用户名: 密码: 验证码:
HPV58mE6E7融合基因疫苗构建及其免疫效果的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
子宫颈癌是常见的妇科恶性肿瘤之一,发病率在女性恶性肿瘤中居第二位。据世界范围内统计,每年大约有50万左右的宫颈癌新发病例,其中80%的病例发生在发展中国家。我国每年有新发病例约13.15万,占世界宫颈癌新发病例总数的28.8%。近10余年来以大规模人群为基础的流行病学资料显示:在99%以上的宫颈癌中存在HPV DNA, HPV感染是宫颈癌发生的首要因素且为始动因素。由于几乎所有宫颈癌细胞中都有HPV DNA和病毒转化蛋白的表达,HPV病毒蛋白可作为一种抗原刺激机体产生针对HPV的免疫反应,这就促使人们希望通过疫苗的方法来治疗和预防宫颈癌。由于各型HPV之间没有交叉保护作用而HPV基因型的分布又存在地域差异,并且目前尚无关于广西地区宫颈癌HPV感染分子流行病学的详细报道。为使本地区疫苗研制更具有针对性,我们对广西地区HPV感染情况、基因型分布以及感染率高的HPV基因型病毒负载量进行了调查,拟提供一份比较可信的的资料,为广西HPV疫苗研制提供有力的依据。
     我们采用以PCR测序为基础的方法检测了135例宫颈癌确诊病人的宫颈组织DNA。结果显示:133例宫颈癌病人感染了HPV,感染率98.52%。感染HPV16、18、31、33、35、45、52、58、59型的患者分别为125、76、17、0、0、1、2、63、5例,感染率分别为:93.98%、57.14%、12.78%、0、0、0.75%、1.50%、47.37%、3.76%,其中感染率排在前三位的是16、18和58型。通过real-time Q-PCR对HPV16、18和58型进行定量检测,三者的病毒负载量均值分别为7.89×109、9.55×103和2.38×10。HPV16型的病毒负载量明显高于18和58型(P值<0.05),而HPV18型的病毒负载量与58型比较无显著差异(P值>0.05)。
     由于HPV58型在广西的感染率非常高,因此,研制HPV58型疫苗非常必要。HPV58 E6和E7基因作为癌转化蛋白,能在HPV58(+)肿瘤中将病毒DNA整合到细胞染色体中并持续表达E6、E7蛋白,使宿主细胞向恶性方向转化。尽管如此,E6和E7蛋白作为持续存在病毒抗原,却能刺激机体产生较强的以病毒抗原为靶分子的特异性CTL。因此,E6、E7作为一种较理想的肿瘤相关抗原,适用于免疫治疗和预防与HPV58感染导致的宫颈癌的免疫治疗,但前提是必须消除E6、E7基因的转化活性以保证疫苗的安全性。因此,我们在构建疫苗之前,对E6和E7基因的6个转化活性位点进行了点突变,以消除转化活性而保留免疫原性。在证实已消除了HPV58mE6E7(突变后)融合基因转化活性的基础上,将其与人IgG Fc段融合在一起形成HPV58mE6E7-Fc,在其前端加上信号肽,后端加上膜锚定蛋白GPI,使上述肿瘤抗原能够锚定在细胞膜上表达。最后将sig-HPV58mE6E7Fc-GPI片段插入我室前期构建的能够融合表达GM-CSF和B7.1蛋白的真核表达载体PVAX1-IRES-GM/B7的IRES上游,构建了PVAX1-HPV58mE6E7FcGB疫苗。使该疫苗在表达上游融合抗原的同时,又能表达下游的GM-CSF和B7.1分子,以此来增进疫苗的协同免疫作用。随后,我们又构建了稳定表达HPV58E6E7融合基因的小鼠黑色素瘤B16-HPV58E6E7细胞系,原核表达并纯化了HPV58E6E7-GST融合蛋白抗原,为后续动物实验奠定基础。
     动物实验中,我们采用肌肉注射加在体局部电脉冲的方法,将前期构建的P VAX 1-HP V58mE6E7FcGB融合基因疫苗免疫C57BL/6小鼠。结果表明,经疫苗免疫后的小鼠,对HPV58E6E7(+)肿瘤的攻击具有免疫保护作用。在抗肿瘤移植保护实验中,疫苗组小鼠皮下接种的成瘤潜伏期时间长于对照组(P<0.05)。在肿瘤生长抑制实验中,疫苗组小鼠肿瘤生长速度较对照组明显减慢,最终使小鼠生存期延长,平均瘤重低于对照组(P<0.05)。研究结果还证实经疫苗免疫的小鼠,可诱发血清特异性抗体,抗体滴度最高可达1:25600,与对照组比较,差异有显著性(P<0.05)。ELISPOT可以检测到重组抗原HPV58E6E7-GST蛋白诱导的特异性、分泌IFN-γ的效应T细胞,疫苗组小鼠ELISPOT的斑点数明显多于单独抗原组(P     为提高疫苗的免疫效果,我们随后将分子佐剂更换为hIL12,构建了PVAX1-HPV58mE6E7Fc-hIL 12疫苗并实现了真核表达,准备进行动物实验。
     总之,我们在对广西HPV感染分子流行病学调查的基础上构建并表达了的PVAX1-HPV58mE6E7FcGB融合基因疫苗,对免疫后小鼠能够产生有效的体液免疫和细胞免疫,可以作为HPV58(+)宫颈癌及其癌前病变的免疫治疗的候选疫苗,对于清除HPV58型感染相关的肿瘤细胞、阻止病变的发展将有一定的临床价值。
Cervical carcinoma is one of the common gynecological malignancies, which incidence is the second in the female malignant tumor. According to statistics, there are about 50 million new cases of cerical carcinoma in worldwide annually, including 80% of cases will take place in developing countries. Our new cases a year, accounting for 13.15 million, approximately 28.8% of total, new cases of cerical carcinoma in the world Nearly 10 years, epidemiological data based with large cases shows:HPV DNA exists in 99% of cerical carcinoma cases. HPV infection is the primary factor which results in cervical carcinoma and CIN. Almost all cerical carcinoma cells exist HPV DNA and protein. HPV transformation protein can be used as one kind of antigen to stimulate the immune response against HPV. People hope through HPV vaccine to prevent and treat cerical carcinoma. No cross immunoprotection between various HPV genotypes, pertinence is necessary to develop HPV vaccine. Without detailed epidemiology reports about guangxi HPV infection, developing HPV vaccine is blind. To enable pertinence of Guangxi HPV vaccine, we researched the region of HPV genotype in Guangxi and provided a credible information as a strong basis of Guangxi HPV vaccine development
     We adopted PCR and sequencing methods to test 135 cases of diagnosed cervical carcinoma tissue DNA. The results showed:98.52% of 133 cases cervical carcinoma patients infected HPV. Patients infected HPV16,18,31,33,35,45,52,58,59 types were 76,17,125 0,0,1,2,63,5, respectively. Infection rates of the 9 types are 93.98%, 57.14%,12.78%,0,0,0.75%,1.50%,47.37% and 3.76%, respectively. Type 16,18 and 58 rank 1,2,3. Quantitative detection by real-time Q-PCR, average virus load of types HPV 16,18 and 58 are 7.89 x 109,9.55 x 103 and 2.38 x 10, respectively. Virus load of type HPV 16 is obviously higher than types 18 and 58 (P<0.05), and the difference of virus load of types HPV18 and 58 was no significant values (P>0.05).
     Because infection rate of type HPV58 in guangxi is very high, developing type HPV58 vaccine is very necessary. As transformation protein of type HPV58, E6 and E7 gene can integrate HPV DNA in HPV58(+) tumor cells chromosomes and continuously express E6 and E7 protein, which make host cells transform to malignant direction. However, E6 and E7 protein as persistent viral antigens, it can stimulate body to produce strong CTL to HPV58. Therefore, HPV58 E6, E7 as two ideal tumor antigens, are suitable for immunotherapy and prevention for HPV58 (+) cerical carcinoma and CIN, but the prerequisite is that you must eliminate transformation activity of E6 and E7 gene to ensure the safety of vaccine. Before constructing the vaccine, we designed six mutations in the transformation sites of E6 and E7 gene to eliminate transformation active while retaining immunogenicity. Having removed HPV58mE6E7 fusion gene transformation, human IgG Fc was fused together with HPV58mE6E7 to form HPV58mE6E7-Fc, which plus signal peptide in the front and membrane anchor protein GPI in the end. GP can anchor and express the tumor antigen in the cell membrane. Finally, sig-HPV58mE6E7Fc-GPI was inserted eukaryotic expression vector PVAX1-IRES-GM/ B7 which can express GM-CSF and B7.1 fusion protein. PVAX1-HPV58mE6E7FcGB vaccine can express the fusion antigen and GM-CSF and B7.1 synchronously, which can enhance the collaborative immune action of the vaccine. Then, we constructed mice melanoma cell line B16-HPV58E6E7, which can stablely express HPV58E6E7 fusion gene. HPV58E6E7-GST fusion protein was be obtained by the way of prokaryotic expression and purify.
     We immuned C57BL/6 mice with PVAX1-HPV58mE6E7FcGB vaccine by intramuscular injection plus local electrical pulses Results indicated that the immuned mice were protected from HPV58E6E7 (+) tumor cells attack. mice subcutaneous tumor formation time in vaccine group was later than in control group (P<0.05). Tumor of vaccine group mice growed significantly slower than in control group, so average tumor weigh less than in control group (P< 0.05). This resulted survival time in vaccine group was longer than control group (P<0.05). Results also confirmed that the vaccine immuned mice can induce specific serum antibody, which can reach maximal 1:25600, compared with the control group (P<0.05). ELISPOT can detect specificial T cells of vaccine immuned mice which activated by HPV58E6E7-GST recombinant protein antigen Numbers of spots in vaccine group are higher than in single antigen group (P<0.05), indicating that HPV58mE6E7 fusion with adjuvants as human IgG Fc, GM-CSF and B7.1 can obviously increase immunogenicity of HPV58mE6E7and enhance its immunical effect., We also detected special CTL response of the mice immuned by PVAX1-HPV58mE6E7FcGB vaccine by LDH way and obtained the highest data of 45%. Thest datas proved that the mice immuned by the vaccine r can produce effective humoral immune and cellullar immunity and protect the mice against B16-HPV58E6E7 cells(1-2 x 105)attack.
     To improve the effect of HPV58 vaccine, the following vaccine named PVAX1-HPV58mE6E7Fc-hIL12 has been structured and succeed in expressing in eukaryotic cell.
     In brief, we constructed PVAX1-HPV58mE6E7FcGB gene vaccine on the basis of Guangxi HPV epidemiology investigation. This vaccine can produce effective humoral and cellular immunity in the immumed mice and be used to treat HPV58 (+) cerical carcinoma and CIN as a candidate vaccine. It can show some clinical value by removing the tumor cells infected by type HPV58 and preventing the development of the disease.
引文
1. Parkin DM. Global cancer statistics in the year 2000. Lancet Oncol,2001,2:533-543.
    2. WHO statistics.www3.who.int/whosis/menu.cfm Accessed 12 August 2003
    3. Parkin DM, Bray F, Ferlay J, et al. Estimating the world cancer burden:globocan 2000. Int J cancer,2001,94:153-156.
    4. Ferlay J, Bray F, Pisani P, et al. Global 2000:cancer incidence mortality and prevalence worldwide, version 1.0. IARC Cancer Base no.5. Lyons, France:IARC Press,2001.
    5. 马丁,奚玲.宫颈癌流行病学及病因学研究进展.实用妇产科杂志,2001,17(2):61-61.
    6. 李连弟,鲁凤珠,张思维等.中国恶性肿瘤死亡率20年变化趋势和近期预测分析.中华肿瘤杂志,1997,19(1):3-9.
    7. 李连弟,鲁凤珠,张思维等.中国恶性肿瘤死亡谱及分类构成特征研究.中华肿瘤杂志,1997,19(1):3-9.
    8. 杨玲,皇浦小梅,张思维,等.中国20世纪70年代与90年代子宫颈癌死亡率及其变化趋势.中国医学科学院学报,2003,25(4):386-390.
    9. Liu S, Semenciw R, Mao Y, et al. Cervical cancer:the increasing incidence of adenocarcinoma and adenosquamous carcimoma in younger women. CMAJ.,2001,164(8):1151-2.
    10. Ito T, Ishizuka T, Suzuki K, et al. Cervical cancer in young Japanese women. Arch-Gynecol-Obstet,2000,264(2):68-70
    11.章文华,李楠,吴令英.重视宫颈癌患者年轻化的趋势。浙江肿瘤,2000,6(2):112-114
    12. Russell JM, Blairv. Cervical carcinoma:prognosis in young patients. Brmed,1987,195:300-303
    13.吴爱如。宫颈癌。中国常见恶性肿瘤筛查方案。北京:人民卫生出版社,1999:134-135.
    14.章文华,白萍,吴令英,等。35岁以下妇女宫颈癌。中国肿瘤与康复,1999,6(6):39-41.
    15. Zhang MQ, Chen MZ. Analysis of 174 cases with cervical cancer in women under 35 years old. Zhonghua Fu Chan Ke Za Zhi,2003,38(11):689-693.
    16.黄薇,李力,余冬青,等。广西壮族自治区8009例妇科恶性肿瘤住院患者的构成特点及变化趋势。中华妇产科杂志,2007,42(1):22-25.
    17.李筱梅,郑英。宫颈癌发病的年轻化趋势与人乳头瘤病毒感染的关系。中国实用妇科与产科杂志,2000,16(12):741-742.
    18. Mori M, Sagae S. Recent progress in epidemiology research of uterine cancer. Gan-To-Kagaku-Ryoho.2001,28(2):174-178.
    19. Lombard I, Vincent-Salomon A, Validire P, et al. Human papillomavirus genotype as a major determinant of the course of cervical cancer. J Clin Oncol,1998,16:2613-2619.
    20. Mclachlin CM. Human papillomavirus in cervical neoplasia:Role, risk factors, and implications. Clin Lab Med,2000,20(2):257-270.
    21.乔友林。中国妇女人乳头瘤病毒感染和子宫颈癌的流行病学研究现状及其疫苗预防前景。中华流行病学杂志,2007,28(10):937-940.
    22.李力。宫颈癌与人乳头瘤病毒感染。中国实用妇科与产科杂志,2006,22(1):13-15.
    23.唐旭,许爱娥。男性人乳头癌病毒感染的流行病学研究进展。国外医学·皮肤性病学分册,2005,3(1):61-63.
    24. Moscicki AB Shiboski S, Broering J, et al. The natural history of human papillomavirus infection as measured by repeated DNA testing in adolescent and young women. J Pediatr,1998,132: 277-284.
    25.刘锡光,刘忠,田厚文。人乳头瘤病毒感染及其防治。人民卫生出版社,2009年,第一版:153一154.
    26.李苏利,李扬,王燕。泌尿生殖道人乳头瘤病毒(HPV)感染的研究进展。医学理论与实践2007,20(9);1022-1024.
    27.王彤,李亚里。人乳头瘤病毒与宫颈癌。解放军医学杂志,2005,30(1):79-80.
    28. Cuzick J, Sasieni P, Davies P, et al. A systematic review of the role of human papillomavirus testing within a cervical screening programme. Health Technol Assess,1999,3:191-196.
    29. Deacon JM, Evans CD, Yule R, et al. Sexual behaviour and smoking as determinants of cervical HPV infection and of CIN3 among those infected:a case-control study nested within the Manchester cohort. Br J Cancer,2000,83:1565-1572.
    30.陶萍萍,张国荣,卞美璐,等。女性生殖道21种亚型人乳头状瘤病毒感染与性行为、孕产史、文化程度等因素相关性分析。中国妇产科临床杂志,2008,9(1):20-23.
    31. Velema JP, Fererra A, Figueora M, et al. Bunring wood in the kitchen increases the risk of cervical neoplasia in HPV-infected women in Honduras. Int J Cancer,2002,97(4):536-541.
    32. Driak D, Samudovsky M. Cervical cancer in a female-to-male trans-sexual. Eur J cancer,2004, 40(11):1795-1796
    33. Castellsague X, Bosch FX, Munoz N. The male role in cervical cancer. Salud Publica Mex, 2003,45(13):S345-353.
    34. Winter RL, Hughes JP, Feng Q. et al. Condom use and the risk of genital human papillomavirus infection in young women. N Engl J Med,2006,354:2645-2654.
    35. Moodley J. Combined oral contraceptives and cervical cancer. Curr Opin Obstet Gynecol,2004, 16(1):27-29.
    36. Madeleine MM, Daling JR., Schwartz SM, et al. Human papillomavirus and long-term oral contraceptive use increase the risk of adenocarcinoma in situ of the cervix. Cancer Epidemiol Biomarkers Prey.2001,10(3):171-177.
    37. Thomas DB, Ray RM, Koetsawang A, et al. Human papillomavirus and cervical cancer in Bangkok I. Risk factors for invasive cervical carcinomas with human papillomavirus types 16and 18DNA. Am J Epidemiol,2001,153:723-731.
    38. Munoz N, Franceschi S, Bosetti C, et al. Role of parity and human papillomavirus in cervical cancer: The IARC multicentric case-control study. Lancet,2002,359:1093-1101.
    39. Chan FK, Chang AR, Tam WH, et al. Prevalence and genotype distribution of cervical human papillomavirus infection:Comparison between regnant women and non-pregnant controls. J Med Virol,2002,37:583-588.
    40. Herrero R, Hildesheim A, Bratt C, et al. Population-based study of human papillomavirus infection and cervical neoplasia in rural costa Rical. J Natl Cancer Inst,2000,92,464-171.
    41. Peyton CL, Gravitt PE, Hunt WC, et al. Determinants of genital human papillomavirus detection in a US population. J Infect Dis,2001,183(11):1554-1564.
    42. Levi JE, Kleter B, Quint WG, et al. High prevalence of human papillomairus (HPV) infections and high frequentcy of multiple HPV genotypes in human immunodeficiency virus-infected women in Brazil. J Clin Microbiol,2002,40(9):3341-3345.
    43. Soflar K. Detection and typing of human papillomavirus by E6 nested multiplex PCR. Clin Microbiol Reviews,2004,42(7):3176-3184.
    44. Bachtiary B, Obermair A, Dreier B, et al. Impact of multiple HPV infection on response to treatment and survival in patient s receiving radical radiotherapy for cervical cancer. Int J Cancer,2002,102(3):237-243.
    45. An HJ, Cho NH, Lee SY, et al. Correlation of cervical carcinoma and precancerous lesions wit h human papillomavirus (HPV) genotypes detected with the HPV DNA chip microarray method. Cancer,2003,97(7):1672-1680.
    46. Kay P, Soeters R, Nevin J, et al. High prevalence of HPV 16 in South African women with cancer of the cervix and cervical intraepithelial neoplasia. J Med Virol,2003,71(2):265-273.
    47. Gargiulo F, De Francesco MA, Schreiber C, et al. Prevalence and distribution of single and multiple HPV infeetions in cytologically abnormal cervical samples from Italian women. Virus Res,2007,125:176-182
    48. Rousseau MC, Pereira JS, Prado JC, et al. Cervical coin-fection with human papillomavirus(HPV) types as a predictor of acquisition and persistence of HPV infectionI J 1. J Infect Dis,2001,184:1508-1517.
    49. Koshiol J, Lindsay L, Pimenta JM, et al. Persistent human papillomavirus infection and cervical neoplasia:a systematic review and meta-analysis. Am J Epidemiol,2008,168(2):123-137.
    50. Bekkers RL, Massuger LF, Bulten J, et al. Epidemiological and clinical aspects of human papillomavirus detection in the prevention of cervical cancer. Rev Med Virol,2004,14(2): 95-105.
    51. Munoz N, Bosch FX, de Sanjose S, et al. Epidemiologic classification of human papillomavirus types associated with cervical cancer. N En J Med,2003,348(6):518-527.
    52. Nardelli HD, Lurati F, Wirthner D, et al. Immune responses induced by lower airway mucosal immunization with a human papillomavirus type 16 virus-like particle vaccine. Vaccine,2005, 23(28):3634-3641.
    53. Schlecht NF, Kulaga S, Robitaille J, et al. Persistent human papillomavirus infection as a predictor of cervical intraepithelial neoplasia. JAMA,2001,286(24):3106-3114.
    54. Dalstein V, Riethmuller D, Pretet JL, et al. Persistent and load of high-risk HPV are predictors for development of high-grade cervical lesions:A longitudinal French cohort study. Int J Cancer, 2003,106(3):396-403.
    55. Bosch FX, Manos MM, Munoz N, et al. Prevalence of Human Papillomavirus in cervical cancer: a World Perspective. J of the National Cancer Institute.1995,87:796-802.
    56. Bat holomew JS, Glenville S, Sar kar S, et al. Integration of high risk HPV DNA is linked to the downregulation of HLA class I antigens by glucocorticoid hormones in cervical cancer. Cancer Res,1997,57:937-942.
    57. Stoler MH. Human papillomavirus and cervical neoplasia:a model for carcinogenesis. Int J Gynecol Pathol,2000,19(1):16-28.
    58. Zur Hausen H. Papillomaviruses in human cancers. Proc Assoc Am Physicians.1999,111(6): 581-587.
    59. Roden RB, Kirnbauer R, Jenson AB, et al. Interaction of papillomaviruses with the cell surface. J Virol,1994,68(11):7260-7266.
    60. Evander M, Frazer IH, Payne E, et al. Identification of the alpha6 integrin as a candidate receptor for papillomaviruses. J Virol,1997,71(3):2449-2456.
    61. Munoz N, Bosch FX, Castellsague X, et al. Against which human papillomavirus types shall we vaccinate and screen? The international perspective. Int J Cancer,2004,111(2):278-285.
    62. Lo KW, Wong YF, Chan MK, et al. Prevalence of human papillomavirus in cervical cancer: a multicenter study in China. Int J Cancer,2002,100(3):327-331.
    63. Munoz N, Bosch FX, de-Sanjose S, et al. Epidemiologic classification of human papillomavirus types associated wit h cervical cancer. N Engl J Med,2003,348(6):518-527.
    64. Clifford GM, Smith JS, Plummer M, et al. Human papillomavirus types in invasive cervical cancer worldwide:a meta-analysis. Br J Cancer,2003,88:63-73.
    65. Kim CJ, Jeong J K, Park M, et al. HPV oligonucleotide microarray-based detection of HPV genotypes in cervical neoplastic lesions. Gynecol Oncol,2003,89(2):210-217.
    66.鲍彦平,李霓,王鹤,等。中国妇女子宫颈人乳头瘤病毒型别分布的Meta分析。中华流行病学杂志,2007,28(10):941-946.
    67. Zielinski GD, Snijders PJ, Rozendaal L, et al. The presence of high-risk HPV combined with specific P53 and P16INK4a expssion patterns points to high-risk HPV as the main causative agent for adenocacinoma in situ and adenocarcinoma of the cervix. J Pathol,2003,201(4): 535-543.
    68. Stoler MH, Rhodes CR, Whitbeck A, et al. Human papillomavirus type 16 and 18 gene expression in cervical neoplasias. Hum Pathol,1992,23:117-128.
    69. Park JS, Hwang ES, Park SN, et al. Physical status and expression of HPV genes in cervical cancer. Gynecol Oncol,1997,65:121-129.
    70. Ho CM, Chien TY, Huang SH, et al. Integrated human papillomavirus types 52 and 58 are infrequently found in cervical cancer, and high viral loads predict risk of cervical cancer. Gynecol Oncol,2006,102:54-60.
    71. Lai HC, Sun CA, Yu MH, et al. Favorable clinical outcome of cervical cancers infected with human papillonmvirus type 58 and related types. Int J Cancer,1999,84:553-557.
    72. Woodman CB, Collins S, Rollason TP, et al. Human papillomavirus type 18 and rapidly progressing cervical intraepithelial neoplasia. Lancet,2003,361:40-43.
    73. Ding DC, Hsu HC, Huang RL, et al. Type-specific distribution of HPV along the fu11 spectrum of cervical carcino-genesis in Taiwan:An indication of viral oncogenic pothential. Eur J Obstet Gynecol Reprod Biol,2008,140:245-251.
    74.宋艳,李凌,陈凤,等。凹空细胞检测在宫颈癌前病变筛查中的应用及其与Hybrid Capture2一HPV检测方法的比较。中华流行病学杂志,2010,31(8):959-960.
    75. Thomison J 3rd, Thomas LK, Shroyar KR, et al. Human papillomavirus:molecular and cytologic/histologic aspects related to cervical intraepithelial neoplasia and carcinoma. Human Pathol,2008,39(2):154-166.
    76. Josephine A, Catherine HK, Cecile TB, et al. Gennic polymorphism of human papillomavirus type 52 predisposes toward persistent infection in sexually active women. J Infec Dis,2004, 190(1):46-52.
    77. Maaike A, Judith M, Gonneke K, et al. Comparison of two commercial assays for detection of human papillomavirus (HPV) in cervical scrape specimens:validation of the Roche AMPLICOR HPV test as a means to screen for HPV genotypes associated with a higher risk of cervical disorders. J Clin Microbiol,2005,43(6):2662-2667.
    78. Petoh J, Gilham C, Deacon J, et al. Cervical HPV infection and neoplasia in a large population-based prospective study:the manchest cohort. J British Cancer,2004; 91(5):942-953.
    79. Lie AK, Risberg B, Borge B, et al. DNA versus RNA based methods for human papillomavirus detection in cervical neoplasia. Gynecol Oncol,2005,97(3):908-915.
    80. Tucker RA, Unger ER, Holloway BP, et al. Real time PCR-Based fluorescent essay for quantitation of human papillomavirus types 6,11,16 and 18. Mol Diagn,2001:6(1):39-47.
    81. Levert M, Clavel C, Graesslin D, et al. Human papillomavirus typing in routine cervical smears: results from a series of 3778 patients. Gynecol Obstel Fertil,2000; 28(10):722-728.
    82. Solomon D, Schiffman M, Tarone R, et al. Comparison of three man-agement strategies for patients with atypical squamous cells of underter-mined significance:baseline results from a randomized trial. J Natl Cancer Inst,2001,93(4):293-299.
    83. Petry KU, et al. Inclusion of HPV testing in routine cervical cancer screening for women above 29 years in Germany:Result for 8466 patients. BrJ Cancer,2003,88:1570-1577.
    84. Castle PE, Schiffman M, Burk RD, et al. Restricted cross-reactivity of hybrid capture 2 with non-oncogenic human papillomavirus types. Cancer Epidemiol Biomarkers Prev,2002,11(11): 1394-1399.
    85. ji S, Ding Y, Tzang CH, et al. Prevalence and genotype evaluation of cervical human papillomavirus (HPV) in Southern China by genotyping DNA array. Oral presentation 14: 00-15:40 section 2:HPV epidemiology Ⅰ, the 24th International Papillomavirus Conference&Clinical Workshop Program Book 2B-03,2007, Beijing, China.
    86. Pett M, Coleman N. Integration of high-risk human papillomavirus:a key event in cervical carcinogenesis? J Pathol,2007,212(4):356-367.
    87. Vinokurova S, Wentzensen N, Krans I, et a 1. Type-dependent integration frequency of human papillomavirus genomes in cervical lesions. Cancer Res,2008,68(1):307-313.
    88. Wentzensen N, Vinokurova S, Doeberitz MV. Systematic review of genomic integration sites of human papillomavirus genomes in epithelial dysplasia and invasive cancer of the female lower genital tract. Cancer Res,2004,64(11):3878-3884.
    89. Sheu BC, Chiou SH, Chang WC, et a 1. Integration of high-risk human papillomavirus DNA correlates with HLA genotype aberration and reduced HLA class I molecule expression in human cervical carcinoma. Clin Immunol,2005,115(3):295-301.
    90. Bouht G, Horvath C, Vanden Broeck D, et al. Human papillomavirus:E6 and E7 oncogenes. Int J Biochem Cell Biol,2007,39(11):2006-2011.
    91. Zimmermann H, Degenkolbe R, Bernard HU, et al. The human papillomavirus type 16 E6 oncoprotein can down-regulate p53 activity by targeting the transcriptional coactivator CBP/p300. J Virol,1999,73(8):6209-6219.
    92. Massimi P, Gammoh N, Thomas M, et al. HPV E6 specifically targets different cellular pools of its PDZ domain. containing turnout suppressor substrates for proteasome-mediated degradation. Oncogene,2004,23(49):8033-8039.
    93. McLanghlin·Dmbin ME. Mflnger K. The human papillomavirus E7oncoprotein. Virology,2009, 384(2):335-344.
    94. McLaughlin-Drubin ME, Huh KW, Munger K. Human papillomavirus type 16 E7 oncoprotein associates with E2F6. J Virol,2008,82(17):8695-8705.
    95. Duensing S, Munger K. Mechanisms of genomic instability in human cancer:insights from studies with human papillomavirus oncoproteins. Int J Cancer,2004,109(2):157-162.
    96. Guarguaglini G, Duncan PI, Stierhof YD, et al. The forkhead-as-sociated domain protein Cep170 interacts with Polo-like kinase 1 and serves as a marker for mature centrioles. Mol Bid Cell, 2005,16(3):1095-1107.
    97. Duensing S, Munger K. Centrosome abnormalities and genomic instability induced by human papillomavirus oncoproteins. Prog Cell Cycle Rex,2003,5:383-391.
    98. Duensing S, Duensing A, Cram CP, el al. Human papillomavirus type 16 E7 oncoprotein-induced abnormal centrosome synthesis is 811 early event in the evolving malignant phenotype. Cancer Bes,2001,61(6):2356-2360.
    99. Filippova M, Song H, Connolly JL, et al. The human papillomavirus 16 E6 protein binds to tumor necrosis factor(TNF)RI and protects cells from TNF. induced apoptosis. J Biol Chem, 2002,277(24):21730-21739.
    100. James MA, lee JH, Klingelhutz AJ. Human papillomavirus type 16 E6 activates NF-kappa B, induces cIAP-2 expression, and protects against apoptosis in a PDZ binding motif-dependent manner. J Virol,2006,80(11):5301-5307.
    101. Santer FR, Moser B, Spoden GA, et al. Human papillomavirus Type 16 E7 oncoprotein inhibits apoptosis mediated by nuclear insulin-like growth factor-binding protein-3 by enhancing its ubiquitin/proteasome-dependent degradation. Carcinogenesis,2007,28(12):251 1-2520.
    102. Severino A, Abbruzzese C, Manente L, et al. Human papillomavirus-16 E7 interacts with Siva-1 and modulates apoptosis in HaCaT human immortalized keratinocytes. J Cell Physiol, 2007,212(1):118-125.
    103. Seewaldt VL, Mrozek K, Dietze EC, et al. Human papillomavirus type 16 E6 inactivation of p53 in normal human mammary epithelia cells promotes tamoxifen-mediated apoptosis. Cancer Bes,2001,61(2):616-624.
    104. Thyrell L, Sangfelt O, Zhivotovsky B, et al. The HPV16 E7 oncogene sensitizes malignant cells to IFN-alpha-induced apoptosis. J Interferon Cytokine Res,2005,25(2):63-72.
    105. Xu M, Luo W, Elzi DJ, et al. NFX1 interacts with mSin3A/histone deacetylase to repress hTERT transcription in keratinocytes. Mol Cell Biol,2008,28(15):4819-4828.
    106. Lee D, Kim HZ, Jeong KW, et al. Human papillomavirus E2 down-regulates the human telomerase reverse transcriptase promoter. J Biol Chem,2002,277(31):27748-27756.
    107.张艳。人类乳头瘤病毒免疫致病机制。现代免疫学,2006,26(6):523-525.
    108.王莉,张文夺。HPV持续性感染与免疫调节机制。现代妇产科进展,2004,13(2):134-136.
    109. Stanley MA. Immunobiology of papillomavirus infections. J Reprod Immunol,2001,52:45-49.
    110. Edwards RP, Kuykendall K, Crowley Nowick P, et al. T lymphocytes infitrating advanced grades of cervical neoplasia. cancer,1995,76:1411-1415.
    111. Nakagawa M, Stites DP, Palefsky JM, et al. CD4-positive and CD8-positive cytotoxic T lymphocytes contribute to human papillomavirus type 16 E6 and E7 responses. Clin Diagn Lab Immunol,1999,6:494-498.
    112. Youde SJ, Dunbar PR, Evans EM, et al. Use of fluorogenic histocompatibility leukocyte antigen-A *0201/HPV 16 E7 peptide complexes to isolate rare human cytotoxic T-lymphocyte-recognizing endogenous human papillomavirus antigens. Cancer Res,2000,60: 365-371.
    113. Hagensee ME, Koutsky LA, Lee SK, et al. Detection of cervical antibodies to human papillomavirus type 16 (HPV-16) antigens in relation to detection of HPV216 DNA and cervical lesions. J Infect Dis 2000,181:1234-1239.
    114. Kawana K, Yasugi T, Kanda T, et al. Neutralizing antibodies against oncogenic human papillomavirus as a possible determinant of the fate of low-grade cervical intraepithelial neoplasia. Biochem Biophys Res Commun,2002,296:102-105.
    115. Koopman L, Mulder A, Cover W, et al. HLA class I phenotype and genotype alterations in cervical carcinomas and derivative cell lines. Tissue Antigen,1998,51:623-636.
    116. Brady CS, Bart holomew JS, Burt DJ, et al. Multiple mechanisms underline HLA dysregulation in cervical cancer. Tissue Antigen,2000,55:401-411.
    117. Neefjes JJ, Momburh F, Hammerlig GJ. Selective and ATP-dependent translocation of peptides by the MHC-encoded transporter. Science,1993,261:769-771.
    118. Hahne M, Rimoldi D, Schroter M, et al. Melanoma cell expression of Fas(Apo-1/CD95) ligand: Implications for tumor immune escape [see comments]. Science,1996,274:1363-1366.
    119. Toes RE, Blom RJ, Offringa R, et al. Enhanced tumor outgrowth after peptide vaccination: Functional deletion of tumor-specific CTL induced by peptide vaccination can lead to the inability to reject tumors. J Immunol,1996,156:3911-3918.
    120. Contreras DN, Krammer PH, Potkul RK, et al. Cervical cancer cells induce apoptosis of cytotoxic T lymphocytes. J Immunother,2000,23(1):67-74.
    121. Coleman N, Birley HD, Renton AM, et al. Immunological events in regressing genital warts. Am J Clin Pathol,1994 D,102(6):768-774.
    122. Scott M, Stites DP, Moscicki AB. Thl cytokine patterns in cervical human papillomavirus infection. Clin Diagn Lab Immunol,1999,6(5):751-755.
    123. Al-Saleh W, Giannini SL, Jacobs N, et al. Correlation of T-helper secretory differentiation and types of antigen-presenting cells in squamous intraepithelial lesions of the uterine cervix. J Pathol,1998,184(3):283-290.
    124. Barnard P, McMillan NA. The human papillomavirus E7 oncoprotein abrogates signaling mediated by interferon-alpha. Virology,1999,259(2):305-313.
    125. Li S, Labrecque S, Gauzzi MC, et al. The human papilloma virus (HPV)-18 E6 oncoprotein physically associates with Tyk2 and impairs Jak-STAT activation by interferon-alpha. Oncogene, 1999,18(42):5727-5737.
    126. Wikstrom A, G.J.J Vandoornum, W.GV.Quint, et al. Identification of human papillomavirus seroconversions. J Gen Virlo,1995,76:529-539.
    127. Wang ZH, Hansson BG, Forslund O, et al. Cervical-mucus antibodies against human papillomavirus type 16, type 18 and type 33 capsid in relation to presence of viral DNA. J Clin Microbiol 1996,34:3056-3062.
    128. Carter JJ, Koutsky LA, Wipf GC, et al. The natural history of human papillomavirus type 16 capsid antibodies among a cohort of university women. J Infect Dis,1996,174(5):927-936.
    129. Lehtinen M, Dillner J, Knekt P, et al. Serologically diagnosed infection with human papillomavirus type 16 and risk for subsequent development of cervical carcinoma: nested case-control study. Br Med J,1996,312(7030):537-539.
    130. De Gruijl TD, Bontkes HJ, Walboomers JM, et al. Immunoglobulin G responses against human papillomavirus type 16 virus-like particles in a prospective nonintervention cohort study of women with cervical intraepithelial neoplasia. J Natl Cancer Inst.1997,89(9):630-638.
    131. Bontkes HJ, de Gruijl TD, Bijl A, et al. Human papillomavirus type 16 E2-specific T-helper lymphocyte responses in patients with cervical intraepithelial neoplasia. J Gen Virol,1999,80 (Pt 9):2453-2459.
    132. Kirnbauer R, Booy F, Chen N, et al. Papillomavirus L1 major capsid protein self-assembles into virus-like particles that are highly immunogenic. Proc Natl Acad Sci USA,1992,89: 12180-12184.
    133. Breitburd F, Kirnbauer R, Hubbert NL, et al. Immunization with virus like particles from cottontail rabbit papillomavirus (CRPV) can protect against experimental CRPV infection. J Virol,1995,69(6):3959-3963.
    134. Suzich JA, Ghim SJ, Palmer-Hill FJ, et al. Systemic immunization with papillomavirus L1 protein completely prevents the development of viral mucosal papillomas. Proc Natl Acad Sci U SA,1995,92(25):11553-11557.
    135. Roden RB, Yutzy WH, Fallon R, et al. Minor capsid protein of human genital papillomaviruses contains subdominant, cross-neutralizing epitopes. Virology,2000,270(2):254-257.
    136. Kawana K, Yoshikawa H, Taketani Y, et al. Common neutralization epitope in minor capsid protein L2 of human papillomavirus types 16 and 6. J Virol,1999,73(7):6188-6190.
    137. De Gruijl TD, Bontkes HJ, Walboomers JM, et al. Differential T helper cell responses to human papillomavirus type 16 E7 related to viral clearance or persistence in patients with cervical neoplasia:a longitudinal study. Cancer Res,1998,58(8):1700-1706.
    138. Altmann A, Jochmus-Kudielka I, Frank R, et al. Definition of immunogenic determinants of the human papillomavirus type 16 nucleoprotein E7. Eur J Cancer,1992,28(2-3):326-33.
    139. De Gruijl TD, Bontkes HJ, Stukart MJ, et al. T cell proliferative responses against human papillomavirus type 16 E7 oncoprotein are most prominent in cervical intraepithelial neoplasia patients with a persistent viral infection. J Gen Virol,1996,77 (Pt 9):2183-2191.
    140. Kadish AA, Romney SL, Ledwidge R, et al. Cell-mediated immune-responses to E7 peptides of human papillomavirus (HPV) type-16 are dependent on the HPV type infecting the cervix whereas serological reactivity is not type-specific. J Gen Virol,1994,75:2277-2284.
    141. Luxton JC, Rose RC, Coletart T, et al. Serological and T-helper cell responses to human papillomavirus type 16 L1 in women with cervical dysplasia or cervical carcinoma and in healthy controls. J Gen Virol,1997,78(Pt 4):917-923.
    142. Nakagawa M, Stites DP, Farhat S, et al. T-cell proliferative response to human papillomavirus type 16 peptides:relationship to cervical intraepithelial neoplasia. Clin Diagn Lab Immunol, 1996,3(2):205-210.
    143. Tsukui T, Hildesheim A, Schiffman MH, et al. Interleukin 2 production in vitro by peripheral lymphocytes in response to human papillomavirus-derived peptides:correlation with cervical pathology. Cancer Res,1996,56(17):3967-3974.
    144. Kadish AS, Ho GY, Burk RD, et al. Lymphoproliferative responses to human papillomavirus (HPV) type 16 proteins E6 and E7:outcome of HPV infection and associated neoplasia. J Natl Cancer Inst,1997,89(17):1285-1239.
    145. Lehtinen M, Rantala I, Toivonen A, et al. Depletion of Langerhans cells in cervical HPV infection is associated with replication of the virus. APMIS,1993,101(11):833-837.
    146. Alexander M, Salgaller ML, Celis E, et al. Generation of tumor-specific cytolytic T lymphocytes from peripheral blood of cervical cancer patients by in vitro stimulation with a synthetic human papillomavirus type 16 E7 epitope. Am J Obstet Gynecol,1996,175(6): 1586-1593.
    147. Nimako M, Fiander AN, Wilkinson GW, et al. Human papillomavirus-specific cytotoxic T lymphocytes in patients with cervical intraepithelial neoplasia grade Ⅲ. Cancer Res,1997, 57(21):4855-4861.
    148. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans Human Papillomaviruses. IARC Monographs on the Rvaluation of Carcinogenic Risks to Humans Vol, 1995,64 IARC, Lyon, France.
    149.徐晓明。HPV58与宫颈癌。实用医学杂志,2004,20(11):]314-1316.
    150.杨海宁,于修平,卞继峰,等.人乳头瘤病毒58型E6蛋白对p53的作用研究.中华微生物学和免疫学杂志,2003,23(4):296-299.
    151.张魏芳。高危型人乳头瘤病毒早期蛋白E6和E7调控细胞周期的机制研究。山东大学博士论文,2010.
    152.林玉纯,Durst M, De Villiers,等。我国人乳头瘤病毒16型及一薪型的分子克隆及鉴定。中华实验与临床病毒学杂志,1993,7(1):19-25.
    153.李洁,刘宝印,zur Hausen H,等。中国妇女宫颈癌组织中人乳头瘤病毒感染及其地理分布的调查。中华实验和临床病毒学杂志,1996,10(1):50-55.
    154.刘宝印,李洁,De Villier,等。我国人乳头瘤病毒58型感染与宫颈癌的关系。中华实验和临床病毒学杂志,1996,10(2):118-121.
    155. Lin QQ, Yu sz, Qu w, et al. Human papillomaviurs types 52 and 58. Int J Cancer,1998,75(3): 484-485.
    156. Lai HC, Sun CA, Yu MH, et al. Favorable clinical outcome of cervical cancers infected with human papillomavirus type 58 and related types. Int J Cancer,1999,84(6):553-557.
    157. Chan PK, Li WH, Chan MY, et al. High prevalence of human papillomavirus type 58 in Chinese women with cervical cancer and precancerous lesions. J Med Virol,1999,59(2): 232-238.
    158. Chan PK, Mak KH, Cheung 儿, et al. Genotype spectrum of cervical human papilomavirus infection among sexually transmitted disease clinic patients in Hong Kong. J Med Virol,2002, 68(2):273-277.
    159. Jou O. The prognosis of the HPV infected cervical lesions after followed-up for a long term. J Saitama Med School,2003,30(2):147-153.
    160. Hwang T. Detection an d typing of human papillomavirus DNA by PCR using consensus primers in various cervical lesions of Korean women. J Korean Med Sci,1999,14(6):593-599.
    161. Cho NH, An HJ, Jeong JK, et al. Genotyping of 22 human papillomavirus types by DNA chip in Korean women:comparison with cytological diagnosis. Am J Obstet Gynecol,2003,188(1): 56-62.
    162. Herrero R, Hildeshelm A, Bratti C. et al. Population-based study of human papillomavirus infection and cervical neoplasia in rural Costa Rica. J Natl Cancer lnst,2000,92(6):464-474.
    163. Xi LF, Toure P, Critchlow CW, et al. Prevalence of specific types of human papillomavirus and cervical squamous intraepithelial lesions in consecutive, previously unscreened, West-African women over 35 years of age. Int J Cancer,2003,103(6):803-809.
    164. Castensague X, Menendez C, Loscertales MP, et al. Human papillomavirus genotypes in rural Mozambique. Lancet,2001,358(9291):1429-1430.
    165. Lukaszuk K, Liss J, Zalewski J, et al. Estimation of HPV infection presence in cytological smears in a group of asymptomatic women. Wiad Lek,2001,54(9-10):508-515.
    166. Szentirmay Z, Cseh J, Pulay T, et al. Human papinomavirus and cervical cancer:genetic background of the neoplastic process. Orv Hetil,2001,142(27):1429-1436.
    167.李燕云,李作峰,何以丰,等。人乳头瘤病毒58型的系统地理学分析。中国科学c辑:生命科学,2009,39(7):654-661.
    168. DeFilippis V R, Ayala F J, Villarreal L P. Evidence of diversifying selection in human papillomavirus type 1 6 E6 but not E7oncogenes. J Mol Evol,2002,55(4):491-499.
    169.章文华,吴令英。关于子宫颈癌综合治疗的商榷。中华肿瘤杂志,2003,25(2):206-208.
    170. Panici PB, Scambia G, Baiocchi G. Neoadjuvant chemotherapy and radical surgery in locally advanced cervical cancer:prognostic factors for response and survival Cancer,1991,67: 372-379.
    171. Thomas GM. Is neoadjuvant chemotherapy a useful strategy for the treatment of stage Ib cervix cancer. Gynecol Oncology,1993,49:153-155.
    172. Morris M, Eifel PJ, Lu J. Pelvic radiation with concurrent chemotherapy compared with pelvic and para-aortic radiation for high-risk cervical cancer. N Engl Med,1999,340:1137-1143.
    173. Rose PG, Bundy BN, Watkins EB. Concurrent cisplatin-based radiotherapy and chemotherapy for locally advanced cervical cancer. N Engl Med,1999,340:1144-1153.
    174. Thomas GM. Improved treatment for cervical cancer-concurrent chemotherapy and radiotherapy. N Engl J Med,1999,340(15):1198-1200
    175. Huang LW, Hwang JL. A comparison between electrosurgical excision procedure and cold knife conization for treatment of cervical dysplasia:residual disease in a subsequent hysterectomy specimen. Gynecol oncol,1999,73:12-15.
    176.卞美璐。 高频电波刀在妇科手术中的应用。引进国外医药技术与设备,1999,5:30-32.
    177.田扬顺,李桂云,黄艳红,等。经计算机辅助细胞检则系统(CCT)检查发现异常细胞者1000例的管理与诊治原则探讨。中国妇产科临床杂志,2003,4:347-351.
    178. Rock A, Thompson, JD. Te Linde's Opeartive. Gynecology, NewYork,1997:1405-1408.
    179.焦玉冰,周羡梅,马世雄,等。子宫颈上皮癌前病变及子宫颈癌的细胞核DNA含量图像分析研究。中华妇产科杂志,2001,36(5):267.
    180. Benedet JL, Bender H, Jones 3rd, et al. FIGO staging classifications and clinical practice guidelines in the management of gynecologic cancers. FIGO Committee on Gynecologic Oncology. Int J Gynaeeol Obstet.2000.70(2):209-262.
    181.许丹。HPV疫苗防治宫颈癌的研究进展。现代妇产科进展,2007,16(2):137-139.
    182. zur Hausen H. Papillomaviruses and cancer:from basic sludies to clinical application. Nat Rev Cancer,2002,2:342-350.
    183. Wikstrom A, G.J.J Vandoornum, W.G.V.Quint, et al. Identification of human papillomavirus seroconversions. J Gen Virlo,1995,76:529-539.
    184. Wang ZH, Hansson BG, Forslund O, et al. Cervical-mucus antibodies against human papillomavirus type 16, type 18 and type 33 capsid in relation to presence of viral DNA. J Clin Microbiol,1996,34:3056-3062.
    185. Carter JJ, Koutsky LA, Wipf GC, et al. The natural history of human papillomavirus type 16 capsid antibodies among a cohort of university women. J Infect Dis,1996,174(5):927-936.
    186. Lehtinen M, Dillner J, Knekt P, et al. Serologically diagnosed infection with human papillomavirus type 16 and risk for subsequent development of cervical carcinoma:nested case-control study. Br Med J,1996,312(7030):537-539.
    187. De Gruijl TD, Bontkes HJ, Walboomers JM, et al. Immunoglobulin G responses against human papillomavirus type 16 virus-like particles in a prospective nonintervention cohort study of women with cervical intraepithelial neoplasia. J Natl Cancer Inst,1997,89(9):630-638.
    188. Bontkes HJ, de Gruijl TD, Bijl A, et al. Human papillomavirus type 16 E2-specific T-helper lymphocyte responses in patients with cervical intraepithelial neoplasia. J Gen Virol,1999,80 (Pt 9):2453-2459.
    189. Kirnbauer R, Booy F, Chen N, et al. Papillomavirus L1 major capsid protein self-assembles into virus-like particles that are highly immunogenic. Proc Natl Acad Sci USA,1992,89: 12180-12184.
    190. Breitburd F, Kirnbauer R, Hubbert NL, et al. Immunization with virus like particles from cottontail rabbit papillomavirus (CRPV) can protect against experimental CRPV infection. J Virol,1995,69(6):3959-63.
    191. Suzich JA, Ghim SJ, Palmer-Hill FJ, et al. Systemic immunization with papillomavirus L1 protein completely prevents the development of viral mucosal papillomas. Proc Natl Acad Sci U SA,1995, (25):11553-11557.
    192. Roden RB, Yutzy WH, Fallon R, et al. Minor capsid protein of human genital papillomaviruses contains subdominant, cross-neutralizing epitopes. Virology,2000,270(2):254-257.
    193. Kawana K, YoshikawaH, Taketani Y, et al. Common neutralization epitope in minor capsid protein L2 of human papillomavirus types 16 and 6. J Virol,1999,73(7):6188-6190.
    194. Sigrid C. Holmgren, Nicole A. Patterson, Michelle A. Ozbun, et al. The Minor Capsid Protein L2 Contributes to Two Steps in the Human Papillomavirus Type 3 1 Life Cycle. Virology,2005, 79:3938-3948.
    195.薛骏轶,李泽琳,周玉柏,等。HPV L2二代宫颈癌预防性疫苗的研究进展。中华实验和临床病毒学杂志,2010,24(5):400-401.
    196. Pereira R, Hitzeroth Ⅱ, Rybicki EP. Insights into the role and function of L2, the minor capsid protein of papillomaviruses. Arch Virology,2009,154:187-197.
    197. De Gruijl TD, Bontkes HJ, Walboomers JM, et al. Differential T helper cell responses to human papillomavirus type 16 E7 related to viral clearance or persistence in patients with cervical neoplasia:a longitudinal study. Cancer Res,1998,58(8):1700-1706.
    198. Altmann A, Jochmus-Kudielka I,Frank R,et al. Definition of immunogenic determinants of the human papillomavirus type 16 nucleoprotein E7. Eur J Cancer,1992,28(2-3):326-333.
    199. De Gruijl TD, Bontkes HJ, Stukart MJ, et al. T cell proliferative responses against human papillomavirus type 16 E7 oncoprotein are most prominent in cervical intraepithelial neoplasia patients with a persistent viral infection.J Gen Virol,1996,77(Pt 9):2183-2191.
    200. Kadish AA, Romney SL, Ledwidge R, et al. Cell-mediated immune-responses to E7 peptides of human papillomavirus (HPV) type-16 are dependent on the HPV type infecting the cervix whereas serological reactivity is not type-specific. J Gen Virol,1994,75:2277-2284.
    201. Luxton JC, Rose RC, Coletart T, et al. Serological and T-helper cell responses to human papillomavirus type 16 L1 in women with cervical dysplasia or cervical carcinoma and in healthy controls. J Gen Virol,1997,78(Pt 4):917-923.
    202. Nakagawa M. Stites DP, Farhat S, et al. T-cell proliferative response to human papillomavirus type 16 peptides:relationship to cervical intraepithelial neoplasia. Clin Diagn Lab Immunol, 1996,3(2):205-210.
    203. Tsukui T, Hildesheim A, Schiffman MH, et al. Interleukin 2 production in vitro by peripheral lymphocytes in response to human papillomavirus-derived peptides:correlation with cervical pathology. Cancer Res,1996,56(17):3967-3974.
    204. Kadish AS, Ho GY, Burk RD, et al. Lymphoproliferative responses to human papillomavirus(HPV) type 16 proteins E6 and E7:outcome of HPV infection and associated neoplasia. J Natl Cancer Inst,1997,89(17):1285-1289
    205. Lehtinen M, Rantala I, Toivonen A, et al. Depletion of Langerhans cells in cervical HPV infection is associated with replication of the virus. APMIS,1993,101(11):833-837.
    206. Alexander M, Salgaller ML, Celis E, et al. Generation of tumor-specific cytolytic T lymphocytes from peripheral blood of cervical cancer patients by in vitro stimulation with a synthetic human papillomavirus type 16 E7 epitope. Am J Obstet Gynecol,1996,175(6): 1586-1593.
    207. Nimako M, Fiander AN, Wilkinson GW, et al. Human papillomavirus-specific cytotoxic T lymphocytes in patients with cervical intraepithelial neoplasia grade Ⅲ. Cancer Res,1997, 57(21):4855-4861.
    208. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans Human Papillomaviruses. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans Vol, 1995,64 IARC, Lyon, France
    209. Kang YH, Lee KA, Ryu CJ, et al. Mitomyein einduces apoptosis via Fas/FasL dependant pathway and suppression of IL-18 in cervical careinomacells. Cancer Lett,2006,237(1):33-34.
    210. Lee SH, KimJW, Lee HW, et al. Interferon regulatory factor-1(IRF-1) is a mediator for interferon-gamma induced attenuation of telomerase activity and human telomerase reverse transcriptase (hTERT) expression. Oncogene,2003,22(3):381-391.
    211. Hubert P, Caberg JH, Gilles C, et al. E-cadherin-dependent adhesion of dendritic and Langerhans cells to keratinocytes is defective in cervical human papillomavirus-associated (pre)neoplastic lesions. J Pathol,2005,206(3):346-355.
    212. Contreras DN, Krammer PH, Potkul RK, et al. Cervical cancer cells induce apoptosis of cytotoxic T lymphocytes. J Immu,2000,23(1):67-74.
    213. McLemofc M R. Gardasil:Introducing the new human papillomavirus vaccine, clin J Oncol Nufs,2006,10(5):559-560.
    214. Tay EH, Garland S, Tang G, et al. Clinical trial experience with prophylactic HPV 6/11/16/18 virus-like particle (VLP) vaccine in young women from the Asia-Pacific region. Int J Gynaecol Obstet,2008,102:275-283.
    215. Olsson SE. Villa LL, Costa RL, et al. Induction of immune memory following administration of a prophylactic quadrivalent haman papillomavirus(HPV)types 6/11/16/18 LI virus-like particle(VLP)vaccine. Vaccine,2007,25:4931-4939.
    216. Harper DM, Franco EL. Wheeler CM, et al. Sustained efficacy up to 4.5 years of a bivalent LI virus-like particle vaccine against human papillomavirus types 16 and 1 8:follow-up from a randomised control trial. Lancet.2006.367:1247-1255.
    217. Franco E L, Harper D M. Vaccination against human papillomavirus infection:A new paradigm in cervical cancer control. Vaccine,2005.23(17-18):2388-2394.
    218. Petaja T, Keranen H, Karppa T, el al. Immunogenicity and safety of haman papillomavirus(HPV)-16/18 ASO4-adjuvanted vaccine in healthy boys aged 10-18 years. J Adolesc Health,2009,44:33-40.
    219. Kawana K, Matsumoto K, Yoshikawa H, et al. A surface immunodeterminant of human PV type 16 minor capsid protein L2. Virology,1998,245:353-359.
    220. Kawana K, Yoshikawa H, Taketani Y, et al. Common neutralization epitope in minor capsid protein L2 of human PV types 16 and 6. Virology,1999,73:6188-6190.
    221. Gambhlra R, Karanam B, Jagu S, ct al. A protective and broadly cross-neutralizing epitope of human PV L2. Virology,2007,81:13927-13931.
    222. Jagu S, Karanam B, Gambhira R, et al. Concatenated multitype L2 fusion proteins as candidate prophylactic pan-human papillomavirus vaccines. J Natl Cancer Inst,2009,101:782-792.
    223. Rubio I, Bolchi A, Moretto N, et al. Potent anti-HPV immune responses induced by tandem repeats of the HPV16 1-2(20-38) peptide displayed on bacterial thioredoxin. Vaccine,2009, 27(13):1949-1956.
    224. Palmer KE, Benko A, Doueette SA, et al. Protection of rabbits against cutaneous PV infection using recombinant tobacco mosaic virus containing L2 capsid epitopes. Vaccine,2006,24: 5516-5525.
    225. Karanam B, Gambhira R, Peng S, et a 1. Vaccination with HP V16 L2E6E7 fusion protein in GPI-0100 adjuvant elicits protective humoral and cell-mediated immunity. Vaccine.2009,27: 1040-1049.
    226. Alphs HH, Gambhira R, Karanam B, et al. Protection against heterologous human papillomavirus challenge by a synthetic lipopeptide vaccine containing B broadly cross-neutralizing epitope of L2.Proc Natl Acad Sci USA,2008,105(15):5850-5855.
    227. Kawana K, Yoshikawa T, Kanda T, et al, Safety and immunogenieity of a peptide containing the CI'OKS-neutralization epitope of HPV16 L2 administered nasally in healthy volunteers. Vaccine,2003,21(27-30):4256-4260.
    228. Koutsky LA, Ault KA, Wheeler CM, et al. A controlled trial of a human papillomavirus type 16 vaccine. N Engl J Med,2002,347(21):1645-1651.
    229. Yang R, Murillo FM, Lin KY, et al. Human papiilomavirus type-16 virus-like particles activate Complementary defense responses in key dendritic cell subpopulations. J Immunol,2004, 173(4):2624-2631.
    230. Slupetzky K, Gambhira R, Culp TD, et al. A papillomavirus-like particle(VLP)vaccine displaying HPV16 L2 epitopes induces cross-neutralizing antibodies to HPV11. Vaccine,2007. 25(11):2001-2010.
    231. Kondo K, lshii Y, Oehi H, et a 1. Neutralization of HP V16,18,31. And 58 pseudovirions with antisera induced by immunizing rabbits with synthetic peptides representing segments of the HPV16 minor capsid protein L2 surface region. Virology,2007,358(2): 266-272.
    232. Dupuy C, Buzoni-Gatel D, Touze A, et al. Cell mediated immunity induced in mice by HPV 16 LI virus-like particles. Microbial Pathogenesis 1997.22:219-225.
    233. Rudolf MP, Nieland JD, DaSilva DM, et al. Induction of HPV16 capsid protein-specific human T cell responses by virus-like particles. Biol Chem 1999,380:335-340.
    234. Chen L, Thomas EK, Hu S, et al. Human papillomavirus type 16 nucleoprotein E7 is a tumor rejection antigen. Proc Natl Acad Sci USA,1991,88:110-114.
    235. Chen L, Mizuno MT, Singhal MC, et al. Induction of cytotoxic T lymphocytes specific for a syngeneic tumor expressing the E6 oncoprotein of human papillomavirus type 16. J Immunol, 1992,148:2617-2621.
    236. Von Knebel, Doeberitz M, Rittmuller C, et al. Reversible repression of papillomavirus oncogene expression in cervical carcinoma cells:consequences for the phenotype and E6-p53 and E7-pRB interactions. J Virol,1994,68:2811-2821.
    237. Konya J, Eklund C, Geijersstam V, et al. Identification of a cytotoxic T-lymphocyte epitope in the human papillomavirus type 16 E2 protein. J Gen Virol,1997,78:2615-2620.
    238. Smahe M, Sima P, Ludvikowa V, et al. Modified HPV 16E7 genes as DNA vaccine against E7-containing oncogenic cells. Virology,2001,281:231-238
    239. Osec W, Peiler T, Ohlschlager P, et al. A DNA vaccine based on a shuffled E7 oncogene of the human papillomavirus type 16 (HPV 16) induces E7-specific cytotoxic T cells but lacks transforming activity. Vaccine,2001,19(30):4276-4286
    240. Chen CH, Wang TL, Huang CF, et al. Enhancement of DNA vaccine potency by linkage of antigen gene to HSP70 GENE. Cancer Research,2000,60:1035-1042
    241. Kim TW, Hung CF, Juang J, et al. Enhancement of suicidal DNA vaccine potency by delaying suicidal DNA2induced cell death. Gene Ther,2004,11(3):336-342
    242. Klencke B, Matijevic M, Urban RG, et al. Encapsulated plasmid DNA treatment for human papillomavirus 16-associated anal dysplasia: A Phase I study of ZYC101 Clin Cancer Res,2002, 8(5):1028-1037
    243. Garcia F, Petry KU, Muderspach L, et al. ZYClOla for treatment of high-grade cervical intraepithelial neoplasia: a randomized controlled trial. Obstet Gynecol,2004,103(2):317-326.
    244. Liu DW, Tsao XP, Hsieh CH, et al. Induction of CD8 T cell by vaccination with recombinat adenovirus expressing human papillomavirus type 16 E5 gene reduces tumor growth J Virol, 2000,74(19):9083-9089
    245. Brinkman JA, Xu X, Kast WM. The efficacy of a DNA vaccine containing inserted and replicated region of the E7 gene for treatment of HPV-16 induced tumors. Vaccine,2007, 25(17):3437-3444.
    246. Brulet JM, Maudoux F, Thomas S, et al. DNA vaccine encoding endosome-targeted human papillomavirus type 16 E7 protein generates CD4+T cell-dependent protection. Eur J Immunol, 2007,37:376-384.
    247. Yan J. Harris K. Khall AS. et al. Cellular immunity induced by a novel HPV18 DNA vaccine encoding an E6/E7 fusion consensusprotein in mice and rhesus macaques. Vaccine,2008,26: 5210-5215.
    248. Huang B, Mac CP, Peng S, et al. RNA interference. mediated invivo silencing of fas ligand a8 a strategy for the enhancement of DNA vaccinepotency. Hum Gen Ther,2008,19(8):763-773.
    249. Tseng CW, Monie A, Trimble C, et al Combination of treatmentwith death receptor 5-specific antibody with therapeutic HPV DNA vaccination generates enhanneed therapeutic anti-tumor effects. Vaccine,2008,26(34):4314-4319.
    250. Ressing ME, Sette A, Brandt RM, et al. Human CTL epitopes encoded by human papifomavirus type 16 E6 and E7 identified throulgh in vivo and in vitro immunngenicity studies of HLA-A*0201-binding peptides. J Immunol,1995,154(11):5934-5943.
    251. Muderspach L, Wilczynski S, Roman L, el al. A phase I trial of a human papifomavirus(HPV) peptide vaccine for women with high-grade cervical and vulvar intraepithelial neoplasia who are HPV 16 positive. Clin Cancer Res,2000,6(9):3406-3416.
    252. Welters MJ, Kenter GG. Piemma SJ, et al. Induction of tumor-specific CD4+ and CD8+ T-cell immunity in cervical cancer patients by a human papillomavirus type 16 E6 and E7 long peptides vaccine. Clin Cancer Res,2008,14:178-187.
    253. Steller MA, Gurski KJ, Murakami M, et al. Cell-mediated immunological responses in cervical and vaginal cancer patients immunized with a lipidated epitope of human papillomavirus type 16 E7. Clin Cancer Res,1998,4(9):2103-2109.
    254. Sarkar AK, Tortolero-Luna G, Nehete PN, et al Studies on in vivo induction of cytotoxic T lymphocyte responses by synthetic peptides from E6 and E7 oncoproteins of human papillomavirus type 16. Viral Immunol,1995,8(3):165-174.
    255. Li Z. Priming of T cells by heat shock protein-peptide complexes as the basis of tumor vaccines. Semin Immunol,1997,9(5):315-322.
    256. Tamura Y, Peng P, Liu K, et al. Immunotherapy of tumors with autologous tumor-derived heat shock protein preparations. Science,1997,3,278(5335):117-120.
    257. Cui Z, Qiu F. Synthetic double-stranded RNA poly(I:C) as a potent peptide vaccine adjuvant: therapeutic activity against human cervical cancer in a rodent model. Cancer Immunol Immunother,2006,55(10):1267-1279.
    258. Fernando GJ, Murray B, Zhou J, et al. Expression, purification and immunological characterization of the transforming protein E7, from cervical cancer-associated human papillomavirus type 16. Clin Exp Immunol,1999,115:397-403.
    259. Hariharan K, Braslawsky G, Barnett RS, et al. Tumor regression in mice following vaccination with human papillomavirus E7 recombinant protein in PRO VAX. Int J Oncol,1998,12: 1229-1235.
    260. Giannouli C, Gesche F, Burny A, et al. HPV16 E7-based protein immunization induces long-term protective and therapeutic anti-tumor immunity in C57BL/6 mice.18th International Papillomavirus Conference, Barcelona, Spain. Program and Abstracts Book,2000, Abstract 429.
    261. O'Neill T, Brandt RMP, van der Burg SH, et al. Pre-clinical safety and immunogenicity of TACIN:a recombinant HPV 16 L2E7E6 fusion protein vaccine for the treatment of cervical intraepithelial neoplasia.18th International Papillomavirus Conference, Barcelona, Spain. Program and Abstracts Book,2000, Abstract 438.
    262. Maciag Pc, Paterson Y. Technology evaluation:HspE7(Stressgen). Curt Orlin Mol Ther,2005, 7(3):256-263.
    263. Derkay CS, Smith RJ, McClay J, el al. HspE7 treatment of podiatric recurrent respiratory papifomatosis:final results of an open-label trial. Ann Otol Rhinol Laryngol,2005,114(9): 730-737.
    264. Goldstone SE, Palef8ky JM, Winnett MT, et al. Activity of HspE7, a novel immunotherapy, in patients with anogenital warts. Dis Colon Rectum,2002,45(4):502-507.
    265. Vandepapeliere P, Barrasso R, Meijer CJ, et al. Randomized controlled trial of all adjuvanted human papillomavirus (HPV)type 6 L2E7 vaccine:infection of external anogenital warts with multiple HPV types and failure of therapeutic vaccination:J Infect Dis,2005,192(12): 2099-2107.
    266. EinBtein MH, Kadish AS, Burk RD, et al. Heat shock fusion protein-based in immunotherapy for treatment of cervical intraepithelial neoplasia Ⅲ. Gynecol Oncol,2007,106(3):453-460.
    267. Zhou X, Qian X, Zhao Q, el al. Efficient expression of modified human papillomavirus 16 e6/e7 fusion protein and the antitumor efficacy in a mouse model. Biol Pharm Bull,2004,27(3): 303-307.
    268. Qian X, Lu Y, Liu Q, et al. Prophylactic, therapeutic and anti-metastatic effects of an HPV-16mE6Delta/mE7/TBh-sp70Delta fusion protein vaccine in an animal model. Immunol Lett,2006,102(2):191-201.
    269. Liu B, Ye D, Song X, et al. A novel therapeutic fusion protein vaccine by two different families of heat shock proteins linked with HPV16 E7 generates potent antitumor immunitv and antiangiogenesis. Vaccine,2008.26:1387-1396.
    270. Kaufmann AM, Stem PL, Rankin EM, et al. Safety and immunogenieity of TA-HPV, a recombimnt vaccinia virus expressing modified human papillomavirus(HPV)-16 and HPV-18 E6 and E7 genes, in women with progressive cervical cancer. Clin Cancer Res,2002,8(12): 3676-3685.
    271. Wu TC, Guarnieri FG, Staveley-r-O'Carroll KF, et al. Engineering an intracellular pathway for major histocompatibility complex class Ⅱ presentation of antigen. Proc Natl Acad Sei USA, 1995,92(25):11671-11675.
    272. Auborn KJ, Wang H, Vaccariello MA, et al. Kinetics of HPV11 DNA replication after infection of keratinoeytes with virions. Virus Res,1996,43(1):85-90.
    273. Chu NR, Wu HB, Wu T, et al. Immunotlaerapy of a human papillomavirus(HPV) type 16 E7-expressing tumour by administration of fusion protein comprising Mycobacterium bovis bacille Calmette-Guerin (BCG) hsp65 and HPV16 E7. Clin Exp Immunol,2000,121(2):216-225.
    274. He Z, Wlazlo AP, Kowalczyk DW, et al. Viral recombinant vaccines to the E6 and E7 antigens of HPV-16. Virology,2000,270(1):146-161.
    275. Ahn WS, Bae SM, Kim TY, et al. A therapy modality using recombinant IL-12 adenovirus plus E7 protein in a human papillomavirus 16 E6/E7-associated cervical cancer animal model. Hum Gene Ther, 2003,14(15):1389-1399.
    276. Tillman BW, Hayes TL, DeGruijl TD, et al. Adenoviral vectors targeted to CD40 enhance the efficacy of dendritic cell-based vaccination against human papillomaviras 16-induced tumor cells in a murine model. Cancer Res,2000,60(19).5456-5463.
    277. Bramson JL, Hitt M, Gauldie J, et al. Pre-existing immunity to adenovirus does not prevent tumor regression following intratumoral administration of a vector expressing IL-12 but inhibits virus dissemination. Gene Ther,1997,4(10):1069-1076.
    278. Liu DW, Tsao YP, Kung JT, et al. Recombinant adeno-associated virus expressing human papillomavirus type 16 E7 peptide DNA fused with heat shock protein DNA as a potenrial vaccine for cervical cancer. J Virol,2000,74(6):2888-2894.
    279. Eiben GL, Velders MP, Schreiber H, et al. Establishment of an HLA-A*0201 human papillomavirus type 16 tumor model to determine the efficacy of vaccination strategies in HLA-A*0201 transgenie mice. Cancer Res,2002,62(20):5792-5799.
    280. Daemen T, Regts J, Hotrop M, et al. Immunization strategy against cervical cancer involving an alphavirus vector expressing high levels of a stablefusion protein of human papillomavirus 16 E6 and E7. Gene Ther,2002,9(2):85-94.
    281. Cheng WF, Hung CF, Hsu KF, et al. Cancer immunotherapy using Sindbis virus replicon particles encoding a VP22-antigen fusion. Hum Gene Ther,2002,13(4):553-568.
    282. Cheng WF, Lee CN, Su YN, et al Sindbis virus replicon particles encoding calreticulin linked to a tumorantigen generate long-term tumor-specific immunity. Cancer Gene Ther,2006,13(9): 873-885.
    283. Liao JB, Publicover J, Rose JK, et al. Single-dose, therapeutic vaccination of mice with vesicular stomatitis virus expressing human papillomavirus type 16 E7 protein. Clin Vaccine Immunol,2008,15:817-824.
    284. Weiskirch LM, Pan ZK, Paterson Y, et al. The tumor recall response of antitumor immunity primed by a live, recombinant Listeria monocytogenes vaccine comprises multiple effector mechanisms. Clin Immunol,2001,98(3):346-357.
    285. Krul MR, Tijhaar EJ, Kleijne JA, et al. Induction of an antibody response in mice against human papillomavirus (HPV) type 16 after immunization with HPV recombinant Salmonella strains. Cancer Immunol Immunother,1996,43(1):44-48.
    286. Gunn GR, Zubair A, Peters C, et al. Two Listeria monocytogenes vaccine vectors that express different molecular forms of human papilloma virus-16 (HPV-16) E7 induce qualitatively different T cell immunity that correlates with their ability to induce regression of established tumors immortalized by HPV-16 iramortalized by HPV-16. J Immunol,2001,167(11): 6471-6479.
    287. Sewell DA, Douven D, Pan ZK, et al. Regression of HPV-positive tumors treated with a new Listeria monocytogenes vaccine. Arch Otolaryngol Head Neck Surg.,2004,130(1):92-97.
    288. Liu B, Ye D, Song X, et al. A novel therapeutic fusion protein vaccine by two different families of heat shock proteins linked with HPV16 E7 generates potent antitumor immunity and antiangiogenesis. Vaccine,2008,26:1387-1396.
    289. Swell DA, Pan ZK, Paterson Y. Liateria-based HPV-16 E7 vaccines limit autochthonous tumor growth in a transgenic mouse model for HPV-16 transformed tumom. Vaccine,2008,26(41): 5322-5327.
    290. Jabbar IA, Fernando GJ, Saunders N, et al. Immune responses induced by BCG recombinant for human papillomavirus L1 and E7 proteins. Vaccine,2000,18(22):2444-2453.
    291. Chu NR, Wu HB, Wu TC, et al. Immunotherapy of a human papillomavirus (HPV) type 16 E7-expressing tumour by administration of fusion protein comprising Mycobacterium bovis bacille Calmette-Gue-rin (BCG) hsp65 and HPV16 E7. Clin Exp Immunol,2000,121:216-225.
    292. Cella M, Sallusto F, Lanzavecchia A, et al. Origin, maturation and antigen presenting function of dendritic cells. Curr Opin Immunol,1997,9(1):10-16.
    293. Hart DN. Dendritic cells:unique leukocyte populations which control the primary immune response. Blood.1997 Nov 1;90(9):3245-87.
    294. Inaba K, Inaba M, Romani N, et al. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J Exp Med,1992,176(6):1693-1702.
    295. Lyman SD. Biology of flt3 ligand and receptor. Int J Hematol,1995,62(2):63-73.
    296. Lyman SD, Jacobsen SE. c-kit ligand and Flt3 ligand:stem/progenitor cell factors with overlapping yet distinct activities. Blood,1998,91(4):1101-1134.
    297. Santin AD, Hermonat PL, Ravaggi A, et al. Induction of human papiilomavirus-specific CD4(+)and CD8(+) lymphocytes by E7-pulsed autolngous dendritic cells in patients with human papillomavirus type 16-and 18-positive cervical cancer. J Virol,1999,73(7):5402-5410.
    298. Kang TH, Lee JH, Bae HC, et al. Enhancement of dendritic cell-based vaccine potency by targeting antigen to endosomal/lysesomal compartments. Immunol Lett,2006,106(2):126-134.
    299. Hung CF, Monie A, Alvarez RD, et al. DNA vaccines for cervical cancer: from bench to bedside. Exp Mol Med,2007,39(6):679-689.
    300. Hallez S, Detremmerie O, Giannouli C, et al. Interleukin-12-secreting human papillomavirus type 16-transformed cells provide a potent cancer vaccine that generates E7-directed immunity. Int J Cancer,1999,81(3):428-437.
    301. Bubenik J, Simova J, Hajkova R, et al. Interleukin 2 gene therapy of residual disease in mice carrying tumours induced by HPV 16. Int J Oncol,1999,14(3):593-597.
    302. Cao X, Zhang W, Wang J, et al. Therapy of established tumor with a hybrid cellular vaccine generated by using granulocyte-macrophage colony-stimulatin factor genetically modified dendritic cells. J Immunol,1999,97(4):616-625.
    303. Da Silva DM, Velders MP, Rudolf MP, et al. Papillomavirus virus-like particles as anticancer vaccines. Curr Opin Molec Ther,1999,1:82-88.
    304. Greenstone HL, Nieland JD, de Visser KE, et al. Chimeric papillomavirus virus-like particles elicit antitumor immunity against the E7 oncoprotein in an HPV 16 tumor model. Proc Natl Acad Sci USA,1998,95:1800-1805.
    305. Peng S, Frazer IH, Fernando GJ, et al. Papillomavirus viruslike particles can deliver defensed CTL epitopes to the MHC class I pathway. Virology,1998,240:147-157.
    306. Schafer K, Muller M, Faath S, et al. Immune response to human papillomavirus 16 L1E7 chimeric virus-like particles:induction of cytotoxic T cells and specific tumor protection. Int J Cancer,1999,81:881-888.
    307. Nieland JD, Da Silva DM, Velders MP, et al. Chimeric papillomavirus virus-like particles induce a murine self-antigen-specific protective and therapeutic antitumor immune response. J Cell Biochem,1999,73:145-152.
    308. Liu WJ, Liu XS, Zhao KN, et al. Papillomavirus virus-like particles for the delivery of multiple cytotoxic T cell epitopes. Virology,2000,273:374-382.
    309. De Jong A, O'Neill T, Khan A Y, et al. Enhancement of human papillomavirus type 16 E6 and E7-specific T-cell immunity in healthy volunteers through vaccination with TA-CIN an HPV 16 L2E7E6 fusion protein vaccine. Vaccine,2002,20(29-30):3256-3464.
    310. Karanam B, Gambhira R, Peng S, et al. Vaccination with HPV16 L2E6E7 fusion protein in GPI-0100 adjuvant elicits protective humoral and cell-mediated immunity. Vaccine,2009,27: 1040-1049.
    311. Kaufmann AM, Nieland JD, Jochmus I, et al. Vaccination trial with HPV16 L1 E7 chimeric virus-like particles in women suffering from higll grade cervical intraepithelial neoplasia(CIN 2/3). Int J Cancer,2007,121:2794-2800.
    312. Fiander AN, Tristram AJ, Davidson EJ, el al. Prime-boost vaccination strategy in women with high-grade, noncervical anogenital intraepithelial neoplasia: clinical results from a multicenter phase Ⅱ trial. Int J Gynecol Cancer,2006,16(3):1075-1081.
    313. Christensen ND, Piekel MD, Budgeon LR, et al. In vivo anti-papillomavirus activity of nucleoside analogues including cidofovir on CBPV-induced rabbit papillomas. Antiviral Res, 2000,48(2):131-142.
    314. Slomovitz BM, Sun CC, Frumovitz M, et al. Are women ready for the cervical cancer vaccine? Gynecol Oncol,2005,96: 912a.
    315. Bayas JM, Costas L, Munoz A. Cervical cancer vaccination indications, efficacy, and side effects. Gynecol Oncol,2008,110(3):11-14.
    316. Govan VA. A novel vaccine for cervical cancer:quadrivalent human papilloma virus(types 6, 11,16 and 18)recombinant vaccine(Gardasil). Ther Clin Risk Manag,2008,4(1):65-70.
    317. Schwarz TF, Leo O. Immune response to human papillomavirus after prophylactic vaccination with ASO4-adjuvanted HPV-16/18 vaccine; improving upon nature. Gynecol Oncol,2008, 110(1):1-10.
    318. Harper DM. Impact of vaccination with cervarixtrade mark on subsequent HPV-16/18 infection and cervical disease in women 15-25 years of age. B JOG,2008,115(8):938-946.
    319. Muderspach L, Wilczynski S, Roman L, et al. A phase I trial of a human papillomavirus (HPV) peptide vaccine for women with high-grade cervical and vulvar intraepithelial neoplasia who are HPV 16 positive. Cin Cancer Res,2000,6(9):3406-3416.
    320. Steller MA, Gurski KJ, Murakami M, et al. Cell-mediated immunoligical responses in cervical and vaginal cancer patients immunized with a lapidated epitope of human papillomavirus type 16 E7. Cin Cancer Res,1998,4(9):2103-2109.
    321.王小兵。人乳头状瘤病毒(HPV)疫苗的研究进展。中国肿瘤生物治疗杂志,2005,12(1):80-83.
    322. Tillman BW, Hayes TL, GeGruijl TD, et al. Adenoviral Vectors Targeted to CD40 enhance the efficacy of dendritic cell-based vaccination against human papillomavirus 16-induced tumor cells in a murine model Cancer Res,2000,60(19):5456-5463.
    323. Kaufmann AM, Stern PL, Rankin EM, et al. Safety and immunogenicity of TA-HPV, a recombinant vaccinia virus expressing modified human papillomavirus(HPV)-16 and HPV-18 E6 and E7 gene, in women with progressive cervical cancer. Clin Cancer,2002,8(12):3676-3685.
    324. Baldwin PJ, van der Burg SH, Boswell CM, et al. Vaccinia-expressed human papillomavirus 16 and 18 e6 and e7 as a therapeutic vaccination for vulval and vaginal intraepithelial neoplasia. Clin Cancer,2003,9(14):5205-5213.
    325. Gareia-Hernandez E, Gorlzalez-Sanchez JL, Andrade-Manzano A, et al. Regression of papilloma high-grade lesions (CIN 2 and CIN 3) is stimulated by therapeutic vaccination with MVA E2 recombinant vaccine. Cancer Gene Ther,2006,13(6):592-597.
    326. Santin AD, Bellone S, Palmieri M, et al. Human papillomvirus type 16 and 18 E7-pulsed dendritic cell vaccination of stage IB or IIA cervical cancer patients:a phase I escalating-dose trial. J Virol,2008,82(4):1968-1979.
    327. Lacey CJ, Thompson HS, Monteiro EF, et al. Phase Ⅱ a safety and immunigenicity of a therapeutic vaccine, TAGW, in persons with genital warts J Infect Dis,1999,179(03): 612-618.
    328. Start L, Dalton R, Archana B, et al. Clinical trial and postlicensure safety profile of a prophylactic human papillomavims (Types 6,11,16, and 18)L1 virus-like particle vaccine. The Pediatric Infectious Disease Journal,2010,29(2):1-71.
    329. Lee PW, Kwan TT, Tam KF, et al. Beliefs about cervical cancer and human pap illomavirus (HPV) and accept ability of HPV vaccination among Chinese women in Hong Kong. Prev Med, 2007,45(2-3):130-134.
    330. Kwan TT, Chan KK, et al. Barriers and facilitators to human papillomavirus vaccination among Chinese adolescent girls in Hong Kong:a qualitative-quantitative study. Sex Transm Infect, 2008,84(3):227-232.
    331. Chan SS, Cheung TH, Lo WK, et al. Women's attitudes on human papillomavirus vaccination to their daughters. J Adolesc Health,2007,41(2):204-207.
    332. Tay SK, Ngan HY, Chu TY, et al. Tay EH. Epidemiology of human pap illomavirus infection and cervical cancer and future perspectives in Hong Kong, Singapore and Taiwan. Vaccine, 2008,26,12:60-70.
    333.李静,屠铮,等。北京市社区妇女人乳头瘤病毒感染率及其对HPV和疫苗认知情况的调查分析。中国肿瘤,2008,17(3):168-172.
    334. Brabin L, Roberts SA, Farzaneh F, et al. Future acceptance of adolescent human pap illomavirus vaccination:a survey of parental attitudes. Vaccine,2006,24:3087-3094.
    335. Olshen E, Woods ER, Austin SB, et al. Parental acceptance of the human pap illomavirus vaccine. J Adolesc Health,2005,37:248-251.
    336. Marlow LV, Waller J, Wardle J. Public awareness that HPV is a risk factor for cervical cancer. Br J Cancer.2007,97(5):691-694.
    337. Jennifer Mc Intosh, Deborah A, Sturpe, et al. Human pap illomavirus vaccine and cervical cancer p revention:Practice and policy implications for pharmacists. J Am Pharm Assoc,2008, 48(1):1-17.
    338.朱雪琼,石一复。HPV疫苗预防子宫颈癌临床研究进展。实用肿瘤杂志,2010,25(1):12-16.
    339. Harper DM. Currently app roved p rophylactic HPV vaccines. Expert Rev Vaccines,2009, 8(12):16632-1679.
    340. Lombard I, Vincent-Salomon A, Validire P, et al. Human papillomavirus genotype as a major deaerminant of the course of cervical cancer. J Clin Oncol,1998,16:2613-2619.
    341. McLachlin CM. Human papillomavirus in cervical neoplasia:Role, risk factors, and implications. Clin Lab Med,2000,20(2):257-270
    342. Walboomers JM, Jacobs MV, Manos MM, et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol,1999,189(1):12-19.
    343.罗利群,李洁,刘绣,等。HPV58型E7基因重组痘苗疫苗免疫保护作用的实验研究。中国医学科学院学报,2003,25(1):43-46
    344. Paul K S Chan, Wai-Hon L1, May Y M Chan, et al. High prevalence of human papillomavirus type 58 in Chinese women with cervical cancer and precancerous lesions. Med Virology,1999, 59:232-238.
    345.徐云升,郝飞。HPV16型E7抗原表位的研究进展。中华皮肤科杂志,2003,36(5):300-302.
    346. Tighe H, Corr M, Roman M, et al. Gene vaccination:plamid DNA is more than just a blueprint. Immunol Today,1998,19(2):8-9.
    347. Ikezawa H. Glycosyl-phosphatidyl-inositol (GPI)-anchored proteins. Biol Pharm Bull,2002,25(4):409-17.
    348. Medof M.E, Nagarajan S, Tykocinski M.L. Cell surface engineering with GPI-anchored proteins. FASEB J,1996,10(5):574-586.
    349.阎瑾琦,刘国栋,刘荷中,等。双顺反子真核表达载体pVAXl-IRES的构建与鉴定。军事医学科学院院刊,2008,32(2):111-115.
    350.刘宁,阎瑾琦,冉多良,等。肿瘤基因疫苗免疫增效载体pVAX1-IRES-GM/B7的构建与表达。军事医学科学院院刊。2008,3:249-252.
    351.人白细胞介素12双亚基共表达pVAX1-IRES-hIL12载体的构建与表达。王伟,高江平,阎瑾琦。军医进修学院学报,2010,31(6):600-603.
    1 Parkin DM. Global cancer statistics in the year 2000. Lancet Oncol 2001,2:533-543.
    2 李连弟,鲁凤珠,张思维,等。中国恶性肿瘤死亡率20年变化趋势和近期预测分析。中华肿瘤杂志,1997,19(1):3-9.
    3 李连弟,鲁凤珠,张思维,等。 中国恶性肿瘤死亡谱及分类构成特征研究.中华肿瘤杂志,1997;19(1):3-9.
    4 杨玲,皇浦小梅,张思维,等。中国20世纪70年代与90年代子宫颈癌死亡率及其变化趋势。 中国医学科学院学报,2003,25(4):386-390.
    5 Lombard I, Vincent-Salomon A, Validire P, et al. Human papillomavirus genotype as a major deaerminant of the course of cervical cancer. J Clin Oncol,1998,16:2613-2619.
    6 McLachlin CM. Human papillomavirus in cervical neoplasia:Role, risk factors, and implications. Clin Lab Med 2000; 20(2):257-70.
    7 Walboomers JM, Jacobs MV, Manos MM, et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol 1999,189(1):12-19.
    8 黄薇,李力,余冬青,等。广西壮族自治区8009例妇科恶性肿瘤住院患者的构成特点及变化趋势。中华妇产科杂志,2007,42(1):22-25.
    9 刘继红,关明飞,钱德英,等。中国和澳大利亚妇女子宫颈上皮内瘤变人乳头瘤病毒感染和相关危险因素的病例对照研究。中华流行病学杂志,2007,28(10):958-963.
    10张咏梅,周晶,龚志红。湘潭地区HPV感染及不同亚型分布。中国现代医生,201O,48(34):108-109.
    1 1徐虹,张巨香,施晓华,等。乐清地区妇女宫颈HPV感染及亚型分布调查研究。中国现代医生,2009,47(15):17-19.
    12江敬红,张蔚,王卓然,等。HPV亚型在宫颈疾病中的分布特点。现代妇产科进展,2009,18(10):758-761.
    13徐亚萍,刘欣,王秀会。潍坊地区宫颈病变HPV感染率及型别分布的研究。潍坊医学院学报,2010,32(1):14-16.
    14刘金风。甘肃省以医院为基础的子宫颈癌及宫颈高度内瘤变患者HPV感染及型别分布。中国初级卫生保健,2008,22(9):32-33.
    15古扎丽努尔15可不力孜,帕提曼·米吉提,李庭芳,等。HPV各亚型在新疆各地区维吾尔 族宫颈癌患者中的分布研究。新疆医科大学学报,2009,32(5):513-517.
    16乔友林。中国妇女人乳头瘤病毒感染和子宫颈癌的流行病学研究现状及其疫苗预防前景。中华流行病学杂志,2007,28(10):937-940.
    17 Clifford GM, Smith JS, Plummer M, et al. Human papillomavirus types in invasive cervical cancer worldwide:a meta analysis. Br J Cancer,2003,88(1):63-73.
    18 Bosch FX, Manos MM, Munoz N, et al. Prevalence of human papillomavirus in cervical cancer:a worldwide perspective. J Natl Cancer Inst,1995,87:796-802.
    19 Cervantes J, Lema C, Hurtado LV, et al. HLA-DRB1*1602 allele ispositively associated with HPV cervical infection in Bolivian Andean women. Hum Immunol,2003,64(9): 890-895.
    20 Paul K S Chan, Wai-Hon L1, May YM Chan, et al. High prevalence of human papillomavirus type 58 in Chinese women with cervical cancer and precancerous lesions. J Med Virology,1999,59:232-238.
    21 Ylitalo N, Sorensen P, Josefsson AM, et al. Consistent high viral load of human papillomavirus 16 and risk of cervical carcinoma in situ:a nested case-control study. Lancet, 2000,355(9222):2194-2198.
    22 Ho GY, Studentsov YY, Bierman R, et al. Natural history of human papillomavirus type 16 virus-like particle antibodies in young women. Cancer Epidemiol Biomarkers Prev,2004, 13:110-116.
    23 Moberg M, Gustavsson I, Wilander E, et al. High viral loads of human papillomavirus predict risk of invasive cervical carcinoma. Br J Cancer,2005,92:891-894.
    24 Bigras G, de Marval F. The probability for a Pap test to be abnormal is directly proportional to HPV viral load:results from a Swiss study comparing HPV testing and liquid-based cytology to detect cervical cancer precursors in 13842 women. Br J Cancer,2005,93(5): 575-81.
    25钱德英,岑坚敏,王丁,等。高危型人乳头瘤病毒DNA检测与细胞学联合检查对子宫颈癌前病变筛查的研究。中华妇产科杂志,2006,41(1):34-37.
    26李隆玉,乔志强。宫颈癌前病变患者治疗前后HPV病毒负荷量变化的临床分析。中华肿瘤防治杂志,2006,13(4):298-300.
    27 Nygard J F, Sauer T, Skjeldestad F E, et at. CIN 2/3 and cervical caDcer after an ASCUS pap smear. A 7-year, prospectivestudy of the Norwegian population-based, coordinated screening program. Acta Cytol,2003,47(6):991-1000.
    28 Liaw KL, Hildesheim A, Burk RD, et at. A prospective study of human papillomavirus (HPV) type 16 DN A detection by polymerase chain reaction and its association with acquisition and persistence of other HPV types. J Infect Dis.,2001,183(1):8-15.
    29 McLemofc M R. Gardasil:Introducing the new human papillomavirus vaccine, clin J Oncol Nufs,2006,10(5):559-560.
    30 Franco E L, Harper D M. Vaccination against human papillomavirus infection: A new paradigm in cervical cancer control. Vaccine,2005.23(17-18):2388-2394.
    31 De Gruijl TD, Bontkes HJ, Walboomers JM, et al. Differential T helper cell responses to human papillomavirus type 16 E7 related to viral clearance or persistence in patients with cervical neoplasia: a longitudinal study. Cancer Res.1998,58(8):1700-1706.
    32 Kadish AS, Ho GY, Burk RD, et al. Lymphoproliferative responses to human papillomavirus (HPV) type 16 proteins E6 and E7:outcome of HPV infection and associated neoplasia. J Natl Cancer Inst.1997,89(17):1285-39.
    33 Touze A, Coursaget P. In vitro gene transfer using human papillomavirus-like particles. Nucleic Acids Res.1998,26:1317-1323.
    34 zur Hausen H. Papillomaviruses and cancer: from basic sludies to clinical application. Nat Rev Cancer,2002,2:342-350.
    35 Luo LQ, Li J, Zhang YH, et al. Transforming activity and immunogenicity of HPV58 E7. International Symposium on Biology of Cancer Prevention and Treatment, Beijing, 1999. Beijing:Chinese Society of Oncology, Chinese Medical Association,1999
    36杨海宁,于修平,卞继峰,等.人乳头瘤病毒58型E6蛋白对p53的作用研究.中华微生物学和免疫学杂志,2003,23(4):296-299.
    37 Boursnell ME, Rutherford E, Hickling JK, et al. Construction and characterlzation ofa recombinant vaceinia virus expressing human papillomavirus proteins for inm motherapy of cervical cancer. Vaccine,1996,14(16):1485-1494.
    38 Smahel M, Sima P, Ludvikova V, et al. Modified HPVl6 E7 genes as DNA vaccine against E7-containing oncogenic cells. Virology,2001,281(2):231238.
    39 Griffiths T R L, Mellon J K. Humanpapillomavirus and urological tumous Basic science and role in. pentl cancer. BJU Int,1999,84:579-586.
    40 Nakagawa S, Watanabe S, Yoshikawa H, et Mutational analysis of human papillomavirus type 16E6 protein:transforming function forhuman cells and degradation of p53 in vitro. Virology,1995,212(2):535-542.
    41 BrehmA, Nielsen S J, Miska E A, et al. The E7 oncoprotein associates with Mi2 and histone deacetylase activity to promote cell growth. EMB J,1999,18(9):2449-2458.
    42 M. Cristina Cassetti, Sue P. McElhiney, Vafa Shahabi, et al. Antitumor efficacy of Venezuelan equine encephalitis virus replicon particles encoding mutated HPV16 E6 and E7 genes. Vaccine 20042, (2):520-527.
    43骆卫峰,韩立群,任皎,等。人乳头瘤病毒16型E6和E7基因及其突变体转化活性的研究。病毒学报,2002,18(2):97-101.
    44罗利群,李洁,刘绣,等.HPV58型E7基因重组痘苗疫苗免疫保护作用的实验研究。中国医学科学院学报,2003,25(1):43-46.
    45 Ertl H.C, Xiang Z.Q, Genetic immunization J Viral Immunnol,1996,9(1):1-9.
    46 Lewis P.J, Babiuk L.A. DNA vaccines:a review. Adv Virus Res,1999,54:129-88.
    47 Pecher G. DNA-based tumor vaccines. Onkologie.2002,25(6):528-532.
    48 PoLandG.A, Murray D, BonilLa-Guerrero R. New vaccine development. BMJ,2002, 324(7349):1315-1319.
    49 Tighe H, Corr M, Roman M, et al. Gene vaccination:Plamid DNA is more than just a blueprint. Immunol Today,1998,19(2):8-9.
    50 Ferrone C R, Perales M A, Goldberg S M et al. Adjuvanticity of plasmid DNA encoding cytokines fused to immunoglobulin Fc domains. Clin Cancer Res,2006,12(18):5511-5519.
    51 Udenfriend S, KodukuLa K. How glycosylphosphatidyl inositol-anchored membrane proteins are made. Annu Rev Biochem,1995,64:563-591.
    52 Ikezawa H. Glycosyl-phosphatidyl-inositol (GPI)-anchored proteins. Biol Pharm Bull,2002,25(4):409-417.
    53 Medof M.E, Nagarajan S, Tykocinski M.L. Cell surface engineering with GPI-anchored proteins. FASEB J,1996,10(5):574-586.
    54阎瑾琦,刘国栋,刘荷中,等。双顺反子真核表达载体pVAX1-IRES的构建与鉴定。军事医学科学院院刊,2008,32(2):111-115.
    55刘宁,阎瑾琦,冉多良等。肿瘤基因疫苗免疫增效载体pVAXl-IRES-GM/B7的构建与表达。军事医学科学院院刊,2008,3: 249-252.
    56 Yu J, Burwick J, Dranoff G, et al. Gene therapy for metastatic brain tumors by vaccination with granulocyte-macrophage colony-stimulating factor transduced tumors cells. Human gene therpy,1997,8(9):1065-1072.
    57 Nakazaki Y, Tani K, Lin Z.T, et al. Vaccine effect of granulocyte-macrophage colony-stimulating factor or CD80 gene-transduced murine hematopoietic tumor cells and their cooperative enhancement of anti-tumor immunity. Gene Therpy, 1998,5(10):1355-1362.
    58 Koga M, Kai H, Egami K, et al. Mutant MCP-Ⅰ therapy inhibits tumor angiogenesis and growth of malignant melanoma in mice. Biochem Biophys Res Commun,2008,365(2): 279-284.
    59 Li B, Lalani AS, Harding TC, et al. Vascular endothelial growth factor blockade reduces intrarumoral regulatory T cells and enhances the efficacy of a GM-CSF-secreting cancer immunotherapy.Clin Cancer Res,2006,12(22):6808-6816.
    60 Ugen KE. Kutzler MA, Marrero B, et al. Regression of subcutaneous B16 melanoma tumors after intratumoral delivery of 81 It IL-15-expressing plasmid followed by in vivo electroporation. Cancer Gene Ther,2006,13(10):969-674.
    61 Mountford PS, Smith AG. Internal ribosome entry site and dicistronic RNAs in mammalian transgenesis. Trends Genet,1995,11(5):179-184.
    62 Wagstaff M, Lilley C, Smith J, et al. Gene transfer using a disabled herpes virus vector containing the EMCV IRES allows multiple gene expression in vitro and in vivo. Gene Ther. 1998,5(11):1566-1570.
    63詹林盛,饶林,彭剑淳,等。HCV IRES介导萤火虫荧光素酶翻译的双顺反子载体的构建与在小鼠体内的表达。中国生物化学与分子生物学报,2004,20(3):3330-3341.
    64 Robert Mierendof, Keith Yeager, et al. The pET system:Your chioce for expression. Advanced Products and Protocols for Molecular Biology Reseach,1994,1(1):3-36.
    65张锐,孙美榕,欧阳红生,等。真核基因在pET系统中表达出现的问题与拟解决的方案。生物技术,2004,14(2):62-63.
    66 Speidel K, Osen W, Faath S, et al. Priming of cytotoxic T lymphocytes by five heat-aggregated antigens in vivo:conditions, efficiency, and relation to antibody responses. Eur J Immunol,1997,27(9):2391-2399.
    67 Stauss HJ, Davies H, Sadnikova E, et al. Induction of CTLs with peptides in vitro: identification of candidate T-cell epitopes in HPV. Proc Natl Acad Sci USA,1992,89(17): 7871-7875.
    68 Gao L, Chain B, Sinclair C, et al. Immune response to human papillomavirus type-16 E6 gene in a live vaccine vector. J Gen Virol,1994,75(Pt 1):157-164.
    69 De Bruijn ML, Schuurhuis DH, Vierboom MP, et al. Immunization with human papillomavirus type 16(HPV16) oncoprotein-loaded dendritic cells as well as protein inadjuvant induces MHC class I-restricted protection to HPV16-induced tumor cells. Cancer Res,1998,58(4):724-731.
    70 Brinkman JA, Xu X, Kast WM. The efficacy of a DNA vaccine containing inserted and replicated region of the E7 gene for treatment of HPV-16 induced tumors. Vaccine,2007, 25(17):3437-3444.
    71 Brulet JM, Maudoux F, Thomas S, et al. DNA vaccine encoding endosome-targeted human papillomavirus type 16 E7 protein generates CD4+T cell-dependent protection. Eur J Immunol,2007,37:376-384.
    72 Yan J. Harris K. Khall AS. et al. Cellular immunity induced by a novel HPV18 DNA vaccine encoding an E6/E7 fusion consensusprotein in mice and rhesus macaques. Vaccine,2008, 26:5210-5215.
    73 Wolff JA, Malone RW, Williams P, et al. Direct gene transfer into mouse muscle in vivo. Science,1990,247:1465-1468.
    74 Neumannn E, Schaefer-Ridder M, Wang Y, et al. Gene transfer in mouse lyoma cells by electroporation in high electric fields. EMBO J,1982,1:841-845.
    75 Harrison RL, Byrne BJ, Tung L. Electroporation-mediated gene transfer in cardiac tissue. FEBS Lett,1998,435:1-5.
    76 Heller R, Jaroszeski M, Atkin A, et al. In vivo gene electroinjection and expression in rat liver. FEBS Lett,1996,389:225-228.
    77 Nishi T, Yoshizato K, Yamashiro S, et al. High-efficiency in vivo gene transfer using intraarterial plasmid DNA injection following in vivo electroporation. Cancer Res,1996,56: 1050-1055.
    78 Aihara H, Miyazaki J. Gene transfer into muscle by eletroporation in vivo. Nat Bio,1998, 16:867-870.
    79 Rizzuto G, Gappelletti M, MennuniC,et al. Gene electrotransfer results in a high-level transduction of rat skeletal muscle and corrects anemia of renal failure. Hum gene Ther, 2000,11(3):1891.
    80 Dev SB, Caban JB, Nanda GS, et al. Magnetic resonance studies of laryngeal tumors in nude mice:effect of treatment with bleomycin and electroporation. Magen Reson Imag,2002, 20(5):389.
    81 Cassetti MC, McElhiney SP, Shahabi V, et al. Antitumor efficacy of Venezuelan equine encephalitis virus replicon particles encoding mutated HPV 16 E6 and E7 genes. Vaccine, 2004,22:520-527.
    82 Rakhmilevich AL, Jamssem K, Turner J, et al. Cytokine gene therapy of cancer using gene gun technology:superior antitumor activity of interleukin-12. Human Gene Therapy,1997, 8:1303.
    83 Kim JJ, Yang JS, Dang K, et al. Engineering enhancement of immune responses to DNA-based vaccines in a prostate cancer model in rhesus macaques through the use of cytokine gene adjuvants. Clin Cancer Res,2001,7(3 Suppl):882-889.
    84邹丽容,方芳,陈则.1L-12增强流感血凝素DNA疫苗在小鼠中抗流感作用。微生物学杂志,2004,5(24):11-13。
    85杜德伟,周永兴,焦成松,等.IL-12对乙型肝炎DNA疫苗诱导小鼠免疫应答的影响。第四军医大学学报,2000,21(7):805-807.
    86 Bonyhadi ML, Kaneshima H. The SCID-hu mouse:an in vivo model for HIV-1 infection in humas. Mol Med Today.1997,3: 246-253

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700