用户名: 密码: 验证码:
IGFs、LYZ基因和EAV-HP DNA序列SNPs与京海黄鸡经济性状的关联分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以优质肉鸡新品种京海黄鸡为试验材料,利用3个生长曲线模型和4个产蛋曲线模型拟合京海黄鸡生长曲线和产蛋率曲线,分析该品种的生长和产蛋规律;利用PCR-SSCP技术检测IGF1和IGF2基因不同区段的SNPs,首次检测LYZ基因外显子和EAV-HP DNA序列的SNPs,并分析所得SNPs与京海黄鸡部分经济性状之间的关系,为京海黄鸡分子标记辅助选择提供有效的遗传标记;在对单基因标记研究的基础上,对IGF1&IGF2基因和LYZ&gag-env基因进行互作效应分析,合并基因型,对京海黄鸡重要经济性状进行多基因分子标记联合分析,以期为该品种筛选出更准确的遗传标记。主要研究结果如下:
     ⑴京海黄鸡累积生长曲线呈S型,Logistic、Bertalanfy和Gompertz三种模型均能很好的拟合京海黄鸡生长曲线,其中Gompertz模型拟合的效果最好;杨宁模型和分室模型均能很好的拟合京海黄鸡产蛋率曲线,其中杨宁模型拟合度较高,比较适合拟合京海黄鸡的产蛋率曲线。
     ⑵鸡IGF1基因外显子1、2和4未检测到突变,外显子3和5’非编码区存在突变位点,且外显子3属于沉默突变,该突变没有引起氨基酸序列的改变;IGF1基因基因型分布处于Hardy-Weinberg平衡状态,说明京海黄鸡群体遗传性比较稳定,该品种仍具有较大的选育潜力。
     ⑶IGF1基因对京海黄鸡生长性状有重要影响,可以作为遗传标记对鸡的相关性状进行分子标记辅助选择;IGF1基因可能与繁殖数量性状位点有一定的距离,因而与繁殖性状之间的关系可能随着种群、品系和家系的不同而不同。
     ⑷鸡IGF2基因外显子1、2和3均存在突变位点,IGF2基因外显子1和2碱基突变改变了氨基酸序列,外显子3突变属于沉默突变;IGF2基因2对引物基因型分布处于Hardy-Weinberg平衡状态,1对引物基因型分布极不平衡,说明该群体在对某些性状的选育过程中影响到了该基因的随机遗传。
     ⑸IGF2基因对鸡生长性状的影响在不同品种中不同生长发育阶段表现不同。初步推断IGF2基因可能不是鸡繁殖性状的主效基因,但可能与繁殖性状数量位点有一定的连锁关系,在鸡的性成熟、产蛋量和蛋重方面有影响。
     ⑹首次对鸡LYZ基因外显子区域SNPs进行扫描,发现外显子1和2存在同义突变,外显子3和4未检测到突变位点;LYZ基因外显子1基因型分布从不平衡到平衡可能与京海黄鸡的人工选择有关,这也正说明该基因与京海黄鸡重要经济性状有很大关联,外显子2检测到5种基因型,揭示出该群体的遗传多样性十分丰富。
     ⑺鸡LYZ基因与京海黄鸡蛋清中溶菌酶的含量和活力没有显著相关,表示该基因对溶菌酶在蛋清中的表达没有显著影响;通过对京海黄鸡J+和J- 2个品系的研究,首次发现该基因与部分经济性状显著相关,初步推断LYZ基因可能是一个调控鸡生长发育的主基因或与主基因紧密连锁。
     ⑻建立了测定蛋清中溶菌酶含量和活力的标准方法,为家禽蛋清中溶菌酶的测定提供了一套操作性强、易于掌握、结果可靠稳定的途径。
     ⑼首次对鸡EAV-HP DNA序列部分区域进行SNPs扫描,共发现7个多态位点,其中2个位点为沉默突变,5个位点突变造成了氨基酸序列的改变,改变可能会使蛋白结构和生物学功能产生差异,直接或间接影响动物机体的生长发育;京海黄鸡在品系繁育过程中经过了多重人工选择,该基因所处的位置在品系选育目标对应的数量遗传区域内或邻近区域,对两个不同品系所施加的人工选择压无意间改变了基因的随机遗传规律,使基因型在群体中的分布极不平衡。
     ⑽通过基因型&单倍型与京海黄鸡两个品系生长性状的相关性分析,初步认为EAV-HP DNA序列中的gag-env融合基因与鸡生长性状显著相关,且对京海黄鸡两个品系的作用方向不同。
     ⑾京海黄鸡IGF1基因和IGF2基因对0周龄体重、12周龄体重和开产日龄均有互作效应,不同基因型组合间差异显著;LYZ基因和gag-env基因对京海黄鸡8、12和16周龄体重存在互作效应,不同基因型组合间差异显著。
     ⑿单基因基因型分析结果与两基因基因型组合分析结果不完全一样,利用影响经济性状的两个基因的SNPs,甚至更多基因的SNPs进行分子标记辅助育种,比单个基因进行选择的风险小。在京海黄鸡生产上,选留I3* IG1 AA/CC型个体可提高出生重,选留I6*IG1 CC/BB型个体可提高12周龄体重,剔除I6*IG1 DD/BB型个体可减小开产日龄,选留L1*EA6 GA/AC和GA/CC个体可提高12和16周龄体重,选留L2*EA3 TN/AC和L2*EA6 CC/AA、CC/BB、CC/CC、CT/AC个体可提高8周龄体重。
Use of three growth curve models and four egg production curve modles analysed Jinghai yellow chicken growth and laying traits laws. In the first part of the present study, we chose IGF1, IGF2, LYZ genes and EAV-HP DNA sequence as candidate genes for economic traits in Jinghai yellow chicken. To explore the relationship between these genes with economic traits in chicken, single strand conformation (SSCP) analysis and sequencing reactions were performed to screen single nucleotide polymorphisms (SNPs) in Jinghai yellow chicken. In the second part, we analyzed the effects of combined genotypes of different genes involved in IGF1*IGF2 and LYZ*gag-env interaction modes. The main results were as follows:
     ⑴The cululative weight curve of Jinghai yellow chicken was like an“S”line. Logistic, Bertalanfy and Gompertz models well fitted the growth curve of Jinghai yellow chicken, and the Gompertz model fitted best. Yang Ning and McMillan models fitted well in Jinghai yellow chicken egg production curve, and Yang Ning model better.
     ⑵No mutations were detected in exon 1, 2 and 4 of Chicken IGF1gene. Mutations were found in exon 3 and 5’non-coding regions. The mutation in exon 3 was silent mutation, didn’t cause changes in amino aci sequence. Genotype ditributions of IGF1 gene were in Hardy-Weinberg equilibrium, indicating the genetic nature of Jinghai yellow chicken population was relatively stable. The species still had great patential for breeding.
     ⑶The chicken IGF1 gene had a major impact on growth traits of Jinghai yellow chicken, which could be used as a genetic marker in molecular marker-assisted selection on ralated traits. IGF1 gene may be linked with reproductive QTL to a certain distance, thus the relationship with reproductive traits may change with different species, strains and families.
     ⑷Mutations were detected in exon 1, 2 and 3 of chicken IGF2 gene. The mutations of exon 1 and 2 changed amino acid seqence, excluding exon 3 silent. Distribution of genotypes produced by two pairs of primers was in Hardy-Weinberg equilibrium, while by one pair of primers was extremely uneven. This indicated that the seletion process of certain traits affected random genetic of the gene in Jinghai yellow chiken.
     ⑸The effect of IGF2 gene on growth traits differ at different growth stages in different strains of chicken. To be concluded that chicken IGF2 gene might not be the major gene controlling reproductive traits, but might be in a certain linkage with reproductive traits. The chicken IGF2 gene effected sexual maturity, egg producton and egg weight in Jinghai yellow chicken.
     ⑹By SNPs scanning in exon region of chicken LYZ gene, synonymous mutations were detected in exon 1 and 2, excluding in exon 3 and 4. The distribution of genotypes in exon 1 changed from imbalance to balance might be related to artificial selection, which indicated that the chicken LYZ gene had great relevance to important economic traits. Five genotypes were found in exon 2, revealing the genetic diversity was very rich.
     ⑺The chicken LYZ gene did not significantly associated with lysozyme content and enzyme activity in egg white, indicating that the gene had no significant effect on lysozyme expression in egg. The gene was found in significantly relationship with some economic traits of chicken for the first time by study on Jinghai yellow chicken J+ and J- lines. We initially infered that the LYZ gene might be a major gene or closely linked with major gene regulating chicken’growth and development.
     ⑻To provide a feasible, easy, reliable and stable way, a standard method for determining poultry egg white lysozyme content and enzyme activity was established.
     ⑼By scanning for the first time in part of the chicken EAV-HP DNA sequence, SNPs were found in more than seven polymorphic sites, of which two sites as silent mutations, five mutations caused changes in amino acid sequence. Amino acid changes might make protein be different in structure and biological function, and directly of indirectly affected the growth of animal body. The J+ and J- lines of Jinghai yellow chicken were bred by multiple artificial selection process. The location of the gene might be in the target QTL genetic region or adjacent area. Artificial selection pressure imposed on the two different strains inadvertently changed the random inheritance of the gene, so that the distribution of genotypes in the population was extremly uneven.
     ⑽By correlation analysis of genotype&haplotype and growth traits of two strains of Jinghai yellow chicken, We concluded that the gag-env fusion gene of EAV-HP significantly related with chicken growth traits, and the direction of effects differred in J+ and J- strains.
     ⑾Chicken IGF1 and IGF2 genes had interaction on 0-week, 12-week BW and age of first egg in Jinghai yellow chicken. The economic traits of chicken with different genotype combinations were significantly different. Chicken LYZ and gag-env genes had interaction on 8-week, 12-week and 16-week BW in Jinghai yellow chicken.
     ⑿The analysis of single-gene genotype combiantion and two genes with growth traits were not exactly the same. Using SNPs of two genes or more genes for marker-assisted breeding had less risk than using SNPs of a single gene. On Jinghai yellow chicken breeding, selecting I3*IG1 AA/CC individuals could improve birth weight, choosing I6*IG1 CC/BB chicken could increase 12-week BW, excluding I6*IG1 DD/BB individuals could lead to early age of fist egg, saving L1*EA6 GA/AC and GA/CC chicken could increas 12-week and 16-week BW, reserving L2*EA3 TN/AC and L2*EA6 CC/AA, CC/BB, CC/CC, CT/AC individuals could increase 8-week BW.
引文
[1] Rothschild M F, Soller M. Candidate gene analysis to detect genes controlling traits of economic importance in domestic livestock[J]. Probe Newsletter for Agriculture Genomic. 1997, 8: 13-20.
    [2] Atzmon G, Blum S, Feldman M, et al. Detection of agriculturally important QTLs in chickens and analysis of the factors affecting genotyping strategy[J]. Cytogenetic and Genome Research. 2007, 117(4): 327-337.
    [3] Liu X, Li H, Wang S, et al. Mapping quantitative trait loci affecting body weight and abdominal fat weight on chicken chromosome one[J]. Poultry Science. 2007, 86(6): 1084-1089.
    [4] Lamont S J, Kaiser M G, Liu W. Candidate genes for resistance to Salmonella enteritidis colonization in chickens as detected in a novel genetic cross[J]. Veterinary Immunology and Immunopathology. 2002, 87(4): 423-428.
    [5]赵小玲.鸡ADFP和PLIN基因与脂肪组织生长发育关系的遗传学研究[D].四川农业大学, 2008.
    [6] Siegel P B, Dodgson J B, Andersson L. Progress from chicken genetics to the chicken genome[J]. Poultry Science. 2006, 85(12): 2050-2060.
    [7]陈继兰.分子标记辅助选择在家禽育种中的应用[J].中国畜牧兽医. 2004, 31(5): 21-23.
    [8]汪维鹏,倪坤仪,周国华.单核苷酸多态性检测方法的研究进展[J].遗传. 2006, 28(1): 117-126.
    [9]洪坤月.鸡PRL、PRLR、FSH和ESR基因多态性及其与早期产蛋性能关系的研究[D].南京:南京农业大学, 2007.
    [10]马中军,张文举.动物RFLP分子遗传标记及其应用[J].甘肃畜牧兽医. 1997, 27(2): 27-29.
    [11]刘云芳,剡根强,王新峰. RFLP技术在动物遗传育种中的应用[J].内蒙古畜牧科学. 2002(2): 17-19.
    [12]黄海根.牛的变异小卫星和微卫星序列的克隆、结构分析及其应用[D].中国农业大学, 1995.
    [13] Primmer C R, Raudsepp T, Chowdhary B P, et al. Low frequency of microsatellite in the avian genome[J]. Genome Research. 1997, 7: 471-482.
    [14]李桢,储明星,曹红鹤,等.中外11个猪种A-FAB P基因微卫星遗传变异的研究[J].遗传. 2004, 26(4): 473-477.
    [15]吴萍,李奕仁,王金玉,等.应用微卫星标记分析中国地方鸡种的遗传变异[J].生物多样性. 2003, 11(6): 461-466.
    [16]朱庆,李亮.不同地方乌骨鸡种群遗传多样性的微卫星DNA分析[J].畜牧兽医学报. 2003, 34(3): 213-216.
    [17] Schnabel R D, Ward T J, Deer J N. Validation of 15 microsatellites for parentage testing in North American bison, Bison bison and domestic cattle[J]. Animal Genetics. 2000, 31(6): 360-366.
    [18] Rosenberg N A, Berke T, Eol K, et al. Emirical evaluation of genetic clustering methods using multilocus genotypes from 20 chicken breeds[J]. Genetics. 2001, 159: 699-713.
    [19] Zabean M, Vos P. Selective restriction fragment amplification: a general method for DNA fingerprinting[P]. French.
    [20] Vos P, Hogers R, M B, et al. AFLP: A new technique for DNA fingerprinting[J]. Nucleic Acids Research. 1995, 23(21): 4407-4414.
    [21]杜胜利,张桂华,李淑菊,等.黄瓜抗白粉病基因AFLP标记的SCAR转换[J].园艺学报. 2005, 32(6): 1095-1097.
    [22]薄天岳,叶华智,李晓兵,等.亚麻抗枯萎病基因FuJ7(t)的分子标记[J].中国农业科学. 2003, 36(3): 287-291.
    [23]刘锐. LTL作为鸡脂肪性状候选基因分析[D].北京:中国农业大学, 2004.
    [24]周娜娜.优质鸡PRKAG3基因单核苷酸多态性与屠宰性状和肉质性状的相关研究[D].四川农业大学, 2008.
    [25]陈志强.鸡的色素相关基因TYR5'调控区和Agrp的SSCP研究[D].中国农业大学, 2004.
    [26]孟和,王贵华,王启贵,等.鸡PPAR基因单核苷酸多态与脂肪性状相关的研究[J].遗传学报. 2002, 29(2): 119-123.
    [27] Jeffreys A, Wilson V, Thein S. Hypervariable‘minisatellite’rigions in human DNA[J]. Nature. 1985, 314(7): 67-73.
    [28] Kuhnlein U, Dawe Y, Zadworny D, et al. DNA fingerprinting: a tool for determining genetic distances between strains of poultry[J]. Theoretical and Applied Genetics. 1989, 77: 669-672.
    [29] Dunnington E A, Gal O, Siegel P B, et al. Deoxyribonucleic acid fingerprint comparisons between selected populations of chickens[J]. Poultry Science. 1991, 70(3): 463-467.
    [30] Haberfeld A, Dunnington E A, Siegel P B. Genetic distances eatimated from DNA fingerprintsin crosses of White Plymouth Rock chickens[J]. Animal Genetics. 1992, 23(2): 167-173.
    [31] Kuhnlein U, Zadworny D, Dawe Y, et al. Assessment of inbreeding by DNA fingerprinting: development of a calibration curve using defined strains of chickens[J]. Genetics. 1990, 125(1): 161-165.
    [32] Dummington E A, Haberfeld A, Stallard L C, et al. Deoxyribonucleic acid fingerprint bands linked to loci coding for quantitative traits in chickens[J]. Poultry Science. 1992, 71(8): 1251-1258.
    [33] Plotsky Y, Cahaner A, Haberfeld A, et al. DNA fingerprint bands applied to linkage analysis with quantitative trait loci in chickens[J]. Animal Genetics. 1993, 24(2): 105-110.
    [34] Lamont S J, Lakshmanan N, Plotsky Y, et al. Genetic markers linked to quantitative traits in poultry[J]. Animal Genetics. 1996, 27(1): 1-8.
    [35]杜晓惠.鸡多趾候选基因的SNPs及表达差异研究[D].四川农业大学, 2005.
    [36]罗庆斌.鸡热应激蛋白HSP70基因的单核苷酸多态研究[D].四川农业大学, 2004.
    [37]李志辉.鸡IGF2、IGFBP2基因多态性与生长和体组成性状的相关研究[D].东北农业大学, 2003.
    [38] Yoshitakaka K, Deter R. Structure of the chicken insulin-like growth factor I gene reveals conserved promoter elements[J]. Journal of Biological Chemistry. 1992, 266(15): 9724-9731.
    [39] Salmon W D J R, Daughaday W H. A hormonally controlled serum factor which stimulates sulfate incorporation by cartilage in vivo[J]. Journal of Labclinical Medicine. 1957, 49: 825-836.
    [40] Peacock M. Vitamin D receptor gene alleles and osteoporosis: a contrastin view[J]. Journal of Bone Mineral Research. 1995, 10(9): 1294-1298.
    [41] Rosen C J, Kurland E S, Vereault D, et al. Association between serum insulin growth factor-I and a simple sequendce repeat in IGF-I gene: implications for genetic studies of bone mineral density[J]. Journal of Clinical Endocrinology& Metabolism. 1998, 83(7): 2286-2290.
    [42] Klein S, Sang H, Crittenden L B, et al. Genetic and physical mapping of the chicken IGF1 gene to chromosome 1 and conservation of synteny with other vertebrate genomes[J]. Journal of Heredity. 1996, 87(1): 10-14.
    [43] Fawcett D H, Bulfield G. Molecular cloning, sequence analysis and expression of putative chicken insulin-like growth factor I cDNAs[J]. Journal of Molecular Endocrinology. 1990, 4: 201-211.
    [44] Kajimoto Y, Rotwein P. Structure of the chicken Insulin-like growth factor I gene reveals conserved promoter elements[J]. Journal of Biological Chemistry. 1991, 266(15): 9724-9731.
    [45] Twigg S M, Baxter R C. Insulin-like growth factor (IGF)-binding protein 5 forms an alternative ternary complex with IGFs and the acidlabile subunit[J]. Biological Chemistry. 1998, 273(11): 6074-6079.
    [46] Froesch E R, Schmid C, Schwander J, et al. Actions of insulin-like growth factors[J]. Annual Review of Physiology. 1985, 47: 443-467.
    [47] Olchovsky D, Bruno J F, Gelato M C, et al. Pituitary insulin-like growth factor-1 content and gene expression in the streptozotocin-diabetic rat: evidence for tissue-specific regulation[J]. Endocrinology. 1991, 128(2): 923-928.
    [48]张根华,陈伟华,赵茹茜,等.肉鸡和蛋鸡早期发育阶段胰岛素样生长因子水平的比较[J].南京农业大学学报. 1997, 20(4): 71-74.
    [49]闵令江,潘庆杰,陈宏,等.寿光鸡IGF-I基因多态性与体重及屠体性状关系到研究[J].畜牧兽医学报. 2005, 36(7): 645-648.
    [50]吕勇刚,陈蕤.胰岛素样生长因子2研究进展[J].中国医学文摘-肿瘤学. 2000, 14(2): 163-164.
    [51]李瑗.胰岛素样生长因子2与人及实验动物的肝细胞癌[J].临床与实验病理学杂志. 1998, 14(5): 500-501.
    [52] Vasilatos-Youngken R, Scanes C G. Growth hormone and insulin-like in poultry growth: required, optimal of neffective[J]. Poultry Sciences. 1991, 70(8): 1764-1780.
    [53] Lee J E, Pintar J, Efstratiadis A. Pattern of the insulin-like growth factor II gene expression during early mouse embryogenesis[J]. Development. 1990, 110(1): 151-159.
    [54] Stylianopoulou F, Efstratiadis A, Herbert J, et al. Pattern of insulin-like growth factor II gene expression during rat embryogenesis[J]. Development. 1988, 103(3): 497-506.
    [55] Darlin D C, Brickell P M. Nucleotide sequence and genomic structure of the chicken insulin-like growth factor-II(IGF-II) coding region[J]. General and Comparative Endocrinology. 1996, 102(3): 283-287.
    [56] Dechiare T M, Robertson E J, Efstratiadis A. Parental imprinting of the mouse insulin-like growth II gene[J]. Cell. 1991, 64(4): 849-859.
    [57] Gerrard D E, Okamura C S, Ranalletta M A, et al. Developental experssion and location ofIGF-I and IGF-II mRNA and protein in skeletal muscle[J]. Journal of Animal Sciences. 1998, 76(4): 1004-1011.
    [58] Weber M M, Fottner C, Wolf E. The role of the insulin-like growth factor systerm adrenocortical tumourigenesis[J]. European Journal of Clinical Investigation. 2000, 30(3): 69-75.
    [59]高珊,毛萌.胰岛素样生长因子与生长发育的研究进展[J].国外医学儿科学分册. 2004, 31(5): 269-271.
    [60] Florini J R, Ewton D Z, Falen S L, et al. Biphasc concentration dependency of stimulation of myoblastdifferentiation by somatomedins[J]. American Physiology Society. 1986, 250(5): 771-778.
    [61] Scanes C G, Thommes R C, Radecki S V, et al. Ontogenic changes in the circulating concentrations of insulin-like growth factor and IGF-binding proteins in the chicken embryo[J]. General and Comparative Endocrinology. 1997, 106(2): 265-270.
    [62]方元超,梅丛笑,伊宁.溶菌酶及其应用前景[J].中国食品添加剂. 1999(4): 39-43.
    [63]陈慧英,吴晓英,林影.溶菌酶分离纯化方法的研究新进展[J].广东药学院学报. 2003, 19(4): 356-358.
    [64]刘仲敏,何伯安.溶菌酶及其在食品工业中的应用[J].食品与发酵工业. 1995(5): 80-82.
    [65]李宗孝,原春兰,张建超.蛋清中溶菌酶的提取研究[J].精细化工. 2001, 18(2): 103-105.
    [66]戴清源,陈祥贵,李晓霞,等.溶菌酶的研究进展[J].内蒙古农业科技. 2005(3): 14-16.
    [67]张灏,赵玉萍,杨严俊,等.超滤法提取蛋清溶菌酶[J].无锡轻工大学学报. 2002, 21(6).
    [68]张珍田,陈良惠,宋贤一.利用超过滤法纯化鸡蛋白溶菌酶之研究[J].中国农业化学会志. 1986, 24(1): 86-93.
    [69] Dekker M, Riet H, Laane C. Isolating enzymes by reversed micelles[J]. Analytical Biochemistry. 1989, 178(2): 217-226.
    [70] Takaki H, Toibana A, Marumoto R, et al. Expression of human lysozyme in an insoluble form in yeast[J]. Gene. 1987, 56(1): 53-59.
    [71]钱世钧,于颖,田开荣,等.人溶菌酶基因的合成和克隆[J].生物工程学报. 1994, 10(1): 34-38.
    [72]张勃伟,权富生,赛务加浦,等.人溶菌酶基因真核表达载体构建及其在牛乳腺上皮细胞中的表达[J].西北农业学报. 2008, 17(1): 11-14.
    [73]权志中,张丞斌,余荣,等.鸡蛋清溶菌酶基因的克隆及其在毕赤酵母中的表达研究[J].饲料工业:酶制剂. 2007, 28(24): 18-22.
    [74]许罕华,Phi-Van Loc.鸡溶菌酶基因3ˊ端MAR在同源细胞系对基因表达调控的研究[J].中国兽医学报. 1996, 16(3): 212-217.
    [75]陶勇,任善茂,懂晓君,等.禽内源性逆转录病毒[J].猪与禽. 2007, 27(6): 41-44.
    [76] Bai J, Payne L N, Skinner M A. HRPS-103(exogenous avian leukosis virus, subgroup J) has an env gene rekated to those of endogenous elements EAV-0 and E51 and an E element found previously only in sarcoma viruses[J]. Journal of Virology. 1995, 69(2): 779-784.
    [77] Smith L M, Howes K, Bumstead N, et al. Novel endogenous retroviral sequences in the chicken genome closely related to HPRS-103 avian leukosis virus[J]. Journal of General Virology. 1999, 80(1): 261-268.
    [78] Sacco M A, Flannery D M, Howes K, et al. Avian endogenous retrovirus EAV-HP shares region of identity with avian leukosis virus subgroup J and the avian retrotransposon ART-CH[J]. Journal of Virology. 2000, 74(3): 1296-1306.
    [79] Sacco M A, Howes K, Simith L P, et al. Assessing the roles of endogenous retrovirus EAV-HP in avian leukosis virus subgroup J emergence and tolerance[J]. Journal of Virology. 2004, 78(19): 10525-10533.
    [80] Venugopal K. Avian leukosis virus subgroup J: a rapidly evolving group of oncogenic retroviruses[J]. Res. Vet Sci. 1999, 67(2): 113-119.
    [81] Sacco M A, Howes K, Venugopal K. Intact EAV-HP endogenous retrovirus in Sonnerat’s jungle fowl[J]. Journal of Virology. 2001, 75(4): 2029-2032.
    [82] Sacco M A, Venugopal K. Segregation of EAV-HP ancient endogenous retroviruse within the chicken population[J]. Journal of Virology. 2001, 75(23): 11935-11938.
    [83]杨燕.京海黄鸡分子标记与生长及屠宰性状关系的研究[D].扬州:扬州大学, 2007.
    [84]陶勇. MC4R、POU1F1基因多态性及其与京海黄鸡生长、屠宰性状关系的研究[D].扬州大学, 2008.
    [85] Kwakkel R P, Ducro B J, Koops W J. Multiphasic analysis of growth of the body and its chemical components in White Leghorn pullets[J]. Poultry Science. 1993, 72(8): 1421.
    [86]田亚东,蔡辉益,刘国华,等.肉仔鸡生长和胴体、羽毛蛋白质沉积模型的建立[J].畜牧兽医学报. 2006, 37(10): 1003-1008.
    [87]张海波,段修军,张依裕,等.白羽番鸭生长曲线拟合比较分析[J].中国畜牧兽医. 2009, 36(2): 148-151.
    [88]冯敏山,高山林,杨增芳,等. AA父母代肉鸡产蛋曲线的数学模型分析[J].中国家禽学报. 2003, 7(1): 20-21.
    [89]杜文兴.蛋鸡产蛋率分布规律的研究[J].畜牧与兽医. 1994, 26(6): 262-263.
    [90]杨翠军,葛剑,谷子林.不同性别河北柴鸡早期生长规律及其生长曲线拟合[J].基因组学与应用生物学. 2009, 28(5): 929-933.
    [91]张录强,杨振才,孙儒泳.红腹锦鸡(Chrysolophus pictus)生长曲线分析[J].北京师范大学学报(自然科学版). 2002, 38(4): 549-553.
    [92]赵文明,陈清,程金花,等.我国部分地方鹅品种早期生长发育模型参数的估计[J].扬州大学学报(农业与生命科学版). 2007, 28(3): 47-50.
    [93]魏法山,韩瑞丽,康相涛,等.不同性别固始鸡生长曲线的分析[J].河南畜牧兽医. 2005, 26(6): 4-5.
    [94]习克奇,王长青.蛋鸡笼养技术大全[M].北京:中国农业科技出版社, 1998.
    [95]王金玉,龚允陈,陈国宏.鸡的DNA指纹与屠宰性能的相关性研究[J].遗传学报. 1999, 26(4): 324-328.
    [96]盛浩伟,王金玉,戴国俊,等.新扬州鸡DNA指纹J带与生产性能的相关性研究[J].生物技术. 2004, 14(3): 18-19.
    [97]张鹏,顾玉萍,王金玉,等.京海I号黄鸡DNA指纹中J带与体重的相关性研究[J].中国家禽. 2004, 8(1): 149-151.
    [98]朱志明,强巴央宗,朱猛进,等.藏鸡生长曲线拟合和分析的比较研究[J].中国农业科学. 2005, 39(10): 2159-2162.
    [99]杨海明,徐琪,戴国俊.禽类三种常用生长曲线浅析[J].中国家禽. 2004, 8(1): 164-166.
    [100]杜德英,吴蓉蓉,朱文奇,等.文昌鸡生长曲线拟合的研究[J].家禽科学. 2008(10).
    [101]张红,龚道清,张军,等.溧阳鸡生长曲线分析与拟合的研究[J].畜牧与兽医. 2006, 38(2).
    [102]王存芳,张劳,李俊英,等.平原饲养的藏鸡体形外貌分析和生长模型拟合的研究[J].中国农业科学. 2005, 38(5): 1065-1068.
    [103]杨燕,王金玉,王丽云,等.京海黄鸡生长模型拟合的研究[J].畜牧与兽医. 2007, 39(6).
    [104]张力.闽南火鸡生长特性的研究[J].家禽生态. 2002, 23(3): 27-29.
    [105]樊月钢,叶树真.肉用仔鸡生长曲线的拟合及最大经济效益点的研究[J].中国畜牧杂志. 1994(3): 30-31.
    [106] McMillan I. Compartmental model analysis of poultry egg production curve[J]. PoultryScience. 1981, 60: 1549-1551.
    [107] Gavora J S, Liljedahl L E, Mcmillan I, et al. Comparison of three mathematical models of egg production[J]. British Poultry Science. 1982, 23(4): 339-348.
    [108]杨宁.现代养鸡生产[M].北京:中国农业大学出版社, 1994.
    [109]王祖铭.应用多项式回归模拟鸡产蛋曲线的研究[J].贵州农业科学. 1996, 2: 44-47.
    [110]史宪伟.蛋鸡产蛋曲线的数学模型研究[J].云南农业大学学报. 1993, 8(1): 31-36.
    [111]杨宁.家禽产蛋曲线数学模型的改进研究[Z]. 1987.
    [112]卢立志,陈海燕,傅衍,等. Wood模型拟合鸭产蛋曲线效果的研究[J].浙江大学学报. 2002, 28(4): 423-426.
    [113] Onagbesan O M, Vleugels B, Buys N, et al. Insulin-like growth factors in the regulation of avian ovarian fuctions[J]. Domestic Animal Endocrinology. 1999, 17(2-3): 299-313.
    [114] Florini J R, Ewton D Z, Coolican S A. Growth hormone and the insulin-like growth factor system in myogenesis[J]. Endocrine Reviews. 1996, 17(5): 481-517.
    [115] Mcmurtry J P, Francis G L, Upton Z. Insulin-like growth factors in poultry[J]. Domestic Animal Endocrinology. 1997, 14(4): 199-229.
    [116] Mcguinness M C, Cogburn L A. Measurement of developmental changes in plasma insulin- like growth factor-I levels of broiler chickens by radioreceptor assay and radioimmunoassay[J]. General and Comparative Endocrinology. 1990, 79(3): 446-458.
    [117] Beccavin C, Chevalier B, Cogburn L A, et al. Insulin-like growth factors and body growth in chickens divergently selected for high of low growth rate[J]. Journal of Endocrinology. 2001, 168(2): 297-306.
    [118] Pym R A, Johnson R J, Etse D B, et al. Inheritance of plasma insulin-like growth factor-I and growth rate, food intake, food efficiency and abdominal fatness in chickens[J]. British Poultry Science. 1991, 32(2): 285-293.
    [119] Bacon W L, Nestor K E, Emmerson D A, et al. Circulating IGF-I in plasma of growing male and female turkeys of medium and heavy weight lines[J]. Domestic Animal Endocrinology. 1993, 10(4): 267-277.
    [120]李长春,李进,李逵,等.藏鸡IGF-I基因的SNPs检测及与生长性状的关联分析[J].畜牧兽医学报. 2005, 36(11): 1111-1116.
    [121]欧阳建华,孙汉,李海华,等.鸡IGF-1基因的遗传多态性与繁殖性状的相关研究[J].江西畜牧兽医杂志. 2003, 34(6): 525-529.
    [122]吴旭,王金玉,严美娇,等. GNRHR、IGF1基因对文昌鸡繁殖性状的遗传效应分析[J].畜牧兽医学报. 2007, 38(1): 31-33.
    [123]刘大林,王金玉,魏岳,等.京海黄鸡IGF-I基因与生长和屠体性状的关联分析[J].中国畜牧杂志. 2009, 45(11).
    [124]沈华.黄羽肉鸡IGF-I基因多态性与生产性能的关系[D].扬州大学, 2006.
    [125]沈华,王金玉.黄玉肉鸡IGF-1基因单核苷酸多态性与生长性状的相关研究[J].中国畜牧兽医. 2006, 33(10): 58-60.
    [126]王强.鸡IGF-I基因PCR-SSCP分析及其与肉用性状关系的研究[D].扬州:扬州大学, 2006.
    [127] Tomas F M, Knowles S E, Owens P C, et al. Insulin-like growth factor I(IGF-I) and especially IGF-I variants are anabolic in dexamethasone-treated rats[J]. Biochemical Journal. 1992, 282(1): 91-97.
    [128] Nagaraja S C, Aggrey S E, Yao J, et al. Trait association of a genetic marker near the IGF-I gene in egg-laiying chickens[J]. Journal of Heredity. 2000, 91(2): 150-156.
    [129] Amills M, Jimemea N, Villalba D, et al. Identification of three single nucleotide polymorphisms in the shicken insulin-like growth factor 1 and 2 genes and their associations with growth and feeding traits[J]. Poultry Science. 2003, 82(10): 1486-1493.
    [130] Nie Q H, Lei M M, Ouyang J H, et al. Identification and characterization of single nucleotide polymorphisms in 12 chicken growth-correlated genes by denaturing high performance liquid chromatography[J]. Genetic Selection Evolution. 2005, 37(3): 339-360.
    [131]范刚. IGF-1基因5’非编码区多态性与新扬州鸡早期生长和产肉性能的关系研究[D].扬州:扬州大学, 2005.
    [132]王金玉,陈国宏.数量遗传与动物育种[M].东南大学出版社.
    [133]魏笑笑,王宝维,王雷,等.琅琊鸡IGF-I基因多态性与肉用性的相关性[J].福建农林大学学报. 2008, 37(4): 389-393.
    [134]欧阳建华,孙汉,李海华,等.鸡胰岛素样生长因子-1基因的遗传多态性与其体重的关系[J].畜牧兽医学报. 2003, 34(6): 525-529.
    [135] Seo D S, Yun J S, Kang W J, et al. Association of insulin-like growth factor-1 gene polymorphism with serum IGF-1concentration and body weight in Korea Native Ogol chicken J [J].Asian-Australian Journal of Animimal Science. 2001, 14(7): 915-921.
    [136]王志跃,范刚,杨海明,等.新扬州鸡IGF-1基因多态性与早期生长速度关系的研究[J].中国家禽. 2004, 26(24): 9-12.
    [137] Kuhnlein U, Ni L, Weigend S, et al. DNA polymorphisms in the chicken growth hormone gene: reponse to selection for disease resistance and association with egg production[J]. Anima Genetics. 1997, 28(2): 116-123.
    [138]葛洪伟.文昌鸡GHR基因,ESR基因和IGF-I基因与产蛋性能的相关性研究[D].扬州大学, 2007.
    [139]万秋蓓,王志跃,杨海明,等.新扬州鸡IGF-1基因5’调控区PstI位点多态性与繁殖性状关系的研究[J].中国畜牧杂志. 2007, 43(21): 1-4.
    [140]万秋蓓,王志跃,朱金金,等.新扬州鸡IGF-1基因5’调控区Hinf I位点多态性与产蛋性状关系的研究[J].扬州大学学报. 2007, 28(2): 24-27.
    [141] Schafer A J, Hawkins J R. DNA variation and the future of human genetics[J]. Nature Biotechnology. 1998, 16: 33-39.
    [142] Weiss K M, Terwilliger J D. How many disease does it take to map a gene with SNPs[J]. Nature Genetics. 2000, 26: 151-157.
    [143]徐晶.吉林白鹅IGFII基因SNP及其与肉用性状相关性的研究[D].吉林农业大学, 2007.
    [144]颜炳学,李宁,邓学梅,等.鸡类胰岛素生长因子-II基因单核苷酸多态与生长、屠体性状相关性的研究[J].遗传学报. 2002, 29(1): 30-33.
    [145] Nezer C, Morear L, Brouwers B, et al. An imprinted QTL with major effect on muscle mass and fat deposition maps to the IGF2 locus in pigs[J]. Nature Genetics. 1999, 21: 155-156.
    [146] Jeon J T, Carlborg O, Tornsten A, et al. A paternally expressed QTL affecting skeletal and cardiac muscle mass in pigs maps to the IGF2 locus[J]. Nature Genetics. 1999, 21: 157-158.
    [147]李其松.京海黄鸡IGF2的SNP及与生产性能的相关性[D].扬州大学, 2006.
    [148]李志辉,王启贵,赵建国,等.类胰岛素生长因子II(IGF2)基因多态性与鸡体脂性状的相关性研究[J].中国农业科学. 2004, 37(4): 600-604.
    [149]王根宇,颜炳学,邓学梅,等. IGF2基因对鸡生长及屠体性状的影响及印记状况的研究[J].中国科学C辑生命科学. 2004, 34(5): 429-435.
    [150]王聪明,张嘉保,赵志辉,等.松辽黑猪胰岛素样生长因子II基因PCR-SSCP多态性分析[J].畜牧与兽医. 2008, 40(11): 29-31.
    [151]虞德兵.猪IGF-II基因变异对猪生长性状及肌肉发育相关基因表达的影响[D].南京:南京农业大学, 2007.
    [152]刘鑫,施启顺,柳小春,等.不同猪种IGF2基因PCR-RFLP多态性与部分生长性状相关性分析[J].湖南农业大学学报(自然科学版). 2006, 32(1): 63-66.
    [153] Li B, Calvo E, Marinotti O, et al. Characterization of the c-type lysozyme gene family in Anopheles gambiae[J]. Gene. 2005, 360(2): 131-139.
    [154] Jolles P, Jolles J. What’s new in lysozyme research?[J]. Mol Cell Biol. 1984, 63: 165-189.
    [155] Baldacci P, Royal A, Cami B, et al. Isolation of the lysozyme gene of chicken[J]. Nucleic Acids Research. 1979, 6(8): 2667-2681.
    [156]宋有涛,于媛媛,欣李,等.人和鸡溶菌酶结构保守性的对比研究[J].辽宁大学学报. 2009, 36(2): 97-99.
    [157] Yazaki M, Farrell S A, Benson M D. A novel lysozyme mutation Phe57Ile associated with hereditary renal amyloidosis[J]. Kidney Intenational. 2003, 63: 1652-1657.
    [158] Valleix S, Drunat S, Philit J B, et al. Hereditary renal amyloidosis caused by a new variant lysozyme W64R in a French family[J]. Kidney Intenational. 2002, 61(3): 907-912.
    [159] Pepys M B, Hawkins P N, Booth D R, et al. Human lysozyme gene mutations cause hereditary systemic amyloidosis[J]. Nature. 1993, 362: 553-557.
    [160]朱奇,陈彦.溶菌酶及其应用[J].生物学通报. 1998, 33(10): 9-10.
    [161]姜馗.蛋清溶菌酶提取技术的研究[D].北京:中国农业大学, 2005.
    [162]林翠花,肖素荣,孟庆国.溶菌酶结构特点及其应用[J].潍坊学院学报. 2005, 5(2): 108-110.
    [163]陈茜.新型牛溶菌酶基因的重组真核质粒构建及活性研究[D].四川大学, 2007.
    [164]盛志廉,陈瑶生.数量遗传学[M].北京:科学出版社, 1999.
    [165]内蒙古农牧学院主编.家畜育种学[M].北京:中国农业出版社, 2000.
    [166]张世卿,朱忠珂,王明成,等.玉米-豆粕日粮添加溶菌酶对肉仔鸡生长性能、代谢及免疫指标的影响[J].动物营养学报. 2008, 20(4): 463-468.
    [167]卢亚萍,张赛夫,潘宏涛.一种特殊溶菌酶对肉仔鸡生长性能的影响[J].饲料研究. 2007, 5: 71-72.
    [168] Zhang S, Li H, Shi H. Single marker and haplotype analysis of the chicken apolipoprotein B gene T123G and D9500D9- polymorphism reveals association with body groth and obesity[J].Poultry Science. 2006, 85(2): 178-180.
    [169] Cui J X, Du H L, Liang Y, et al. Association of polymorphisms in the promoter region of chicken prolactin with egg production[J]. Poultry Science. 2006, 85(1): 26-31.
    [170] Andersson M L, Lindeskog M, Medstrand P, et al. Diversity of human endogenous retrovirus class II-like sequences[J]. Journal of General Virology. 1999, 80: 255-260.
    [171] Nichol S. RNA viruses. Life on the edge of catastrophe[J]. Nature. 1996, 384(6606): 218-219.
    [172] Benkel B F, Gavora J S. A novel molecular fingerprint probe based on the endogenous avian retroviral element(EAV) of chickens[J]. Animal Genetics. 1993, 24(6): 409-413.
    [173]杨玉莹. J亚群禽白血病病毒研究进展[J].中国病毒学. 2003, 18(1): 93-97.
    [174]邢辉,梁浩,洪坤学,等.我国HIV-1主要流行株外膜蛋白(env)基因V3-V4区变异及其与生物学特性的关系[J].中华微生物学和免疫学杂志. 2005, 25(3): 185-189.
    [175]邢晓为,薛立群,黄生强,等.湖南沙子岭猪内源性逆转录病毒的研究[J].遗传. 2006, 28(7): 799-804.
    [176]姜拥军,尚红,康辉,等.人免疫缺陷病毒I型gag、env、rev mRNA检测[J].中华检验医学杂志. 2002, 25(5): 296-298.
    [177]毛春生,金宁一,佟明华,等.人I型免疫缺陷病毒gag-env嵌合基因在重组痘苗中的表达[J].生物工程进展. 2000, 20(4): 26-29.
    [178]韩保光,孟莉,宋晓国,等.重组HIV-1 Gag/Env融合抗原在大肠杆菌中的表达及免疫学分析[J].细胞与分子免疫学杂志. 1999, 15(2): 84-87, 147.
    [179]陈勇. 8个绵羊品种(品系)多羔性候选基因多态性的研究[D].新疆农业大学, 2009.
    [180]束婧婷.鸡肌苷酸相关候选基因遗传效应及表达规律研究[D].扬州大学, 2008.
    [181]束婧婷,吉文林,包文斌,等.鸡ADSL基因和GARS-AIRS-GART基因对鸡肉肌苷酸(IMP)含量的影响[J].畜牧兽医学报. 2007, 38(8): 786-791.
    [182]俞亚波.骨调素和钙调素基因对京海黄鸡重要经济性状遗传效应的研究[D].扬州大学, 2009.
    [183]陈娟,姚裕家.胰岛素样生长因子与生长发育[J].中华围产医学杂志. 1999, 2(2): 126-128.
    [184] Hanrahan J P, Gregan S M, Mulaant P, et al. Mutations in the genes for oocyte-derived growth factors GDF9 and BMP15 are associated with both increased ovulation rate and sterility in Cambridge and Belclare sheep(Ovis aries)[J]. Biology Repord. 2004, 70(4): 900-909.
    [185]李婧.民猪产仔数候选基因研究[D].哈尔滨:东别农业大学, 2003.
    [186]叶丹,连宾.溶菌酶及其应用[J].贵州科学. 2003, 21(3): 67-70.
    [187]张勇,温其标,胡飞.溶菌酶及其食品工业中的应用[J].粮油加工与食品机械. 2004(3): 64-65.
    [188]张文会,王艳辉,马润雨.离子交换法提取鸡蛋清溶菌酶[J].食品工业科技. 2003, 24(6): 57-59.
    [189] Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding[J]. Analytical Boichemistry. 1976, 72: 248-254.
    [190] Bezemer J M, Radersma R, Grijpma D W, et al. Zero-order release of lysozyme from poly (ethylene glycol)/ poly(butylenes terephthalate) matrices[J]. Journal of Control Release. 2000, 64(1-3): 179-192.
    [191]曾经译.生物药物分析(第二版)[M].北京:北京医科大学/中国协和医科大学联合出版社出版, 1998.
    [192] Li-Chan E, Nakai S, Sim J, et al. Lysozyme seperation from egg white by cation exchange column chromatography[J]. Journal of Food Science. 1986, 51(4): 1032-1036.
    [193] Owen R O, Chase H A. Direct purification of lysozyme using continuous counter—current expanded bed absorption [J]. Journal of Chromatography A. 1997, 757(1-2): 41-49.
    [194]杨景芝,孙衍华,白吉刚,等.鸡蛋清溶菌酶提取工艺的改进[J].食品与发酵工业. 2004, 30(5): 85-87.
    [195]韩冷,韩妙君,冯婷.不同来源溶菌酶的性质比较[J].氨基酸和生物资源. 2004, 26(3): 73-75.
    [196]迟玉杰,高兴华,孔保华.鸡蛋清中溶菌酶的提取工艺研究[J].食品工业科技. 2002, 23(3): 44-46.
    [197]朱秋菊,孙怀昌,李国才,等.人溶菌酶活性两种检测方法的比较研究[J].扬州大学学报. 2005, 26(1): 27-29.
    [198]李德海,迟玉杰.溶菌酶活力的简易测定[J].中国乳品工业. 2002, 30(5): 128-129.
    [199]施特尔马赫(著),嘉渊(译).酶的测定方法[M].北京:中国轻工业出版社, 1992.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700