Cubic GaN Nanotubes with Rectangular Cross-Sections[J].Adv.Mater.,2004,16(16):1465-1468.
    [63]Trentler T J,Hickman K M,Goel S C.Solution-liquid-solid growth of crystalline Ⅲ-Ⅴ semiconductor -an analogy to vapor-liquid-solid growth[J].Science,1995,270:1791-1794.
    [64]Libera J,Gogotsi Y.Hydrothermal synthesis of graphite tubes using Ni catalyst[J].Carbon,2001,39:1307-1318.
    [65]Zou G F,Li H,Zhang Y G.Solvothermal/hydrothermal route to semiconductor nanowires[J].Nanotechnology,2006,17,313-320.
    [66]Wang X,Li Y D.Syntheis and characterization of lanthanide hydroxide single crystal nanowires[J].Angew.Chem.Int.Ed.,2002,41(24):4790-4793.
    [67]Xu A W,Fang Y P,You L P,Liu H Q.A Simple Method to Synthesize Dy(OH)_3 and Dy_2O_3Nanotubes[J].J.Am.Chem.Soc.,2003,125,1494-1495.
    [68]裴立宅,唐元洪,张勇.硅纳米管的研究进展[J].材料导报,2005,19:91-95.
    [69]Chen Y W,Tang Y H,Pei L Z.Self-assembled silicon nanotubes grown from silicon monoxide[J].Adv.Mater.,2005,17(5):564-567.
    [70]Pei L Z,Tang Y H,Chen Y W.Silicon nanotubes grown from silicon carbide under hydrothermal conditions[J].J.Cryst.Growth,2006,289(2):423-427.
    [71]Rao C N R,Deepak F L,Gundiah G.Inorganic nanotubes[J].Progress solid state chem.,2003,31:5-147.
    [72]Li Y,Ding Y,Wang Z.A novel chemical route to ZnTe semiconductor nanotubes[J].Adv.Mater.,1999,11(10):847-850.
    [73]Li Y,Sui M,Yi D.Preparation of Mg(OH)_2 nanotubes[J].Adv.Mater.,2000,12(11):818-821.
    [74]Yang Q,Tang K,Wang C.PVA-assisted synthesis and characterization of CdSe and CdTe nanotubes[J].J.Phys.Chem B,2002,106(36):927-9230.
    [75]Zhang H,Yang D R,Ma X Y.Transformation mechanism of Te particles into Te nanotubes and nanowires during sotvothermal process[J].J.Cryst.Growth.,2006,289,568-573.
    [76]Mayers B,Xia Y N.Formation of Tellurium Nanotubes Through Concentration Depletion at the Surfaces of Seeds[J].Adv.Mater.,2002,14:279-282.
    [77]Lu Q Y,Hu J Q,Tang K B.Growth of SiC nanotubes at low temperature[J].Appl.Phys.Lett.,1999,75,507-509.
    [78]Liu Z P,Xu D,Liang J B.Growth of Cu_2S ultrathin nanowires in a binary surfactant solvent [J].J.Phys.Chem.B,20005,109(21):10699-10704.
    [79]杨华明,杜春芳,杨武国.纳米材料组装的研究进展[J].材料导报,2004,18(8):25-28.
    [80]Satoshi K,Hanabuss K,Hamasaki N.Preparation of TiO_2 hollow-fibers using supermolecular assemblies[J].Chem.Mater.,2000,297:237-240.
    [81]Jung J H,John G,Yoshida K,Shimizu T.Self-Assembling Structures of Long-Chain Phenyl Glucoside Influenced by the Introduction of Double Bonds[J].J.Am.Chem.Soc.,2002,124(36):10674-10675.
    [82]Pei L Z,Tang Y H,Zhao X Q.Formation mechanism of silicon carbide nanotubes with special morphology[J].J.Appl.Phys.,2006,99(11):046105.
    [83]Limmer S J,Seraji S,Forbess M J.Electrophoretic growth of lead zirconate titanate nanorods [J].Adv.Mater.,2001,13(6):1269-1272.
    [84]Lakshamin B B,Dorhout P K,Martin C R.Sol-gel template growth of semiconductor nanostructure[J].Chem.Mater.,1997,9(3):857-862.
    [85]Fan R,Wu Y Y,Li D Y.Fabrication of silica nanotube arrays from vertical silicon nanowire templates[J].J.Am.Chem.Soc.,2003,125,5254-5255.
    [86]Liu Z Q,Zhang D H,Zhou C W.Single Crystalline Magnetite Nanotube[J].J.Am.Chem.Soc.,2005,127:6-7.
    [87]Jang J,Yoon H.Novel Fabrication of Size-Tunable Silica Nanotubes Using a ReverseMicroemulsion-Mediated Sol-Gel Method[J].Advanced Materials,2004,16(9-10):799-802.
    [1] Kowalski A, Vogel M, Blankenship R M. [P]. U.S.Patent 1884,4, 427, 836.
    [2] Blankenship R.M. [P]. U.S.Patent ,19965,494, 971.
    
    [3] Jiang P, Bertone J F, Colvin V L. A lost-wax approach to monodisperse colloids and their crystals [J]. Science, 2001, 291: 453-458.
    
    [4] Kidambi S, Dai J H, Bruening M L. Selective Hydrogenation by Pd Nanoparticles Embedded in Polyelectrolyte Multilayers [J].J.Am.Chem.Soc, 2004, 126: 2658-2659.
    
    [5] Wang T, Cohen R E, Rubner M F. Metallodielectric Photonic Structures Based on Polyelectrolyte Multilayers [J]. Adv.Mater., 2002, 14: 1534-1537.
    
    [6] Wang Y, Cai L, Xia Y N. Monodisperse Spherical Colloids of Pb and Their Use as Chemical Templates to Produce Hollow Particles [J]. Adv.Mater., 2005, 17: 473-477.
    
    [7] Wang Y, Xia Y N. Bottom-Up and Top-Down Approaches to the Synthesis of Monodispersed Spherical Colloids of Low Melting-Point Metals [J]. Nano Lett., 2004, 4: 2047-2050.
    
    [8] Xu X, Asher S A. Synthesis and Utilization of Monodisperse Hollow Polymeric Particles in Photonic Crystals [J]. J.Am.Chem.Soc, 2004, 126: 7940-7945.
    
    [9] Kim J, Yoon S, Yu J. Fabrication of nanocapsules with Au particles trapped inside carbon and silica nanoporous shells [J]. Chem.Commun., 2003, 790-791.
    
    [10] Lu Y, Fan H, Stump A, Brinker C J. Aerosol-assisted self-assembly of mesostructured spherical nanoparticles [J]. Nature, 1999, 398: 223-226.
    
    [11] Iida M, Sasaki T, Watanable M. Titanium Dioxide Hollow Microspheres with an Extremely Thin Shell [J]. Chem.Mater., 1998,10: 3780-3782.
    
    [12] Bruinsma P J, Kim A Y, Liu J, Baskaran S. Mesoporous Silica Synthesized by Solvent Evaporation: Spun Fibers and Spray-Dried Hollow Spheres [J]. Chem.Mater., 1997, 9: 2507-2512.
    
    [13] Fowler C E, Khushalani D, Mann S. Interfacial synthesis of hollow microspheres of mesostructured silica [J]. Chem .Commun., 2001, 2028-2029.
    
    [14] Rana R K, Mastai Y, Gedanken A. Acoustic Cavitation Leading to the Morphosynthesis of Mesoporous Silica Vesicles [J]. Adv. Mater., 2002,14:1414-1418.
    
    [15] M.Discher B, Won Y Y, Hammer D A. Polymersomes: Tough vesicles made from diblock copolymers[J].Science,1999,284:1143-1146.
    [16]Zhao M,Sun L,Crooks R M.Preparation of Cu Nanoclusters within Dendrimer Templates [J].J.Am.Chem.Soc.,1998,120:4877-4878.
    [17]Wendland M S,Zimmerman S C.Synthesis of Cored Dendrimers[J].J.Am.Chem.Soc.,1999,121:1389-1390.
    [18]Tissot I,Reymond J P,Bourgeat-Lami E.SiOH-Functionalized Polystyrene Latexes.A Step toward the Synthesis of Hollow Silica Nanoparticles[J].Chem.Mater.,2002,14(3):1325-1331.
    [19]Donath E,Sukhornkov G B.Novel Hollow Polymer Shells by Colloid-Templated Assembly of Polyelectrolytes[J].Angew.Chem.Int.Ed.,1998,37:2201-2205.
    [20]He Y J.A novel emulsifier-free emulsion route to synthesize ZnS hollow microspheres[J].Materials Research Bulletin,2005,40(4):629-634.
    [21]Bao J,Liang Y,Xu Z,Si L.Facile Synthesis of Hollow Nickel Submicrometer Spheres[J].Advanced Materials,2003,15(21):1832-1835.
    [22]王宝锋,张裕丁,孙德军.乳化石蜡的研制及应用[J].山东化工,2004,33:14-17.
    [23]赵国玺.表面活性剂物理化学,第一版[M].北京:北京大学出版社,1992:340-342.
    [24]孙根行,张晓镭,俞从正.新型硅蜡乳液的制备[J].皮革化工,2002,19(3):19-21.
    [25]张宗才,穆畅道,林炜,戴红.皮革涂饰用乳化蜡的制备-提高蜡的分散细度和乳液稳定[J].中国皮革,1999,28(9):3-7.
    [26]Binks B P,Lumsdon S O.Catastrophic Phase Inversion of Water-in-Oil Emulsions Stabilized by Hydrophobic Silica[J].Langmuir,2000,16(6):2539-2547.
    [27]Lucassen-Reynders E H,Tempel M.Stabilization of Water-in-Oil Emulsions by Solid Particles[J].J.Phys.Chem.,1963,67(4):731-734.
    [28]Binks B P,Desforges A.Synergistic Stabilization of Emulsions by a Mixture of Surface-Active Nanoparticles and Surfactant[J].Langmiur,2007,23:1098-1106.
    [29]Tsugita A,Takemoto S.Studies on O/W emulsions stabilized with insoluble montmorillonite-organic complexes[J].Journal of Colloid and Interface Science,1983,95(2):551-560.
    [30]Neuhausler U,Abend S,Jacobsen C.Soft X-ray Specromicroscopy on Solid-Stabilized Emulsions[J].Colloid Polym.Sci.,1999,277(8):719-726.
    [31]Evans D R,Parsons D F,Craig V S J.Physical properties of phase-change emulsions[J].Langmuir,2006,22:9538-9545.
    [32]Golemanov K,Tcholakova S,Gurkov T.Selection of surfactants for stable paraffin-in-water dispersions,undergoing solid-liquid transition of the dispersed particles[J].Langmuir,2006,22:3560-3569.
    [33]Torres L G,Iturbe R,Snowden M J.Preparation of o/w emulsions stabilized by solid particles and their characterization[J].Colloids Surf.A.,2007,302:439-448.
    [34]Binks B P,Clint J H.Solid wettability from surface energy components:Relevance to Pickering emulsions[J].Langmuir,2002,18:1270-1273.
    [35]Finkle P,Draper H D,Hildebrand J H.The theory of emulsification[J].J.Am.Chem.Soc.,1923,45(12):2780-2788.
    [36]Dai L L,Sharma R,Wu C Y.Self-assembled structure of nanoparticles at a liquid-liquid interface[J].Langmuir,2005,21:2641-2643.
    [37]顾锡人,朱步瑶,李外郎.表面化学[M]北京:科学出版社,2001:162-181.
    [38]Binks B P,Philip J,Rodrigues J A.Inversion of silica-stabilized emulsions induced by particle concentration[J].Langmuir,2005,21:3296-3302.
    [39]Prashant V K.Photophysical,photochemical and photocatalytic aspects of metal nanoparticles[J].J.Phys.Chem.B,2002,106:7729-7744.
    [40]Braun E,Eichen Y,Sivan U,Ben-yoseph G.DNA-templated assembly and eletrode attachment of a conducting silver wire[J].Science,1998,391:775-778.
    [1]Masahiro N,Nobuyoshi K.Photointercalation characteristics of thin WO_3 films[J].Journal of Applied Physics,1992,71(1):398-402.
    [2]Sun H T,Cantalini C.Microstructural effect on NO_2 sensitivity of WO_3 thin film gas sensors Part 1.Thin film devices,sensors and actuators[J].Thin Solid Films,1996,287(1-2):258-265.
    [3]Yoon K H,Seo D K.Effect of Pt layers on the photoelectrochemical properties of a WO_3/p-Si electrode[J]Journal of Applied Physics,1998,84(7):3954.
    [4]Gu G,Zheng B,Han W Q,Roth S,Liu J.Tungsten Oxide Nanowires on Tungsten Substrates [J].Nano.Lett.,2002,2(8):849-851.
    [5]Qi H,Wang C,Liu J.A Simple Method for the Synthesis of Highly Oriented Potassium-Doped Tungsten Oxide Nanowires[J].Advanced Materials,2003,15(5):411-414.
    [6]Li X L,Liu J F,Li Y D.Large-Scale Synthesis of Tungsten Oxide Nanowires with High Aspect Ratio[J].Inorg.Chem.,2003,42(3):921-924.
    [7]Lee K,Seo W S,Park J T.Synthesis and Optical Properties of Colloidal Tungsten Oxide Nanorods[J].J.Am.Chem.Soc.,2003,125(12):3408-3409.
    [8]Liu Z W,Bando Y,Tang C C.Synthesis of tungsten oxide nanowires[J].Chem.Phys.Lett.,2003,372(1-2):179-182.
    [9]程利芳,张兴堂,杜祖亮.WO_3纳米管的模板法制备及表征[J].无机化学学报,2004,9:117-1120.
    [10]Yu Y L,M Nakano,Ikeda T.Photomechanics:Directed bending of a polymer film by light[J].Nature,425(6954):145.
    [11]Kerr T A,Wu H,Nazar L F.Concurrent Polymerization and Insertion of Aniline in Molybdenum Trioxide:Formation and Properties of a[Poly(aniline)]_(0.24)MoO_3 Nanocomposite[J].Chem.Mater.,1996,8(8):2005-2015.
    [12]Koene B E,Nazar L F.Synthesis and electrochemical lithium insertion in polyaniline/HMWO_6(M=Ta,Nb) nanocomposites[J].Solid State Ionics,1996,89I(1-2):147-157.
    [13]Nam H J,Kim H,Byeon S H.Polymerization of aniline in the galleries of layered HNbMoO_6[J].Solid State Ionics,1999,120(1-4):189-195.
    [14]Livage J,Guzman G.Aqueous precursors for electrochromic tungsten oxide hydrate[J].Solid State Ionics,1996,84:205-211.
    [15]Wu D,Liu J,Zhao X N,Chen Y F,Ming N B.Sequence of events for the formation of titanate nanotubes,nanofibers,nanowires,and nanobelts[J].Chem.Mater.,2006,18:547-553.
    [16]张柏宇,慕建群.聚苯胺盐的合成及导电性研究[J].塑料工业,2004,32(10):8-10.
    [17]Hu J Q,Bando Y,Golberg D.Growth of single-crystalline cubic GaN nanotubes with rectangular cross-sections[J].Advanced Materials,2004,16(16):1465-1468.
    [18]Liu Y,Liu M L.Growth of aligned square-shaped SnO_2 tube arrays[J].Advanced Functional Materials,2005,15:57-62.
    [19]Mohanty P,Kang T,Kim B.Synthesis of single crystalline tellurium nanotubes with triangular and hexagonal cross sections[J].J.Phys.Chem.B,2006,110:791-795.
    [20]Hu W B,Zhu Y Q,Hsu W K,Kroto H W,Walton D R M.Generation of hollow crystalline tungsten oxide fibres[J].Applied Physics A,2000,70:231-233.
    [21]Remkar K.Inorganic Nanotubes[J].Advanced Materials,2004,16(17):1487-1504.
    [22]Patzke G R,Krumeich F,Nesper R.Oxidic Nanotubes and Nanorods-Anisotropic Modules for a Future Nanotechnology[J].Angewandte Chemie International Edition,2002,41(14):2446-2461.
    [23]Ma R,Bando Y,Sasaki T.Directly Rolling Nanosheets into Nanotubes[J].J.Phys.Chem.B.,2004,108(7):2115-2119.
    [24]Saupe G B,Waraksa C C,Kim H N,Han Y J,Kaschak D M,Skinner D M,Mallouk T E.Nanoscale Tubules Formed by Exfoliation of Potassium Hexaniobate[J].Chem.Mater.,2000,12(6):1556-1562.
    [25]Li Y D,Li X L,He R R,Zhu J,Deng Z X.Artificial Lamellar Mesostructures to WS_2Nanotubes[J].J.Am.Chem.Soc.,2002,124(7):1411-1416.
    [26]Ye C H,Bando Y,Shen G Z,Golberg D.Formation of Crystalline SrAl_2O_4 Nanotubes by a Roll-Up and Post-Annealing Approach[J].Angewandte Chemie International Edition,2006,45(30):4922-4926.
    [27]Spahr M E,Bitterli P,Nesper R,Krumeich F,Nissen H U.Redox-Active Nanotubes of Vanadium Oxide[J].Angewandte Chemie International Edition,1998,37,1263-1265.
    [28]Krumeich F,Muhr H J,Nesper R.Morphology and Topochemical Reactions of Novel Vanadium Oxide Nanotubes [J]. J. Am. Chem. Soc, 1999, 121(36): 8324-8331.
    
    [29] Chen X, Sun X, Li Y. Self-Assembling Vanadium Oxide Nanotubes by Organic Molecular Templates [J]. Inorg. Chem., 2002, 41(17): 4524-4530.
    
    [30] Asturias G E, MacDiarmid A G, McCall R P, Epstein A J. The oxidation state of "emeraldine" base [J]. Synthetic Metals, 1989, 29(1): 157-162.
    
    [31] Li W, McCarthy P A, Liu D, Huang J, Yang S C, Wang H L. Toward Understanding and Optimizing the Template-Guided Synthesis of Chiral Polyaniline Nanocomposites [J]. Macromolecules, 2002, 35(27): 9975-9982.
    
    [32] Xia Y N, MacDiarmid A G, Epstein A J. Camphorsulfonic Acid Fully Doped Polyaniline Emeraldine Salt: In situ Observation of Electronic and Conformational Changes Induced by Organic Vapors by an Ultraviolet/Visible/Near-Infrared Spectroscopic Method [J]. Macromolecules, 1994,27(24): 7212-7214.
    
    [33] Mazerolles L, Folch S, Colomban P. Study of Polyanilines by High-Resolution Electron Microscopy [J]. Macromolecules, 1999, 32(25): 8504-8508.
    
    [34] Kahol P K, Raghunathan A, McCormick B J. A magnetic susceptibility study of emeraldine base polyaniline [J]. Synthetic Metals, 2004,140(2-3): 261-267.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700