用户名: 密码: 验证码:
硅橡胶复合绝缘子憎水性与污闪特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于硅橡胶材料独特的憎水性能,复合绝缘子在电力系统防污闪方面获得了广泛的应用。然而,人们对其憎水性、污闪特性及相关机理的认识却远没有达到全面透彻的程度。本文在充分考虑复合绝缘子的运行环境特征和表面状态的基础上,对复合绝缘子的憎水性和污闪特性进行了四方面的试验研究并揭示了相关机理。
     本文首先针对复合绝缘子憎水性检测技术的薄弱环节,基于喷水分级法和数字图像分析技术,研制了便携式复合绝缘子憎水性带电检测装置,并提出了基于K (最大水珠或水迹与整幅图像的面积比)和fc(最大水珠或水迹的形状因子)联合计算的憎水性等级判断新方法。基于所开发的憎水性带电检测技术,首次在我国北方重污秽地区开展了长达一年半的复合绝缘子憎水性在线检测试验,发现了运行复合绝缘子憎水性的季节变化特性,提出了基于带电检测的运行复合绝缘子憎水性动态评估新方法,该方法充分考虑了冬季憎水性下降特性和夏季憎水性恢复特性的评估。
     针对运行复合绝缘子在冬季污闪高发期容易出现弱憎水性状态的情况,采用升降法研究了高岭土染污弱憎水性复合绝缘子的污闪特性,发现了完全湿润的污层表面依然可以存在分离水珠的现象,分离水珠的存在使得试样的耐污闪能力比亲水性试样提高了40%。基于Obennaus模型,揭示了这种弱憎水性试样的污闪机理,即:湿润条件下污层中可溶盐分的外迁会导致污层表面电导率的不均匀分布,从而进一步降低试样污层的平均表面电导率并提高试样的耐污闪能力。
     针对运行复合绝缘子经常遭遇的两种典型的长时间高湿气象条件,在不考虑电应力同时作用的前提下,首次研究了长时间(长达200小时)高湿微雾环境中高岭土染污弱憎水性复合绝缘子和硅藻土染污强憎水性试样的憎水性变化特性和污闪特性,发现了两种试样均表现出了优异的抵抗憎水性丧失的能力,但是硅藻土染污强憎水性试样的耐污闪能力发生了严重下降,普遍接近于高岭土染污弱憎水性试样的情况。基于Obennaus模型和不均匀电场中的放电理论,揭示了长时间高湿作用后强憎水性试样的低污闪电压主要是由于污层表面电阻的显著下降、水珠间的局部电场的严重畸变以及合模缝附近区域的局部电场的严重畸变的联合作用所导致的。
     针对绝缘子污闪发生时的典型环境温度特征,首次研究了环境温度在-2°C~2°C范围内周期变化时硅藻土染污强憎水性复合绝缘子的污闪特性,揭示了:低温冷雾中试样表面薄冰的存在会强制融化后的冰水向污层体内扩散并沿污层表面扩展,从而会导致试样表面的憎水性能发生显著下降,并进一步造成闪络电压的显著下降。
     根据试验结果,本文给出了在进行复合绝缘子外绝缘配置工作时应重点参考弱憎水性试样的污闪试验结果的建议。
Silicone rubber (SIR) composite insulators have been widely used in electric power systems to combat pollution flashover problems of transmission lines due to the unique hydrophobic properties of SIR materials. However, the hydrophobic and pollution flashover properties of SIR insulators and the relevant mechanisms have not been thoroughly understood by people. In this dissertation, four aspects of research work on the hydrophobic and pollution flashover properties of SIR insulators were carried out with the consideration of the typical operation environments and the surface status of the operated SIR insulators. The relevant mechanisms were also explained in detail.
     In order to better master the hydrophobic properties of polluted SIR insulators under actual operating environmental conditions, an on-line hydrophobicity inspection technology was developed. Firstly, based on the spray method and the digital image process technique, a new hydrohobicity class evaluation method was brought forward, in which two parameters K (the ratio of the area of the maximal water droplet or trace in a image of a water sprayed insulator surface to the gross area of the analyzed region in the image) and fc (the shape factor of the maximal water droplet or trace) are calculated. Also, a new on-line hydrophobicity inspection device was designed, which consists of an automatically electric sprayer, a mini digital video camera and a hydrophobcity analyzing software. Then, on-line hydrophobicity inspection was conducted for the polluted SIR insulators on four AC transmission lines in the north of China for more than one year by using the device. It is found from the inspection results that the surface hydrophobcity of the SIR insulators varies remarkably with seasons. On the Basis of the inspection results, an on-line dynamic inspection method on the surface hydrophobicity of SIR insulators is proposed, in which the surface hydrophobicity decrease in winter and its recovery in summer are considered.
     Considering the fact that the surface of the operated SIR insulators often appear the weak hydrophobic status from November a year to April of the coming year during which period more than 90% pollution flashover accidents happened in China, the pollution flashover properties of kaolin-polluted SIR insulators with weak surface hydrophobicity were studied by using the up and down method. It is found that although the pollution layer of the samples can be completed wetted by fog, the discrete water droplets still can be formed on the sample surfaces, resulting in their 50% withstand voltage higher about 40% than that of the hydrophobic samples. Based on the Obennaus theory, it is believed that the uneven distribution of the surface conductivity, caused by the diffusion of soluble salt from the pollution layer to the discrete water droplets, decreases the effective surface conductivity of the samples, and increases the pollution flashover voltage.
     Because the long-time wetting stresses, i.e., high relative humidity and fog, are considered as the important factors heavily influencing the outdoor insulation properties of the operated SIR insulators, the hydrophobic change properties and pollution flashover properties of kaolin-polluted SIR insulators with weak surface hydrophobicity and kieselguhr-polluted SIR insulators with high surface hydrophobcity were studies under the long-time light-fog conditions. The test results show that both two kinds of samples exhibit the good anti-hydrophobicity-lose capability. However, after subjected to the long-time wetting stress, the pollution flashover voltage of most kieselguhr-polluted SIR insulators heavily decrease to the case of the kaolin-polluted SIR insulators with weak surface hydrophobicity. According to the Obennaus theory and the discharge theory under uneven electric field, it is believed that the phenomena of the low flashover voltage on the high hydrophobic samples is caused by the combination of the decrease of the surface resistance and the intensification of the partial electric field between the water droplets and along the mold junction areas on the samples.
     According to the typical ambient temperature characteristics of the pollution flashover accidences of insulators, the pollution flashover properties of kieselguhr-polluted SIR insulators with high surface hydrophobcity were studied by using a cold fog test method we developed, in which the ambient temperature is controlled to cycle in the range of -2°C~2°C during testing. The test results show that under the cold fog conditions, the existence of a thin ice layer on the sample surface forces the melting ice water to diffuse into the pollution layer and to spread along the pollution layer surface, causing the distinct decrease of the surface hydrophobicity on the samples, and further resulting in the decrease of the flashover voltage of the samples.
     Finally, on the basis of the whole experimental results mentioned above, it is suggested that the outdoor insulation parameters of SIR insulators intended for use in pollution areas should be designed by using the artificial pollution test results of the weak hydrophobic SIR insulator samples.
引文
[1]梅尔赫列夫СД,索洛莫尼克E A.大气污秽地区线路与变电所的绝缘(张重午译).北京:电力工业出版社,1981. 15~16
    [2]顾乐观,孙才新.电力系统的污秽绝缘.重庆:重庆大学出版社,1990. 27~58
    [3]张仁豫.绝缘污秽放电.北京:水利电力出版社,1994
    [4]孙才新,司马文霞,舒立春,等.大气环境与电气外绝缘.北京:中国电力出版社,2002.
    [5]关志成,刘瑛岩,贾志东,等.绝缘子及输变电设备外绝缘.北京:清华大学出版社,2006. 185~199
    [6]胡毅.“2.22电网大面积污闪”原因及对策.高电压技术,2001,27(2):30~32
    [7]陈国义.关于雾闪和湿闪的成因分析.高电压技术,2002,38(2):50~53
    [8]黎辉,魏庆海,张玉良.辽宁中部电网“2.22”污闪事故分析与处理.东北电力技术,2001,(10):22~27
    [9]樊灵孟,刘平原,郑晓光,等.广东电网污闪原因分析和防治对策.电瓷避雷器,2006,(2):1~6
    [10]关志成,王绍武,梁曦东,等.我国电力系统污闪事故及其对策.高电压技术,2000,26(6):37~39
    [11]宿志一.防止大面积污闪的根本出路是提高电网的基本外绝缘水平-对我国电网大面积污闪事故的反思.中国电力,2003,36(12):57~61
    [12]张宇,肖嵘.华东电网2.20污闪事故的分析和思考.华东电力,2004,32(9):17~22
    [13]吴光亚,钱之银,肖勇,等.防污闪技术的现状与发展趋势.电力设备,2006,6(3):5~9
    [14]梁曦东. 110kV棒形悬式合成绝缘子的研制:[工学硕士学位论文].北京:清华大学,1987
    [15]李京. 220kV线路棒形合成绝缘子的研制:[工学硕士学位论文] .北京:清华大学,1989
    [16]梁曦东. 500kV合成绝缘子的研究:[工学博士学位论文].北京:清华大学,1990
    [17]陈原.超高压直流合成绝缘子的研究:[工学博士学位论文].北京:清华大学,1997
    [18] Jiang X L, Hu J L, Liang Y, et al. Pollution flashover performance of short sample for 750 kV composite insulators. Proceedings of ISEI. Indianapolis, USA, 2004. 312~315
    [19]吴维宁,胡毅,王绍武,等.加强对1000kV级交流输电线路用复合绝缘子的研究和开发.电力设备,2005,6(7):22~24
    [20]李立浧,蒋兴良,孙才新,等.±800kV直流复合绝缘子短样人工污秽闪络特性研究.中国电机工程学报,2007,27(10):14~19
    [21] Liang X D, Wang S W, Fan J, et al. Development of composite insulators in China. IEEE Trans. Dielectr. Electr. Insul, 1999, 6 (5): 586-594
    [22] De La O A, Gorur R S, Chang J. AC clean fog tests on non-ceramic insulating materials and a comparison with porcelain. IEEE Trans. Power Delivery, 1994, 9(4): 2000-2008
    [23] Ishiwari M, Ito S, Arakawa K, et al. Various artificial contamination withstand voltage test methods and a comparison of their results on polymer and porcelain insulators. Proceedings of 11th ISH. London, 1999. 4.381 ~ 4.384
    [24] Matsuoka R, Shinokubo H, Kondo K, et al. Assessment of basic contamination withstand voltage characteristics of polymer insulators. IEEE Trans. Power Delivery, 1996, 11(4): 1895~1900
    [25] Matsuoka R, Shinokubo H, Kondo, et al. Artificial contamination withstand voltage characteristics of polymer insulators. Proceedings of ISEIM. Tokyo, 1995. 487~490
    [26] Naito K, Nishiwaki S, Matsuoka R, et al. Investigation results of silicone rubber insulators under wet and contaminated conditions. Proceedings of Proceedings of the International Conference on Properties and Applications of Dielectric Materials. Brisbane, Qld, 1994. 2.519~2.522
    [27] Awad M M, Elgendy O, Arafa B A, et al. The effect of industrial environmental conditions on the performance of conventional and polymeric insulators. Proceedings of 11th ISH. London, 1999. 4.30~4.33
    [28] Gorur R S, Subramanian K. Use of surface resistance for assessing vulnerability of HV outdoor insulators to contamination flashover. Proceedings of 2003 CEIDP. 2003. 406~409
    [29] Hirsch F, Rheinbaben H V, Sorms R, et al. Flashovers of insulators under natural pollution and HVDC. IEEE Trans. PAS, 1975, 94(1-1): 45~50
    [30] Jiang X L, Yuan J H, Shu L C, et al. Comparison of DC Pollution Flashover Performances of Various Types of Porcelain, Glass, and Composite Insulators. IEEE Trans. Power Delivery, Accepted,TPWRD.2007.908779
    [31] Jiang X L, Yuan J H, Zhang Z J, et al. Study on pollution flashover performance of short samples of composite insulators intended for±800 kV UHV DC. IEEE Trans. Dielectr. Electr. Insul., 2007, 14(5): 1192~1200
    [32]舒立春,毛峰,蒋兴良,等.复合绝缘子与瓷和玻璃绝缘子直流污闪特性比较.中国电机工程学报,2007, 27(36)(出版中)
    [33]王绍武.污秽地区有机外绝缘的特性的研究:[工学博士学位论文].北京:清华大学,2001
    [34] Karady G G, Shah M, Brown R L. Flashover mechanism of silicone rubber insulators used for outdoor insulation-I. IEEE Trans. Power Delivery, 1995, 10(4): 1965~1971
    [35] Shah M, Karady G G, Brown R L. Flashover mechanism of silicone rubber insulators used for outdoor insulation-II. IEEE Trans. Power Delivery, 1995, 10(4): 1972~1978
    [36] Jia Z D, Guan Z C. The discharge along hydrophobic and hydrophilic surface. Proceedings of ISEI, Boston, USA, 2002. 280~284
    [37] Gautam B K, Mizuno Y, Matsubayashi G, et al. Effect of wetting conditions on the contamination flashover voltages of polymer insulators. Proceedings of ICPADM. Bali, Indonesia, 2006. Vol.2: 534~537
    [38] Guan Z C, Chen Y, Liang X D. Contamination-flashover of silicone rubber composite insulators-I. Proceedings of ISH. Montreal, Canada, 1997. 301~304
    [39] Guan Z C, Chen Y, Liang X D. Contamination-flashover of silicone rubber composite insulators-II. Proceedings of ISH. Montreal, Canada, 1997. 305~308
    [40] Wang S W, Liang X D, Huang L C, et al. Artificial pollution test and pollution performance of composite insulators. Proceedings of ISH. London, UK, 1999. Vol.4: 337~340
    [41] Gao H F, Jia Z D, Guan Z C, et al. Evaluation of electrical insulation proerties on aged composite insulators in heavily contaminated areas. Proceedings of ISEI. Toronto, Canada, 2006. 197~200
    [42] Chen Y, Guan Z C, Liang X D. Analysis of flashover on the contaminated silicone rubber composite insulator. Proceedings of ICPADM. Seoul, 1997. Vol.2: 914~917
    [43] Karady G G. Flashover mechanism of non-ceramic insulators. IEEE Trans. Dielectr. Electr. Insul., 1999, 6(5): 718~723
    [44] De la O A, Gorur R S, Burnham J T. Electrical performance of non-ceramic insulators in artificial contamination tests-Role of resting time. IEEE Trans. Dielectr. Electr. Insul., 1996, 3(6): 827~835
    [45] De la O A, Gorur R S. Flashover of contaminated nonceramic outdoor insulators in a wet atmosphere. IEEE Trans. Dielectr. Electr. Insul., 1998, 5(6): 814~823
    [46] Zhao L J, Li C R, Xiong J, et al. An artificial pollution test on silicone rubber insulators under long-time wetted conditions. Proceedings of 2007 CEIDP, Vancouver, Canada, 2007. 320-323
    [47] Zhao L J, Li C R, Yao J S, et al. A cold fog test method of composite insulators. Proceedings of 2006 ISIE. Toronto, Canada, 2006. 193-196
    [48] Wang S W, Liang X D, Huang L C, et al. Experimental study on the pollution flashover mechanism of polymer insulators. Proceedings of IEEE Winter Meeting. Singapore, 2000. Vol.4: 2830~2833
    [49] Gorur R S, De La O A, El-Kishky H. et al. Sudden flashover of nonceramic insulators in artificial contamination tests. IEEE Trans. Dielectr. Electr. Insul., 1997, 4(1): 79~87
    [50] Chang J W, Gorur R S. Surface recovery of silicone rubber used for HV outdoor insulation. IEEE Trans. Dielectr. Electr. Insul., 1994, 1(6): 1039~1046
    [51] Deng H, Hackam R. Low-molecular weight silicone fluid in RTV silicone rubber coatings. IEEE Trans. Dielectr. Electr. Insul., 1999, 6(1): 84~94
    [52] Deng H, Hackam R. Impact of weather conditions and formulations on LMW silicone fluid content in RTV silicone rubber coatings. Proceedings of IEEE CEIDP. Millbrae, CA, 1996. Vol.2: 437~440
    [53] Zhang H, Hackam R, Lazarescu V. Identification of LMW fluid in HTV silicone rubber. Proceedings of IEEE CEIDP. Austin, TX, 1999. Vol.2:739~742
    [54] Kumagai S, Yoshimura N. Hydrophobic transfer of RTV silicone rubber aged in single and multiple environmental stresses and the behavior of LMW silicone fluid. IEEE Trans. Power Delivery, 2003, 18(2): 506~516
    [55] Zhang H, Hackam R. The effect of low molecular weight fluid on aging performance of HTV silicone rubber. Proceedings of IEEE ISEI. Anaheim, CA, 2000. 184~187
    [56] Kumagai S, Yoshimura N. Hydrophobicity recovery of silicone rubber and LMW behaviour. Proceedings of ISEIM. Toyohashi, 1998. 457~460
    [57] Zhang H, Hackam R. Low molecular weight silicone fluid content and diffusion in RTV silicone rubber coating. Proceedings of ISEIM. Tokyo, 1995. 181~184
    [58] Lu Z W, Janssen H, Herden A, et al. Generation of LMW components in silicone rubbers. Proceedings of IEEE CEIDP. Austin, TX, 1999. Vol.2: 727~730
    [59] Deng H, Hackam R, Cherney E A. Effects of applied heat on LMW silicone fluid in RTV silicone rubber coatings used in outdoor HV insulation. Proceedings of IEEE CEIDP. Virginia Beach, VA, 1995. 459~ 462
    [60] Janssen H, Herden A, Karner H C. LMW components in silicone rubbers and epoxy resins. Proceedings of ISH. London, 1999. Vol.4: 18~21
    [61] Hackam R. Low-molecular weight silicone fluid in RTV silicone rubber coatings. IEEE Trans. Dielectr. Electr. Insul., 2000, 7(3): 461~462
    [62] Homma H, Kuroyagi T, Izumi K. et al. Diffusion of low molecular weight siloxane from bulk to surface. IEEE Trans. Dielectr. Electr. Insul., 1999, 6(3): 370~375
    [63] Sirait K T, Salama, Suwarno. Surface hydrophobicity of silicone rubber under natural tropical conditions. Proceedings of ISH. London, 1999. Vol.4: 38~41
    [64] Hillborg H, Gedde U W. Hydrophobicity changes in silicone rubbers. IEEE Trans. Dielectr. Electr. Insul., 1999, 6(5): 703~717
    [65] Jia Z D, Gao H F, Guan Z C, et al. Study on hydrophobicity transfer of RTV coatings based on a modification of absorption and cohesion theory. IEEE Trans. Dielectr. Electr. Insul., 2006, 13(6): 1317~1324
    [66] Liang Y, Ding L J, Li C R. et al. Study on hydrophobicity recovery characteristics and mechanism of HTV silicone rubber after corona deterioration. Proceedings of IEEE CEIDP. Vancouver, Canada, 2007. 308~311
    [67] Wang S W, Liang X D, Guan Z C, et al. Hydrophobicity transfer properties of silicone rubber contaminated by different kinds of pollutants. Proceedings of IEEE CEIDP. Victoria, BC, 2000. Vol.1: 373~376
    [68]鲁志伟,杨秀媛.硅橡胶憎水迁移机理的研究.中国电机工程学报,2001,21(5): 51-55,73
    [69]贾志东,关志成.室温硫化硅橡胶涂层憎水性迁移机理的研究.高电压技术,1999,25(1):7~9,12
    [70]关志成,陈原.合成绝缘子憎水性迁移机理的研究.高电压技术,1998,24(2): 13~15,18
    [71]崔江流,宿志一,易辉.我国硅橡胶合成绝缘子的应用与展望.中国电力,1999,32(1):30~41
    [72]宿志一.全国电力系统复合绝缘子运行情况综述.电气世界,2003,(6):1~4
    [73]戴建军.高电压复合绝缘子脆断的研究:[工学博士学位论文] .北京:清华大学,2006
    [74]刘亚新,周国华.山西电网复合绝缘子运行情况及分析.电力设备,2006,8(8):60~62
    [75]刘泽洪.复合绝缘子使用现状及其在特高压输电线路中的应用前景.电网技术,2006,30(12):1~7
    [76]陶文秋.辽宁电网污闪原因及防污对策.高电压技术,2003,29(12):52~53,57
    [77]喻华玉.陕西电网合成绝缘子合成绝缘子运行总结.西北电力技术,1999,(6):26~33
    [78]王国春,陈原.京津唐电网复合绝缘子运行分析.电瓷避雷器,2002,(5):3~13
    [79]江苏省连云港市供电公司生产运营部.合成绝缘子的运行经验交流.电气世界,2003,(6):32~33
    [80]国家电力公司发输电部运营部.复合绝缘子技术与运行.北京:国家电力公司,2000.17~26、198~207、223~226、250~261
    [81] International Electrotechnical Commission. IEC/TS 62073-2003. Guidance on the measurement to wettability of insulator surfaces. Switzerland, 2003
    [82] Swedish Transmition Research Institute. STRI Guide-92/1. Hydrophobicity Classification Guide. Sweden, 1992
    [83] Wang S W, Liang X D, Guan Z C, et al. Investigation on hydrophobicity and pollution status of composite insulators in contaminated areas. Proceedings of CEIDP. Kitchener, Ont., 2001. 628~631
    [84] Zhao L J, Li C R, Yao J S, et al. An outdoor investigation on hydrophobicity of silicone rubber insulators in the Temperature Zone. Proceedings of CEIDP. 2006. 381~384
    [85] Cheng Z X, Liang X D, Wang Y Y, et al. Investigation on composite insulator in contaminated areas. Proceeding of CEIDP. 2002. 327~330
    [86]清华大学,山东电力研究院.“运行合成绝缘子检测技术和耐雷电冲击特性的试验研究”技术报告. 2001. 42~44
    [87] Wang X, Liang X D, Zhou Y X, et al. Four-parameter method for hydrophobicity judgement and mechanisium of hydrophobicity transfer property. Proceedings of ICPADM. 2003. 1222~1225
    [88]中华人民共和国国家发展和改革委员会. DL/T 810-2002.±500 kV直流棒形悬式复合绝缘子技术条件.北京:中国电力出版社,2002
    [89]中华人民共和国国家发展和改革委员会. DL/T 864-2004.标称电压高于1000V交流架空线路用复合绝缘子使用导则.北京:中国电力出版社,2004
    [90]李震宇,崔吉峰,粱曦东,等.现场运行复合绝缘子憎水性的研究.高电压技术, 2006,32(1):24~26
    [91]高海峰.硅橡胶憎水迁移机理及其表面染污放电的研究[工学博士学位论文].北京:清华大学,2007
    [92] Jahn H, B?rsch R, Wendt E. The Influence of Temperature on the Recovery of the Hydrophobicity on Silicone Rubber Surfaces. Proceedings of CEIDP. Victoria, Canada, 2000. 373~376
    [93] Berger T, Sundhararajan S, Nagaosa T. Influence of Temperature on the Hydrophobicity of Polymers. Proceedings of CEIDP. 1997. 394~397
    [94] Li Z Y, Zhou Y X, Liang X D, et al. Influence of temperature on the hydrophobicity of silicone rubber surfaces. Proceedings of CEIDP. 2004. 679~682
    [95] Wang X, Liang X D, Zhou Y X. Aging effect of UV radiation on SIR insulators hydrophobicity property. Proceedings of CEIDP. 2004. 241~244
    [96]包建强,龚坚刚.浙江电网合成绝缘子运行使用评估与分析.电力建设,2000,(3):31~34,39
    [97]李政敏,胡琰峰.输变电工程中的复合绝缘子综述.西北电力技术,2006,(2):34~36
    [98]徐喜佑. 110~500kV输电线路合成绝缘子闪络原因分析及对策.中国电力,2000,33(5):54~56
    [99]陈原,张开贤.盐密与憎水性相结合的防污监测.华北电力技术,1998,(3):1~4
    [100]谭捷华,吴光亚.复合绝缘子湿工频电气试验方法的试验研究. 2003,29(8):45~46
    [101]吴旭涛.运行中复合绝缘子憎水性能的影响因素.宁夏电力,2003,(4):45~47
    [102]王彪,陈焕金,陈伟.复合绝缘子积污规律初探.河北电力技术,2003,22(5): 30~32
    [103]中华人民共和国国家发展和改革委员会. DL/T 859-2004.高压交流系统用复合绝缘子人工污秽试验.北京:中国电力出版社,2004
    [104]蒋兴良,张志劲,胡建林,等.高海拔下不同伞形结构750kV合成绝缘子短样交流污秽闪络特性及其比较.中国电机工程学报,2005,25(12):159~164
    [105] Chisholm W A,Ringler K G,Erven C D,et al.The cold-fog test.IEEE Trans. Power Delivery,1996,11(1):1874~1880
    [106] Farzanch M,Baker T,Chisholm W A,et al.Insulator icing test methods and procedures-A position paper prepared by the IEEE task force on insulator icing test methods.IEEE Trans. Power Delivery,2003,18(4):1503~1515
    [107] International Electrotechnical Commission. IEC 507. Artificial pollution tests on high voltage insulators to be used on AC systems. Switzerland, 1991
    [108] Ishii M, Akbar M, Kawamura T. Effect of ambient temperature on the performance of contamination DC insulators. IEEE Trans. on Electrical Insulation, 1984, 19(2): 129~134
    [109] Phillips A J, Childs D J, Schneider H M. Water drop corona effects on full-scale 500kV non-ceramic insulators. IEEE Trans. Power Delivery, 1999, 14(1): 258~265
    [110] Guan Z C, Wang L M, Liang X D, et al. Electric field analysis of water drop corona. IEEE Trans. Power Delivery, 2005, 20(2): 964~969
    [111]肖猛,文曹,司马文霞,等.硅橡胶表面分离水珠放电与不明原因闪络.重庆大学学报(自然科学版), 2006,29(6):42~46
    [112]司马文霞,刘贞瑶,蒋兴良,等.硅橡胶表面分离水珠放电特性的研究.高电压技术,2004,30(2):7~9
    [113]朱德恒,严璋.高电压绝缘.北京:清华大学出版社,1996.7~115
    [114]中国南方电网公司.±800kV直流输电技术研究.北京:中国电力出版社,2006.191~198
    [115] Swift D A, Spellman C, Haddad A. Hydrophobicity transfer from silicone rubber to adhering pollutants and its effect on insulator performance. IEEE Trans. Dielectr. Electr. Insul, 2006,13(4):820~829
    [116]宿志一,范建斌.复合绝缘子用于高压及特高压直流输电线路的可靠性研究.电网技术,2006,30(12):16~23
    [117]崔江流,宿志一,车文俊,等. 2001年初东北、华北和河南电网大面积污闪事故分析.见: http://www.cepee.com,电力设备(杂志网络版). 2001,(4)
    [118]王正旺,庞转棠,李丹萍.气象条件与电力系统线路污闪事故的分析.山西气象,1999,(1):25~27
    [119]程养春,李成榕,王晓刚,等. DL-1型合成绝缘子检测仪现场测试分析.高电压技术,2003,29(5):42~44
    [120]陈耀高,邓敏,林力辉.高压绝缘子在线监测系统简析.电网技术,2001,25(11):83~85
    [121]邵允临,曹晋恩,尚大伟.直升机巡检华北电网超高压输电线路.中国电力,2003,36(7):35~38
    [122] Berg M, Thottappillil R, Scuka V. Hydrophobicity estimation of HV polymeric insulating materials-Development of a digital image processing method. IEEE Trans. Dielectr. Electr. Insul., 2001, 8(6): 1098~1107
    [123]章毓晋.图像工程(中册)-图像分析(第2版).北京:清华大学出版社,2005
    [124] Chen X J, Li C R, Zhao L J, et al. On-line estimating the level of hydrophobicity of composite insulators using the digital images. Proceedings of 2005 Electrical Insulation Conference. Indianapolis, USA, 2005. 216~ 221
    [125] Zhao L J, Li C R, Song W, et al. A way to prepare samples used for hydrophobicity study. Proceedings of ACED2004. Shenzhen, China, 2004. 536~538
    [126]李震宇.污秽地区硅橡胶复合绝缘子长期性能的研究[工学博士学位论文].北京:清华大学,2006
    [127]田丹.高海拔地区10kV合成绝缘子覆冰闪络特性及电压校正研究[工学硕士学位论文].重庆:重庆大学. 2002
    [128]蒋兴良,李名加,司马文霞,等.污湿环境中合成绝缘子憎水性影响因素分析.高电压技术,2002,28(9):5~6,33
    [129]赵林杰,李成榕,陈秀娟,等.潮湿环境中CaSO4对复合绝缘子憎水性的影响.高电压技术,2005,31(7):8~9,54
    [130]王珣.紫外辐射对硅橡胶合成绝缘子老化作用的研究[工学博士学位论文].北京:清华大学,2005
    [131]应伟国.架空送电线路状态检修实用技术.北京:中国电力出版社,2004
    [132]张文亮,于永清,李光范,等.特高压直流试验基地建设.中国电机工程学会高电压专委会学术年会论文集.中国(深圳),2007. T1~T9
    [133] Karady G. The effect of fog parameters on the testing of artificially contaminated insulators in a fog chamber. IEEE Trans. Power Apparatus and Systems, 1975, 94(2): 378~387
    [134]张福林.硅橡胶复合绝缘子护套伞裙表面存在竖直合模缝时的结构性能差异分析.电网技术,2000,24(9):5~7
    [135]喻华玉,徐文澄,沈刚.高压电气设备防污闪及带电清扫技术.北京:中国电力出版社,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700