用户名: 密码: 验证码:
新型有机微量元素添加剂的合成、表征及生物效价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微量元素是生物体内所必需的营养元素之一,直接参与机体几乎所有的生理和生化过程,对生命活动起着极其重要的作用。它们参与生命机体组成,以酶的活化因子参与体内物质代谢,维持机体正常的生理功能和作为调节因子影响细胞复制和分化。微量元素在生物体内一般以配位化合物形式存在,它们主要以金属微量元素(如Fe、Cu、Zn等)为中心离子、以生物大分子(如糖类、蛋白质和核酸)为配体形成生物金属螯合物。目前国内外应用的有机微量元素添加剂均为二元配合物,如蛋氨酸锌,甘氨酸铁等。本文在二元配合物添加剂的研究基础上提出了三元配合物在微量元素添加剂领域的应用研究。
     由于金属配合物的结构和性质直接决定了微量元素在生物体内的作用机制,本文基于有机微量元素的配位结构和生物活性之间关系的研究基础,做了如下工作:
     (1)选择了4种传统必需微量元素(铜、锰、锌、钴)、1种新型必需微量元素镍、和1种可能必需微量元素镉为研究对象,选择2,5-吡啶二羧酸(H_2PYDC)作为酸性配体,分别以2,2’-联吡啶(bipy)、1,10-邻菲罗啉(phen)和苯并咪唑(bim)作为芳香氮碱配体,设计合成了25个有机微量元素配合物。
     (2)用元素分析、红外光谱、摩尔电导、电子光谱和X射线单晶衍射等方法对所合成的配合物进行结构表征。得到9个配合物的单晶解析结构。
     (3)用细胞生物学手段对所合成的配合物对HepG2和BRL细胞株进行活性筛选。通过实验,研究了配合物对细胞的增殖抑制作用、细胞形态结构以及对细胞株的毒性的影响。
     重点讨论了配合物的合成方法和条件对其结构的影响,针对目前所应用的有机微量元素配合物生物效价低以及元素之间的拮抗作用,提出三元配合物具有更多变的异构体结构和广泛的分子内配体之间和分子间的相互作用,对细胞株表现出比二元配合物更多样的作用机制。得到如下结果:
     (1)所合成的25个配合物具有多变、新颖的构型和广泛的分子内及分子间相互作用。中心金属离子呈现多四方角锥、八面体等多种配位构型和五、六等配位数,PYDC配体也呈现出螯合、桥连等多种配位形式,分子间存在芳环堆积、O-H…O氢键、N-H…O氢键以及三中心O-H…(O,O)氢键等相互作用,在空间,分子呈现出二维、三维等空间网络结构。
     (2)经细胞生物学筛选结果,所合成的25个配合物中有19个配合物具有生物活性,所合成的6个二元配合物均具有生物活性,6个三元配合物的活性强于其对应的二元配合物,分别为:三元锰配合物8的活性强于二元锰配合物5,三元钴配合物12的活性强于二元钴配合物9,三元锌配合物16活性强于二元锌配合物13,三元镍配合物18和20的活性强于二元镍配合物17,三元镉配合物25的活性强于二元镉配合物22。
     (3)有4个微量元素体系,即:锰配合物系列、钴配合物系列、锌配合物系列和镉配合物系列。其三元配合物体系(M-PYDC-bim)生物活性强于其相对的二元配合物(M-PYDC)。
     该论文对三元配合物作为有机微量元素应用的前景提供实验依据和理论推测。
Trace elements are essential nutrients in biological bodies since they play critical roles in almost all the physiological and biochemical processes including active factors of enzymes and influence on reproduction of cell. Binding of metal trace elements to biological molecular ligands construct to chelate in bodies. The activities of organic trace elements are all binary complexes both at home and abroad, such as zinc-methionine and iron-glycine etc. Based on the above theory, the ternary complexes are used in nutritional additives field. The biological activities of complexes are determined by their structures. The main works in this thesis are as follows:
     1. Four traditional essential trace elements (copper, manganese, zinc, cobalt), one novel essential trace element(nickel) and one potentially essential trace element are chosen as central ions, 2, 5-pyridine dicarboxylic acid, 2, 2'-bipyridine, 1, 10-phenanthroline and benzimidazole are chosen as ligands.
     2. The structures of these complexes were characterized by elemential analysis, infrared spectra, molar conductance, electronic spectrum and x-ray diffraction methods. Nine crystal structures are determined by x-ray diffraction.
     3. The biological activities of these complexes were studied by cell culture method. HepG2 and BRL cell strain are used to determine the influence of these complexes on cell proliferation, morphology and toxicity.
     The methods and conditions were discussed which may influence the structure of complexes. Ternary complexes may have more effects on the cell for they have two ligands and therefore the higher bioavailability and lower antagonism of trace elements are expected. The results are as follows:
     1. These complexes have variable coordination geometry, intramolecular and intermolecular interaction. For example, some central ions are five-coordinated while some are six-coordinated; some complexes are square-pyramidal while others are octahedral; the PYDC ligand shows chelate and bridge forms; three kinds of hydrogen bonds in complexes(O-H…O, N-H…O and bifurcated O-H…(O, O)) andπ-πinteraction are also found in some complexes; there are two kinds of hydrogen bond network (2D and 3D).
     2. 19 complexes have biological activities and 6 ternary complexes are better than corresponding binary complexes. In detail, manganese complex 8 is better than manganese complex 5, cobalt complex 12 is better than cobalt complex 9, zinc complex 16 is better than zinc complex 13, nickel complex 18 and 20 are better than nickel complex 17, cadmium complex 25 is better than cadmium 22.
     3. The biological activities of the ternary M-PYDC-bim complex are better than binary M-PYDC complex in four trace elements series. They are manganese series, cobalt series, zinc series and cadmium series.
     In general, the thesis will provide experimental basis and academic presume for utilization of ternary complex in additive field.
引文
1. Cousins R J. Nutritional Regulation of Gene Expression. The American Journal of Medicine, 1999, 106: 20-23
    2. Cousins R J. Metal Elements and Gene Expression. Annual Review of Nutrition, 1994, 14: 449-469
    3.朱莲珍.人和动物的微量元素营养.青岛:青岛出版社,1994.
    4. Rotilio G. Interaction of metal ions with proteins: an overview. Inorganica Chimica Acta, 1980, 40: 49-62
    5. Kuvibidila S and Warrier R P. Differential effects of iron deficiency and underfeeding on serum levels of interleukin-10, interleukin-12p40, and interferon-gamma in mice. Cytokine, 2004, 26: 73-81
    6. Calder P C. Nutrition et fonction immunitaireNutrition and immune function. Nutrition Clinique et Metabolisme, 2001, 15: 286-297
    7. Ruffolo C G, Helen Jost B and Adler B. Iron-regulated outer membrane proteins of Pasteurella multocida and their role in immunity. Veterinary Microbiology, 1998, 59: 123-137
    8. Vyoral D and Petrak J. Hepcidin: A direct link between iron metabolism and immunity. The International Journal of Biochemistry & Cell Biology, 2005, 37: 1768-1773
    9. Mertz W. The essential trace elements. Science, 1981, 213: 1332-1338
    10. Raquel Dominguez T B, Encarnaci S, Adela B, Jose′ A C, Jose′ M F, Pilaf B. Study of the effect of different iron salts used to fortify infantformulas on the bioavailability of trace elements usingICP-OES. International Dairy Journal, 2004, 14: 1081-1087
    11. Abrams S A W J, StuffJ E. Absorption of calcium, zinc, and iron from breast milk from five-to-seven-month-old infants. Pediatric Research. 1996, 39: 384-390
    12. Chandra R K and Dayton D H. Trace-element regulation of immunity and infection. Nutrition Research, 1982, 2: 721-733
    13. Leung F Y. Trace Elements in Parenteral Micronutrition. Clinical Biochemistry, 1995, 28: 561-566
    14. Micheael C A, Melanie C J K. Compatibility and Stability of Additives in Parenteral Nutrition Admixtures. Nutrition, 1998, 14: 697-706
    15. Raquel Dominguez T B, Encarnacion Sousa, Adela Bermejo, Jose′ A. Cocho, Jose′ M. Fraga, Pilar Bermejo,. Study of the effect of different iron salts used to fortify infant formulas on the bioavailability of trace elements using ICP-OES. International Dairy Journal, 2004, 14: 1081-1087
    16. Spears J W. Organic trace minerals in ruminant nutrition. Animal Feed Science and Technology, 1996, 58: 151-163
    17. Li M H and Robinson E H. Comparison of. chelated zinc and zinc sulfate as zinc sources for growth and bone mineralization of channel catfish (Ictalurus punctatus) fed practical diets. Aquaculture, 1996, 146: 237-243
    18. Paripatananont T and Lovell R T. Chelated zinc reduces the dietary zinc requirement of channel catfish, Ictalurus punctatus. Aquaculture, 1995, 133: 73-82
    19. Spears J W, Schlegel P, Seal M C and Lloyd K E. Bioavailability of zinc from zinc sulfate and different organic zinc sources and their effects on ruminal volatile fatty acid proportions. Livestock Production Science, 2004, 90: 211-217
    20. Revy P S, Jondreville C, Dourmad J Y and Nys Y. Effect of zinc supplemented as either an organic or an inorganic source and of microbial phytase on zinc and other minerals utilisation by weanling pigs. Animal Feed Science and Technology, 2004, 116: 93-112
    21. Cao J, Henry P R, Davis S R, Cousins R J, Miles R D, Littell R C and Ammerman C B. Relative bioavailability of organic zinc sources based on tissue zinc and metallothionein in chicks fed conventional dietary zinc concentrations. Animal Feed Science and Technology, 2002, 101: 161-170
    22.杨建成,王鹏.微量元素氨基酸螯合物研究进展.饲料世界,2002,5:1-4
    23.杨桂芹,张龙雷.微量元素氨基酸螯合物的营养功能及其在动物生产中的应用.河南畜牧兽医,2006,27:8-9
    24.谭会泽,冯定远.蛋白质氨基酸金属螯合物在动物营养中的应用研究进展.广东饲料,2001,10:29-32
    25. Shah A S, Shuichi S, Viswanath K. Supplementation of citric acid and amino acid-chelated trace element to develop environment-friendly feed for red sea bream, Pagrus major. Aquaculture, 2005, 248: 3-11
    26. Tan B and Mai K. Zinc methionine and zinc sulfate as sources of dietary zinc for juvenile abalone, Haliotis discus hannai Ino. Aquaculture, 2001, 192: 67-84
    27. Puchala R, Sahlu T and Davis J J. Effects of zinc-methionine on performance of Angora goats. Small Ruminant Research, 1999, 33: 1-8
    28. Suhajda A, Hegoczki J, Janzso B, Pais I and Vereczkey G. Preparation of selenium yeasts I. Preparation of selenium-enriched Saccharomyces cerevisiae. Journal of Trace Elements in Medicine and Biology, 2000, 14: 43-47
    29. Wang H, Zhang J and Yu H. Elemental selenium at nano size possesses lower toxicity without compromising the fundamental effect on selenoenzymes: Comparison with selenomethionine in mice. Free Radical Biology and Medicine. In Press, Corrected Proof:
    30. Jia X, Li N and Chen J. A subchronic toxicity study of elemental Nano-Se in Sprague-Dawley rats. Life Sciences, 2005, 76: 1989-2003
    31. Zhang J, Wang H, Yan X and Zhang L. Comparison of short-term toxicity between Nano-Se and selenite in mice. Life Sciences, 2005, 76: 1099-1109
    32. Zhang J, Wang H, Bao Y and Zhang L. Nano red elemental selenium has no size effect in the induction of seleno-enzymes in both cultured cells and mice. Life Sciences, 2004, 75: 237-244
    33.欧阳培,何灌生.细胞内金属螯合物.西安:陕西科学技术出版社,1989.
    34. Dennis R W, Laran T J, Chandra S. Metal-ion regulation of gene expression in yeast. Current Opinion in Chemical Biology, 1998, 2: 216-221
    35. Matthews R G and Goulding C W. Enzyme-catalyzed methyl transfers to thiols: the role of zinc. Current Opinion in Chemical Biology, 1997, 1: 332-339
    36. Monzani E, Casella L, Gullotti M, Panigada N, Franceschi F and Papaefthymiou V. Cytochrome c oxidase models. Dinuclear iron/copper complexes derived from covalently modified deuteroporphyrins. Journal of Molecular Catalysis A: Chemical, 1997, 117: 199-204
    37. Randaccio L, Geremia S and Wuerges J. Crystallography of vitamin B12 proteins. Journal of Organometallic Chemistry, 2007, 692: 1198-1215
    38. Stanley J Opella T M D, Gianluigi V. Structural biology of metal-binding sequences. Bioionorganic chemistry, 2002, 6: 217-223
    39. Chen C-J, Lin Y-H, Huang Y-C and Liu M-Y. Crystal structure of rubredoxin from Desulfovibrio gigas to ultra-high 0. 68 A resolution. Biochemical and Biophysical Research Communications, 2006, 349: 79-90
    40. Brandao-Neto J, Stefan V, Mendonca B B, Bloise, Castro W A V B. The essential role of zinc in growth. Nutrition Research, 1995, 15: 335-358
    41. Barcelo-Oliver M, Terron A, Garcia-Raso A and Molins E. Models for thyroxine: Aromatic iodine-assisted self-assemblies. Polyhedron.In Press, CorrectedProof:
    42. Faure P, Barclay D, Joyeux-Faure M and Halimi S. Comparison of the effects of zinc alone and zinc associated with selenium and vitamin E on insulin sensitivity and oxidative stress in high-fructose-fed rats. Journal of Trace Elements in Medicine and Biology. In Press, Corrected Proof:
    43. Duzguner V and Kaya S. Effect of zinc on the lipid peroxidation and the antioxidant defense systems of the alloxan-induced diabetic rabbits. Free Radical Biology and Medicine. In Press, Corrected Proof:
    44. Licastro F, Mocchenegiani E, Zannoti M. Essential trace elements and thyroid hormones. The Lancet, 1992, 339: 1575-1576
    45. Guerrero-Romero F. and Rodriguez-Moran M. Complementary Therapies for Diabetes: The Case for Chromium, Magnesium, and Antioxidants. Archives of Medical Research, 2005, 36: 250-257
    46. Shrivastava R, Upreti R K, Seth P K and Chaturvedi U C. Effects of chromium on the immune system. FEMS Immunology and Medical Microbiology, 2002, 34: 1-7
    47. Verga Falzacappa M V and Muckenthaler M U. Hepcidin: Iron-hormone and anti-microbial peptide. Gene, 2005, 364: 37-44
    
    48. Dolinska B and Ryszka F. The properties of slightly soluble Zn(II)-protein complexes in the form of a suspension. II Farmaco, 2005, 60: 71-75
    
    49. Lukaski H C, Hall C B and Marchello M J. Body temperature and thyroid hormone metabolism of copper-deficient rats. The Journal of Nutritional Biochemistry, 1995, 6: 445-451
    
    50. Hardman B, Manuelpillai U, Wallace E M, Monty J F, Kramer D R, Kuo Y M, Mercer J F B and Ackland M L. Expression, Localisation and Hormone Regulation of the Human Copper Transporter hCTR1 in Placenta and Choriocarcinoma Jeg-3 Cells. Placenta, 2006,27: 968-977
    
    51. Beltramini M, Zambenedetti P, Wittkowski W and Zatta P. Effects of steroid hormones on the Zn, Cu and MTI/II levels in the mouse brain. Brain Research, 2004, 1013: 134-141
    
    52. Liu N Q, Xu Q, Hou X L, Liu P S, Chai Z F, Zhu L, Zhao Z Y, Wang Z H and Li Y F. The distribution patterns of trace elements in the brain and erythrocytes in a rat experimental model of iodine deficiency. Brain Research Bulletin, 2001, 55: 309-312
    
    53. Chen C-J, Ou Y-C, Lin S-Y, Liao S-L, Chen S-Y and Chen J-H. Manganese modulates pro-inflammatory gene expression in activated glia. Neurochemistry International, 2006,49: 62-71
    
    54. Keith M E and Jeejeebhoy K N. Immunonutrition. Bailliere's Clinical Endocrinology and Metabolism, 1997,11: 709-738
    
    55. Davidson J and Fan S. Copper Status Affects Immune Response by Modulating Macrophage Response to Stimuli. Journal of the American Dietetic Association, 1997, 97: A18-738
    
    56. Rink L and Haase H. Zinc homeostasis and immunity. Trends in Immunology, 2007,28: 1-4
    
    57. Cunningham-Rundles S, McNeeley D F and Moon A. Mechanisms of nutrient modulation of the immune response. Journal of Allergy and Clinical Immunology, 2005,115: 1119-1128
    
    58. Chandra R K. Trace elements and immune responses. Immunology Today, 1983,4:322-325
    
    59. Li S X, Deng N S, Zheng F Y. Effect of digestive site acidity and compatibility on the species,lipopily and bioavailability of iron, manganese and zinc in Prunus persica Batsch and Carthamus tinctorus. Bioorganic & Medicinal Chemistry Letters, 2004, 14: 505-510
    
    60. LoPachin R M, Gaughan C L, Lehning E J, Weber M L and Taylor C P. Effects of ion channel blockade on the distribution of Na, K, Ca and other elements in oxygen-glucose deprived CA1 hippocampal neurons. Neuroscience, 2001, 103: 971-983
    
    61. Li G J, Choi B-S, Wang X, Liu J, Waalkes M P and Zheng W. Molecular mechanism of distorted iron regulation in the blood-CSF barrier and regional blood-brain barrier following in vivo subchronic manganese exposure. NeuroToxicology, 2006, 27: 737-744
    
    62. Eschbach J W. Iron requirements in erythropoietin therapy. Best Practice & Research Clinical Haematology, 2005,18: 347-361
    
    
    63. Goodnough L T. Erythropoietin and iron-restricted erythropoiesis. Experimental Hematology, 2007, 35: 167-172
    
    64. Higgins P D R and Rockey D C. Iron-deficiency anemia. Techniques in Gastrointestinal Endoscopy, 2003, 5: 134-141
    
    65. Michael W, Pfaffl B G, Bosio A, Wilhelm Windisch. Effect of zinc deficiency on the mRNA expression pattern in liver and jejunum of adult rats: Monitoring gene expression using cDNA microarrays combined with real-time RT-PCR. Journal of Nutritional Biochemistry, 2003, 14: 691-702
    
    66. Pfaffl M W and Windisch W. Influence-of zinc deficiency on the mRNA expression of zinc transporters in adult rats. Journal of Trace elements in Medicine and Biology, 2003,17: 97-106
    
    67. Iwase K, Nagasaka A, Kato K, Itoh A, Jimbo S, Hibi Y, Kobayashi N, Yamamoto H, Seko T and Miura K. Cu/Zn- and Mn-Superoxide Dismutase Distribution and Concentration in Adrenal Tumors. Journal of Surgical Research, 2006, 135: 150-155
    
    68. Fabio V, Raffaella C E F, Francesco V, Fabio N, Elena M. Intestinal Damage Induced by Zinc Deficiency is Associated with Enhanced CuZn Superoxide Dismutase Activity in Rats Effect of Dexamethasone or Thyroxine Treament. Free Radical Biology & Medicine, 1999, 26: 1194-1201
    
    69. Goldhaber S B. Trace element risk assessment: essentiality vs. toxicity. Regulatory Toxicology and Pharmacology, 2003, 38: 232-242
    
    70. Aggett P J. 1 Physiology and metabolism of essential trace elements: An outline. Clinics in Endocrinology and Metabolism, 1985, 14: 513-543
    
    71. Bedwal R S, Nair N, Sharma M P and Mathur R S. Selenium-Its biological perspectives. Medical Hypotheses, 1993,41: 150-159
    
    72. Patriarca M, Menditto A, Di Felice G, Petrucci F, Caroli S, Merli M, Valente C. Recent Developments in Trace Element Analysis in the Prevention, Diagnosis, and Treatment of Diseases. Microchemical Journal, 1998, 59: 194-202
    
    73. Amantana A V R, Butler J A, Costa N D, Whanger P D. Effect of copper, zinc and cadmium on the promoter of selenoprotein W in glial and myoblast cells. Journal of Inorganic Biochemistry, 2002, 91: 356-362
    74. Harraki B, Guiraud P, Rochat M H, Alary J, Favier A. Interaction related to trace elements in parenteral nutrition. Pharmaceutica Acta Helvetiae, 1995, 70: 269-278
    
    75. Wapnir R A and Balkman C. Intestinal absorption of copper: Influence of carbohydrates. Biochemical Medicine and Metabolic Biology, 1992,47: 47-53
    
    76. Wapnir R A and Balkman C. Intestinal absorption of copper: Effect of amino acids. Nutrition Research, 1990, 10: 589-595
    
    77. Igarashi K, Nakanishi Y, Hirunuma R, Enomoto S and Kimura S. Multitracer study on the uptake of various trace elements in anemic rats: influence of NaFeEDTA and ferrous sulfate. Nutrition Research, 2006, 26: 173-179
    
    78. Allen J D, Gawthorne J M. Involvement of organic molybdenum compounds in the interaction between copper, molybdenum, and sulfur. Journal of Inorganic Biochemistry, 1986,27: 95-112
    
    79. Blumenthal S, Lewand D, Sochanik A, Krezoski S and Petering D H. Inhibition of Na+-Glucose Cotransport in Kidney Cortical Cells by Cadmium and Copper: Protection by Zinc. Toxicology and Applied Pharmacology, 1994, 129: 177-187
    
    80. Arredondo M and Nunez M T. Iron and copper metabolism. Molecular Aspects of Medicine, 2005,26: 313-327
    
    81. Ramirez-Cardenas L, Costa N M B and Reis F P. Copper-iron metabolism interaction in rats. Nutrition Research, 2005, 25: 79-92
    
    82. Barany E, Bergdahl I A, Bratteby L E, Lundh T, Samuelson G, Skerfving S and Oskarsson A. Iron status influences trace element levels in human blood and serum. Environmental Research,'2005, 98:215-223
    
    83. Zerounian N R and Linder M C. Effects of copper and ceruloplasmin on iron transport in the Caco 2 cell intestinal model. The Journal of Nutritional Biochemistry, 2002, 13: 138-148
    
    84. Taylor G J, Stadt K J and Dale M R T. Modelling the interactive effects of aluminum, cadmium, manganese, nickel and zinc stress using the Weibull frequency distribution. Environmental and Experimental Botany, 1992, 32: 281-293
    
    85. Shukla G S and Chandra S V. Effect of interaction of Mn2+ with Zn2+, Hg2+ and Cd2+ on some neurochemicals in rats. Toxicology Letters, 1982, 10: 163-168
    
    86. He P P, Lv X Z and Wang G Y. Effects of Se and Zn supplementation on the antagonism against Pb and Cd in vegetables. Environment International, 2004, 30: 167-172
    
    87. Fisher G L, McNeill K L and Democko C J. Trace element interactions affecting pulmonary macrophage cytotoxicity. Environmental Research, 1986, 39: 164-171
    88. Evans G W, Majors P F and Comatzer W E. Mechanism for cadmium and zinc antagonism of copper metabolism. Biochemical and Biophysical Research Communications, 1970,40: 1142-1148
    
    89. Coudray C, Feillet-Coudray C, Rambeau M, Tressol J C, Gueux E, Mazur A and Rayssiguier Y. The effect of aging on intestinal absorption and status of calcium, magnesium, zinc, and copper in rats: A stable isotope study. Journal of Trace Elements in Medicine and Biology, 2006,20: 73-81
    
    
    90. Sun J-Y, Jing M-Y, Wang J-F, Zi N-T, Fu L-J, Lu M-Q and Pan L. Effect of zinc on biochemical parameters and changes in related gene expression assessed by cDNA microarrays in pituitary of growing rats. Nutrition, 2006, 22: 187-196
    
    91. Irato P and Albergoni V. Interaction between copper and zinc in metal accumulation in rats with particular reference to the synthesis of induced-metallothionein. Chemico-Biological Interactions, 2005, 155: 155-164
    
    92. Varada K R, Harper R G and Wapnir R A. Development of Copper Intestinal Absorption in the Rat. Biochemical Medicine and Metabolic Biology, 1993, 50: 277-283
    
    93. Reeves P G. Copper metabolism in metallothionein-null mice fed a high-zinc diet. The Journal of Nutritional Biochemistry, 1998, 9: 598-601
    
    94. Reeves P G and Rossow K L. Zinc-and/or cadmium-induced intestinal metallothionein and copper metabolism in adult rats. The Journal of Nutritional Biochemistry, 1996, 7: 128-134
    
    95. Reeves P G, Rossow K L and Bobilya D J. Zinc-induced metallothionein and copper metabolism in intestinal mucosa, liver, and kidney of rats. Nutrition Research, 1994,14: 897-908
    
    96. Condomina J, Zornoza-Sabina T, Granero L and Polache A. Kinetics of zinc transport in vitro in rat small intestine and colon: interaction with copper. European Journal of Pharmaceutical Sciences, 2002, 16: 289-295
    
    97. Evans G W, Grace C I and Hahn C. The effect of copper and cadium on 65Zn absorption in zinc-deficient and zinc-supplemented rats. Bioinorganic Chemistry, 1974,3: 115-120
    
    98. Madge D S. Feed additives and intestinal absorption in mice. Comparative and General Pharmacology, 1973, 4: 365-373
    
    99. Knopfel M, Smith C and Solioz M. ATP-driven copper transport across the intestinal brush border membrane. Biochemical and Biophysical Research Communications, 2005, 330: 645-652
    
    100. Anderson G J, Frazer D M, McKie A T and Vulpe C D. The Ceruloplasmin Homolog Hephaestin and the Control of Intestinal Iron Absorption. Blood Cells, Molecules, and Diseases, 2002, 29: 367-375
    101. Endo T, Kimura O, Hatakeyama M, Takada M and Sakata M. Effects of zinc and copper on cadmium uptake by brush border membrane vesicles. Toxicology Letters, 1997,91: 111-120
    
    102. Fischer P W F and L'Abbe M R. Copper transport by intestinal brush border membrane vesicles from rats fed high zinc or copper deficient diets. Nutrition Research, 1985, 5:759-767
    
    103. Davis D A and Gatlin I D M. Dietary mineral requirements of fish and marine crustaceans. Rev. Fish. Sci, 1997,4: 75-99
    
    104.Ashmead H D.The Roles of Amino Acid Chelates in Animal Nutrition. NJ, Noyes Publications, Park Ridge, 1992.
    
    105. Wang C, Lovell R T. Organic selenium sources, selenomethionine and selenoyeast, have higher bioavailability than an inorganic selenium source, sodium selenite, in diets for channel catfish (Ictalurus punctatus). Aquaculture, 1997, 152: 223- 234.
    
    106. Apines-Amar M J S, Satoh S, C. Caipang M A, Kiron V, Watanabe T and Aoki T. Amino acid-chelate: a better source of Zn, Mn and Cu for rainbow trout, Oncorhynchus mykiss. Aquaculture, 2004,240: 345-358
    
    107. Harmuth-Hoene A-E, Vladar M and Ohrtmann R. Iron(III)-exchange between transferrin and chelates in vitro. Chemico-Biological Interactions, 1970, 1: 271-283
    
    108. Apines M J S, Satoh S, Kiron V, Watanabe T and Aoki T. Availability of supplemental amino acid-chelated trace elements in diets containing tricalcium phosphate and phytate to rainbow trout, Oncorhynchus mykiss. Aquaculture, 2003, 225:431-444
    
    109. Kabata H, Inui K-i and Itokawa Y. The binding of manganese to the brush-border membrane vesicles of rat small intestine. Nutrition Research, 1989, 9: 791-799
    
    110. Monroe J F, Patrick M. Mn Asorption: The use of CACO-2 cell as a model of the intestinal epithelia. Nutritional Biochemistry, 1997, 8: 92-101
    
    111. Bolan N S, Adriano D C and Mahimairaja S. Distribution and bioavailability of traceelements in livestock and poultry manure by-products. Critical Reviews in Environmental Science and Technology, 2004, 34: 291-338
    
    112. Elmes M E, Clarkson J P and Gwyn Jones J. Plasma zinc and jejunal mucosal zinc in gastric carcinoma. The Science of The Total Environment, 1984, 34: 49-56
    
    113. Glover C N, Bury N R and Hogstrand C. Zinc uptake across the apical membrane of freshwater rainbow trout intestine is mediated by high affinity, low affinity, and histidine-facilitated pathways. Biochimica et Biophysica Acta (BBA) - Biomembranes, 2003, 1614: 211-219
    114. Glover C N, Bury N R and Hogstrand C. Intestinal zinc uptake in freshwater rainbow trout: evidence for apical pathways associated with potassium efflux and modified by calcium. Biochimica et Biophysica Acta (BBA) - Biomembranes, 2004, 1663: 214-221
    115. Handy R D, Eddy F B and Baines H. Sodium-dependent copper uptake across epithelia: a review of rationale with experimental evidence from gill and intestine. Biochimica et Biophysica Acta (BBA) - Biomembranes, 2002, 1566: 104-115
    116. Jason Tennant M S, Sachie Y, Surjit K S, Paul S. Effects of copper on the expression of metal transporters in human intestinal Caco-2 cells. FEBS Letters, 2002, 527: 239-244
    117. Hartiti S, Lopez-Aliaga I, Barrionuevo M, Lisbona F, Pallares I, Alferez M J. M, Gomez-Ayala A E and Campos M S. Zinc metabolism in rats: Effects of intestinal resection, cholecalciferol and ascorbic acid. Nutrition Research. 1994, 14: 1523-1534
    118. Watanabe T, Kiron V, Satoh S. Trace minerals in fish nutrition. Aquaculture, 1997, 15: 185-207
    119. Bertolo R F P, Bettger W J and Atkinson S A. Divalent metals inhibit and lactose stimulates zinc transport across brush border membrane vesicles from piglets. The Journal of Nutritional Biochemistry, 2001, 12: 73-80
    120.尹继广.食品添加剂——柠檬酸锌的合成与分析.化工时刊,2006,20:38-39
    121.高胜利,侯育冬,张晓玉.锌添加剂的合成.化学通报,1999,30-34
    122.李奎,洪作鹏.甘氨酸亚铁的合成和结构表征.饲料广角,2006,(9):18-19
    123.郝素娥.新型添加剂——有机铬.精细与专用化学品,2000,8:17-18
    124. Gedye R S F, Westaway K, Ali H. The uses of microwave ovens for rapid organic synthesis. Tetrahedron Letter, 1986, 27: 279-282
    125.杨新斌.微波辐射固相法合成富马酸锌.应用化工,2005,34:560-562
    126. Worms I, Simona D F, Simon, Hasslera C S, Wilkinsonb K J. Bioavailability of trace metals to aquatic microorganisms: importance of chemical, biological and physical processes on biouptake. Biochimie, 2006, 88: 1721 - 1731
    127. Khursheed N, Jeejeebhoy M B B S. The role of chromium in nutrition and therapeutics and as a potential toxin. Nutrition Reviews, 1999, 57: 329-335
    128.陈强,李清禄,兰国政.烟酸铬 (Ⅲ) 的配位结构与生物活性关系.结构化学,2003,22:346-350
    129. Palmer B M, Vogt S, Chen Z, Lachapelle R R and LeWinter M M. Intracellular distributions of essential elements in cardiomyocytes. Journal of Structural Biology, 2006, 155: 12-21
    130. Lopez-Alonso M, Prieto F, Miranda M, Castillo.C, Hernandez J R and Benedito J L. Intracellular distribution of copper and zinc in the liver of copper-exposed cattle from northwest Spain. The Veterinary Journal, 2005, 170: 332-338
    
    131. Soldo D, Hari R, Sigg L and Behra R. Tolerance of Oocystis nephrocytioides to copper: intracellular distribution and extracellular complexation of copper. Aquatic Toxicology, 2005, 71: 307-317
    
    132. Zeng H and Botnen J H. Copper may interact with selenite extracellularly in cultured HT-29 cells. The Journal of Nutritional Biochemistry, 2004,15: 179-184
    
    133. Kayali H A and Tarhan L. Influence of zinc and copper ions on metals transport, antioxidant system responses and membrane LPO levels of F. equiseti and F. acuminatum. Enzyme and Microbial Technology, 2003, 33: 828-835
    
    134. Haas, Michael J S, Randa H, Mohamad H G, Freij W, Norman C. Mooradian W, Arshag D. Effect of Chromium on Apolipoprotein A-I Expression in HepG2 Cells. Nutrition, 2003,19: 353-357
    
    135. Haas M J, Sawaf R, Horani M H, Gobal F, Wong N C W and Mooradian A D. Effect of Chromium on Apolipoprotein A-I Expression in HepG2 Cells. Nutrition, 2003,19:353-357
    
    136. Walter P L, Kampkotter A, Eckers A, Barthel A, Schmoll D, Sies H and Klotz L-O. Modulation of FoxO signaling in human hepatoma cells by exposure to copper or zinc ions. Archives of Biochemistry and Biophysics, 2006,454: 107-113
    
    137. Fotakis G and Timbrell J A. Role of trace elements in cadmium chloride uptake in hepatoma cell lines. Toxicology Letters, 2006, 164: 97-103
    
    138. Nagamine T, Kusakabe T, Takada H, Nakazato K, Sakai T, Oikawa M, Satoh T and Arakawa K. Interferon[beta] -induced changes in metallothionein expression and subcellular distribution of zinc in HepG2 cells. Cytokine, 2006, 34: 312-319
    
    139. Duncan E J, Thompson M P and Phua S H. Zinc protection of HepG2 cells from sporidesmin toxicity does not require de novo gene transcription. Toxicology Letters, 2005, 159: 164-172
    
    140. Urani C, Calini V, Melchioretto P, Morazzoni F, Canevali C and Camatini M. Different induction of metallothioneins and Hsp70 and presence of the membrane transporter ZnT-1 in HepG2 cells exposed to copper and zinc. Toxicology in Vitro, 2003,17:553-559
    
    141. Perez M J and Cederbaum A I. Metallothionein 2A induction by zinc protects HEPG2 cells against CYP2E1-dependent toxicity. Free Radical Biology and Medicine, 2003, 34: 443-455
    
    142. Urani C, Melchioretto P, Morazzoni F, Canevali C and Camatini M. Copper and zinc uptake and hsp70 expression in HepG2 cells. Toxicology in Vitro, 2001, 15: 497-502
    143. Satre M A, Jessen K A, Clegg M S and Keen C L. Retinol binding protein expression is induced in HepG2 cells by zinc deficiency. FEBS Letters, 2001, 491: 266-271
    144. Hussain S M, Hess K L, Gearhart J M, Geiss K T and Schlager J J. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicology in Vitro, 2005, 19: 975-983
    145. Green L M, Reade J L and Ware C F. Rapid colormetric assay for cell viability: Application to the quantitation of cytotoxic and growth inhibitory lymphokines. Journal of Immunological Methods, 1984, 70: 257-268
    146. Shugaev B B, Bukhalovskii, A A. Toxicity of sodium pyridinecarboxylate (nicotinate) and pyridinedicarboxylate. Toksikol. Gig. Prod. Neftekhim. Neftekhim. Proizvod, 1972, 236-246
    147.张秀英,李书静.吡啶二甲酸镓、铟配合物的合成及生物活性.化学研究与应用,2005,17 (6):772-776
    148. Patel R N, Singh N, Shukla K K, Gundla V L N and Chauhan U K. Synthesis, characterization and biological activity of ternary copper(Ⅱ) complexes containing polypyridyl ligands. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2006, 63: 21-26
    149. Patel R N, Singh N, Shukla K K, Niclos-Gutierrez J, Castineiras A, Vaidyanathan V G and Nair B U. Characterization and biological activities of two copper(Ⅱ) complexes with diethylenetriamine and 2, 2'-bipyridine or 1, 10-phenanthroline as ligands. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2005, 62: 261-268
    150. Zhao Z, Arnaiz D O, Griedel B, Sakata S, Dallas J L, Whitlow M, Trinh L, Post J, Liang A, Morrisse y M M and Shaw K J. Design, synthesis, and in vitro biological activity of benzimidazole based factor Xa inhibitors. Bioorganic & Medicinal Chemistry Letters, 2000, 10: 963-966
    1.郭宝林,贾志海,张玉枝.畜禽铜营养研究进展.饲料工业,2005,26:48-52
    2. Liu L, Song J-f, Yu P-f and Cui B. Voltammetric determination of glucose based on reduction of copper(Ⅱ)-glucose complex at lanthanum hydroxide nanowire modified carbon paste electrodes. Talanta, 2007, 71: 1842-1848
    3. Ribeiro A C F, Esteso M A, Lobo V M M, Valente A J M, Simoes S M N, Sobral A J F N and Burrows H D. Interactions of copper (Ⅱ) chloride with sucrose, glucose, and fructose in aqueous solutions. Journal of Molecular Structure, 2007, 826: 113-119
    4. Stahlhut H S, Whisnant C S, Lloyd K E, Baird E J, Legleiter L R, Hansen S L and Spears J W. Effect of chromium supplementation and copper status on glucose and lipid metabolism in Angus and Simmental beef cows. Animal Feed Science and Technology, 2006, 128: 253-265
    5. Cerchiaro G, Sant' Ana A C, Temperini M L A and Costa Ferreira A M. Investigations of different carbohydrate anomers in copper(Ⅱ) complexes with d-glucose, d-fructose, and d-galactose by Raman and EPR spectroscopy. Carbohydrate Research, 2005, 340: 2352-2359
    6. Sharma M C, Joshi C, Pathak N N and Kaur H. Copper status and enzyme, hormone, vitamin and immune function in heifers. Research in Veterinary Science, 2005, 79: 113-123
    7. Arredondo M and Nunez M T. Iron and copper metabolism. Molecular Aspects of Medicine, 2005, 26: 313-327
    8. Rosenzweig A C and Sazinsky M H. Structural insights into dioxygen-activating copper enzymes. Current Opinion in Structural Biology, 2006, 16: 729-735
    9. Ramirez-Cardenas L, Costa N M B and Reis F P. Copper-iron metabolism interaction in rats. Nutrition Research. 2005, 25: 79-92
    10. Tapiero H, Townsend D M and Tew K D. Trace elements in human physiology and pathology. Copper. Biomedecine & Pharmacotherapy, 2003, 57: 386-398
    11. Zelko I N, Mariani T J and Folz R J. Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radical Biology and Medicine, 2002, 33: 337-349
    12. Hough M A and Hasnain S S. Crystallographic structures of bovine copper-zinc superoxide dismutase reveal asymmetry in two subunits: functionally important three and five coordinate copper sites captured in the same crystal. Journal of Molecular Biology, 1999, 287: 579-592
    13. Murao K, Takamiya M, Ono K, Takano H and Takio S. Copper deficiency induced expression of Fe-superoxide dismutase gene in Matteuccia struthiopteris. Plant Physiology and Biochemistry, 2004,42: 143-148
    
    14. Sampson J B and Beckman J S. Hydrogen Peroxide Damages the Zinc-Binding Site of Zinc-Deficient Cu,Zn Superoxide Dismutase. Archives of Biochemistry and Biophysics, 2001, 392: 8-13
    
    15. Suzuki M, Takeuchi H, Kakita T, Unno M, Katayose Y and Matsuno S. The involvement of the intracellular superoxide production system in hepatic ischemia-reperfusion injury: In vivo and in vitro experiments using transgenic mice manifesting excessive CuZn-SOD activity. Free Radical Biology and Medicine, 2000, 29: 756-763
    
    
    16. Lindley P, Zaitseva I, Zaitsev V, Ralph A and Card G The structure of human ceruloplasmin at 3.0 A resolution: A putative role of the protein as a ferroxidase in the plasma. Journal of Inorganic Biochemistry, 1997, 67: 40
    
    17. Zaitsev V, Zaitseva I, Card G, Ralph A, Bax B and Lindley P. Human ceruloplasmin: X-ray structure determination at 3.1 A resolution. Journal of Inorganic Biochemistry, 1995, 59: 719-160
    
    18. Beinert H. Copper in biological systems. A report from the 7th Manziana conference, held at Santa Severa, September 11-15, 1995. Journal of Inorganic Biochemistry, 1996, 64: 79-100
    
    19. Hilton M, Spenser D C, Ross P, Ramsey A and McArdle H J. Characterisation of the copper uptake mechanism and isolation of the ceruloplasmin receptor/copper transporter in human placental vesicles. Biochimica et Biophysica Acta (BBA) - General Subjects, 1995, 1245: 153-160
    
    20. Cherukuri S, Potla R, Sarkar J, Nurko S, Harris Z L and Fox P L. Unexpected role of ceruloplasmin in intestinal iron absorption. Cell Metabolism, 2005,2:309-319
    
    21. Petrak J. and D. Vyoral. Hephaestin~a ferroxidase of cellular iron export. The International Journal of Biochemistry & Cell Biology, 2005, 37: 1173-1178
    
    22. Calder P C. Nutrition et fonction immunitaireNutrition and immune function. Nutrition Clinique et Metabolisme, 2001,15: 286-297
    
    23. Minatel L. and Carfagnini J C. Copper deficiency and immune response in ruminants. Nutrition Research, 2000,20: 1519-1529
    
    24. Kubena K S. and McMurray D N. Nutrition and the Immune System: A Review of Nutrient-Nutrient Interactions. Journal of the American Dietetic Association, 1996,96: 1156-1164
    
    25. Leung F Y. Trace elements that act as antioxidants in parenteral micronutrition. The Journal of Nutritional Biochemistry, 1998, 9: 304-307
    26. Pan Y, Katula K and Failla M L. Expression of ceruloplasmin gene in human and rat lymphocytes. Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression, 1996, 1307: 233-238
    27. Knopfel M, Smith C and Solioz M. ATP-driven copper transport across the intestinal brush border membrane. Biochemical and Biophysical Research Communications, 2005, 330: 645-652
    28. Shimaoka I, Ishiyama S, Nishino K and Itokawa Y. Effects of a copper-binding peptide from the mushroom Grifola frondosa on intestinal copper absorption. Nutrition Research, 1994, 14: 1331-1337
    29. Holt D, Snowden R, Dinsdale D and Webb M. Intestinal uptake and retention of copper in the suckling rat, Rattus rattus--Ⅳ. Mechanisms of intestinal copper accumulation. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 1987, 86: 191-200
    30. Varada K R, Harper R G and Wapnir R A. Development of Copper Intestinal Absorption in the Rat. Biochemical Medicine and Metabolic Biology, 1993, 50: 277-283
    31. José Antonio Real E A, Carmen Munoz M, Miguel J, Thierry G, Azzedine B, and Francois V. Spin Crossover in a Catenane Supramolecular System Science, 1995, 268: 265 - 267
    32.乐学义,童明良.三元配合物[Cu(L—tyr)(TATP)(H2O)]ClO4.H2O的合成、晶体结构及芳环堆积作用.化学学报,2002,60:367-371
    1. El-Sewedy S M, Abdel-Tawab G A, El-Zoghby S M, Zeitoun R, Mostafa M H and Shalaby S M. Studies with tryptophan metabolites in vitro, effect of zinc, manganese, copper and cobalt ions on kynurenine hydrolase and kynurenine aminotransferase in normal mouse liver. Biochemical Pharmacology, 1974, 23: 2557-2565
    2. Hwang T S, Choi H K and Han H S. Differential expression of manganese superoxide dismutase, copper/zinc superoxide dismutase, and catalase in gastric adenocarcinoma and normal gastric mucosa. European Journal of Surgical Oncology. In Press, Corrected Proof:
    3.孔祥瑞.必需微量元素的营养、生理及临床意义.合肥:安徽科学技术出版社.1982.
    4. Ganadu M L, Pinna G G, Sisini A and Scozzafav A. Mn2+ binding sites of calf liver arginase. Inorganica Chimica Acta, 1984, 92: 9-14
    5. Bond J S. Effect of manganese and amino acids on proteolytic inactivation of beef liver arginase. Biochimica et Biophysica Acta (BBA) - Enzymology, 1973, 327: 157-165
    6. Carvajal N, Venegas A, Oestreicher G and plaza M. Effect of manganese on the quaternary structure of human liver arginase. Biochimica et Biophysica Acta (BBA) - Enzymology, 1971, 250: 437-442
    7. Mochel F, DeLonlay P, Touati G, Brunengraber H, Kinman R P, Rabier D, Roe C R and Saudubray J-M. Pyruvate carboxylase deficiency: clinical and biochemical response to anaplerotic diet therapy. Molecular Genetics and Metabolism, 2005, 84: 305-312
    8. Attwood P V and Geeves M A. Changes in catalytic activity and association state of pyruvate carboxylase which are dependent on enzyme concentration. Archives of Biochemistry and Biophysics, 2002, 401: 63-72
    9. Belinky P A, Goldberg D, Krinfeld B, Burger M, Rothschild N, Cogan U and Dosoretz C G. Manganese-containing superoxide dismutase from the white-rot fungus Phanerochaete chrysosporium: its function, expression and gene structure. Enzyme and Microbial Technology, 2002, 31: 754-764
    10. Liao J, Liu M-Y, Chang T, Li M, Le Gall J, Gui L-L, Zhang J-P, Jiang T, Liang D-C and Chang W-R. Three-dimensional structure of manganese superoxide dismutase from Bacillus halodenitrificans, a component of the so-called "green protein". Journal of Structural Biology, 2002, 139: 171-180
    11. Jiralerspong S, Ge B, Hudson T J and Pandolfo M. Manganese superoxide dismutase induction by iron is impaired in Friedreich ataxia cells. FEBS Letters, 2001, 509: 101-105
    12. Jeong J-H, Kwon E-S and Roe J-H. Characterization, of the Manganese-Containing Superoxide Dismutase and Its Gene Regulation in Stress Response of Schizosaccharomyces pombe. Biochemical and Biophysical Research Communications, 2001,283: 908-914
    
    13. Pera L M, Rubinstein L, Baigori M D, Figueroa L I C and Callieri D A. Influence of manganese on cell morphology, protoplasts formation and [beta]-glucosidase activity in Phaffia rhodozyma. FEMS Microbiology Letters, 1999,171: 155-160
    
    14. Kong B-W, Kim H and Foster D N. Expression analysis and mitochondrial targeting properties of the chicken manganese-containing superoxide dismutase. Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression, 2003, 1625: 98-108
    
    15. Lee B, Pine M, Johnson L, Rettori V, Hiney J K and Dees W L. Manganese acts centrally to activate reproductive hormone secretion and pubertal development in male rats. Reproductive Toxicology, 2006,22: 580-585
    
    16. Nishida S, Nakano T, Kimoto S, Kusunoki T, Suzuki K, Taniguchi N, Murata K and Tomura T T. Induction of manganese superoxide dismutase by thyroid stimulating hormone in rat thyroid cells. FEBS Letters, 1997,416: 69-71
    
    17. Di Lorenzo D, Ferrari F, Agrati P, Vos H de, Apostoli P, Alessio L, Albertini A and Maggi A. Manganese Effects on the Human Neuroblastoma Cell Line SK-ER3. Toxicology and Applied Pharmacology, 1996,140: 51-57
    
    18. Maggi-Capeyron M-F, Cases J, Badia E, Cristol J-P, Rouanet J-M, Besancon P, Leger C L and Descomps B. A diet high in cholesterol and deficient in vitamin E induces lipid peroxidation but does not enhance antioxidant enzyme expression in rat liver. The Journal of Nutritional Biochemistry, 2002,13: 296-301
    
    19. Taylor P N, Patterson H H, Wolinsky I and Klimis-Tavantzis D J. Manganese Deficiency Affects Hdl1 and Hdl2 Composition in Rats. Nutrition Research, 1997,17: 1155-1162
    
    20. Maxwell S, Holm G, Bondjers G and Wiklund O. Comparison of antioxidant activity in lipoprotein fractions from insulin-dependent diabetics and healthy controls. Atherosclerosis, 1997,129: 89-96
    
    21. Basumallik A K. Blood cholesterol profile in guineapigs: Effect of ascorbic acid ingestion on hypercholesterolemia induced by manganese deficiency or overdosage of an anti-thyroid agent in diet. Pathophysiology, 1995,2: 227-233
    
    22. Kabata H, Inui K-i and Itokawa Y. The binding of manganese to the brush-border membrane vesicles of rat small intestine. Nutrition Research, 1989, 9: 791-799
    
    23. Moffat K, Loe R S and Hoffman B M. The structure of metmanganoglobin. Journal of Molecular Biology. 1976, 104: 669-685
    24. Scheuhammer A M and Cherian M G. Binding of manganese in human and rat plasma. Biochimica et Biophysica Acta (BBA) - General Subjects, 1985, 840: 163-169
    25. Moffett R B and Webb T E. Characterization of a messenger RNA transport protein. Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression, 1983,740:231-242
    26. Hancock R G V, Evans D J R and Fritze K. Manganese proteins in blood plasma. Biochimica et Biophysica Acta (BBA) - General Subjects, 1973, 320: 486-493
    27. Biegniewska A, Thebault M T, Zietara M S and Skorkowski E F. Antagonism between cadmium chloride and divalent metal cations in the activation of malic enzyme. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 1993, 104: 155-158
    28. Kasprzak K S, Waalkes M P and Poirier L A. Antagonism by essential divalent metals and amino acids of nickel(II)-DNA binding in vitro. Toxicology and Applied Pharmacology, 1986, 82: 336-343
    29. Hackett J T. Selective antagonism of frog cerebellar synaptic transmission by manganese and cobalt ions. Brain Research, 1976, 114: 47-52
    30. Yarbrough G G, Lake N and Phillis J W. Calcium antagonism and its effect on the inhibitory actions of biogenic amines on cerebral cortical neurones. Brain Research, 1974, 67: 77-88
    1. Randaccio L, Geremia S and Wuerges J. Crystallography of vitamin B12 proteins. Journal of Organometallic Chemistry, 2007, 692: 1198-1215
    2. Rooney J J. The role of the cobalt ion in vicinal interchange reactions catalyzed by coenzyme B 12. Journal of Molecular Catalysis, 1984, 26: 13-16
    3. Cardin D J, Joblin K N, Johnson A W, Lang G and Lappert M F. Coenzyme B12-dependent enzyme reactions I. Emission mossbauer spectroscopic study of ethanolamine-ammonia lyase a coenzyme B12-dependent enzyme. Biochimica et Biophysica Acta (BBA) - Protein Structure, 1974, 371: 44-51
    4. Seki H, Shida T and Imamura M. The cleavage of the carbon-cobalt bond in vitamin B1 2 and coenzyme B1 2 by reduction with electrons in [gamma]-irradiated frozen solutions. Biochimica et Biophysica Acta (BBA) - General Subjects, 1974, 372: 100-108
    6. Fleming B B and Barrows C H. The influence of aging on intestinal absorption of vitamin B12 and niacin in rats. Experimental Gerontology, 1982, 17: 121-126
    7. Gardner R A and Willard J. A new description of catalysis applied to carbonic anhydrase and other reactions. Journal of Molecular Catalysis, 1986, 34: 103-121
    8. Shinar H and Navon G The formation and properties of cobalt (III) carbonic anhydrase. Biochimica et Biophysica Acta (BBA) - Enzymology, 1974, 334: 471-475
    9. Larsen K S, Zhang K and Auld D S. D-Phe complexes of zinc and cobalt carboxypeptidase A. Journal of Inorganic Biochemistry, 1996, 64: 149-162
    10. Barton J K and Basile L A. A cobalt derivative of the restriction enzyme EcoRI. Inorganica Chimica Acta, 1983, 79: 152-153
    11. Pippard M J. Iron, vitamin B12 and folate. Medicine, 2004, 32: 7
    12. Koster W. ABC transporter-mediated uptake of iron, siderophores, heme and vitamin B12. Research in Microbiology, 2001, 152: 291-301
    13. Carretti N G, Ditto A and Guidoni C G. Vitamin B12 levels in pregnancy influence erythropoietin response to anemia. European Journal of Obstetrics & Gynecology and Reproductive Biology, 1998, 80: 63-66
    14. Middleman A B, Emans S J and Cox J. Nutritional vitamin B12 deficiency and folate deficiency in an adolescent patient presenting with anemia, weight loss, and poor school performance. Journal of Adolescent Health, 1996, 19: 76-79
    15. Wang R L, Kong X H, Zhang Y Z, Zhu X P, Narenbatu and Jia Z H. Influence of dietary cobalt on performance, nutrient digestibility and plasma metabolites in lambs. Animal Feed Science and Technology.In Press, Corrected Proof:
    16. El-Sewedy S M, Abdel-Tawab G A, El-Zoghby S M, Zeitoun R, Mostafa M H and Shalaby S M. Studies with tryptophan metabolites in vitro, effect of zinc, manganese, copper and cobalt ions on kynurenine hydrolase and kynurenine aminotransferase in normal mouse liver. Biochemical Pharmacology, 1974, 23: 2557-2565
    17. Chin J H and Delorenzo R J. Cobalt ion enhancement of 2-chloro[3H]adenosine binding to a novel class of adenosine receptors in brain: antagonism by calcium. Brain Research, 1985, 348: 381-386
    18. Hackett J T. Selective antagonism of frog cerebellar synaptic transmission by manganese and cobalt ions. Brain Research, 1976,114: 47-52
    19. Yarbrough G G, Lake N and Phillis J W. Calcium antagonism and its effect on the inhibitory actions of biogenic amines on cerebral cortical neurones. Brain Research, 1974, 67: 77-88
    1. Yousef M I, El Hendy H A, El-Demerdash F M and Elagamy E I. Dietary zinc deficiency induced-changes in the activity of enzymes and the levels of free radicals, lipids and protein electrophoretic behavior in growing rats. Toxicology, 2002, 175: 223-234
    2. Turner A J. Membrane peptidases of the nervous and immune systems. Advances in Neuroimmunology, 1993, 3: 163-170
    3. Erten Y, Kayata M S, Sezer S, Ozdemir F N, Ozyigit P F, Turan M, Haberal A, Guz G, Kaya S and Bilgin N. Zinc Deficiency: Prevalence and Causes in Hemodialysis Patients and Effect on Cellular Immune Response. Transplantation Proceedings, 1998, 30: 850-851
    4. Mocchegiani E, Verbanac D, Santarelli L, Tibaldi A, Muzzioli M, Radosevic-Stasic B and Milin C. Zinc and metallothioneins on cellular immune effectiveness during liver regeneration in young and old mice. Life Sciences, 1997, 61: 1125-1145
    5. Santarelli L, Bulian D, Tibaldi A and Mocchegiani E. Melatonin, zinc, and immune system: Their interactions during the circadian cycle in development and aging. Immunology Letters, 1997, 56: 171-1145
    6. Radulescu R T. Immune modulation by zinc: clues from immunoglobulin structure and function. Immunology Today, 1998, 19: 288
    7. Weiss G, Widner B, Zoller H and Fuchs D. The immunobiology of zinc and the kidney. Immunology Today, 1998, 19: 193-194
    8. Wellinghausen N, Kirchner H and Rink L. The immunobiology of zinc. Immunology Today, 1997, 18: 519-521
    9. Cunningham-Rundles S. Zinc modulation of immune function: Specificity and mechanism of interaction. Journal of Laboratory and Clinical Medicine, 1996, 128: 9-11
    10. A J C. Excessive intake of zinc impairs immune responses. Journal of Allergy and Clinical Immunology, 1985, 75: 12-13
    11. Carlomagno M A and McMurray D N. Chronic zinc deficiency in rats: Its influence on some parameters of humoral and cell-mediated immunity. Nutrition Research, 1983, 3: 69-78
    12. Yamaguchi M and Yamaguchi R. Action of zinc on bone metabolism in rats: Increases in alkaline phosphatase activity and DNA content. Biochemical Pharmacology, 1986, 35: 773-777
    13.不破敬一郎,王子亮.生物体与重金属.北京:中国环境科学出版社,1985.
    14. Eder K and Kirchgessner M. Dietary zinc deficiency and fatty acid metabolism in rats. Nutrition Research, 1996, 16: 1179-1189
    15. Brandao-Neto J, Stefan V, Mendonca B B, Bloise W and Castro A V B. The essential role of zinc in growth. Nutrition Research. 1995,15: 335-358
    16. Olivares M, Pizarro F and Ruz M. New insights about iron bioavailability inhibition by zinc. Nutrition, 2007, 23: 292-295
    17. Hambidge K M, Krebs N F, Westcott J E and Miller L V. Changes in zinc absorption during development. The Journal of Pediatrics, 2006,149: S64-S68
    18. Coudray C, Feillet-Coudray C, Rambeau M, Tressol J C, Gueux E, Mazur A and Rayssiguier Y. The effect of aging on intestinal absorption and status of calcium, magnesium, zinc, and copper in rats: A stable isotope study. Journal of Trace Elements in Medicine and Biology, 2006,20: 73-81
    19. Wapnir R A, Stiel L and Lee S-Y. Zinc intestinal absorption: Effect of carbohydrates. Nutrition Research, 1989,9: 1277-1284
    20. Wapnir R A, Lee S-Y and Stiel L. Intestinal absorption of zinc: Sodium-metal-ligand interactions. Biochemical Medicine and Metabolic Biology, 1989,42: 146-160
    1. Ragsdale S W. Nickel biochemistry. Current Opinion in Chemical Biology, 1998,2:208-215
    2. Hausinger R P. Metallocenter assembly in nickel-containing enzymes Journal of Biological Inorganic Chemistry, 1997, 2: 279-286
    3. Volbeda A. and Fontecilla-Camps J C. Structure-function relationships of nickel-iron sites in hydrogenase and a comparison with the active sites of other nickel-iron enzymes. Coordination Chemistry Reviews, 2005, 249: 1609-1619
    4. Wu L F. Putative nickel-binding sites of microbial proteins. Research in Microbiology, 1992,143: 347-351
    5. Coban T, Beduk Y and Iscan M. In vitro effects of cadmium and nickel on glutathione, lipid peroxidation and glutathione S-transferase in human kidney. Toxicology in Vitro, 1996, 10: 241-245
    6. Wilcox D. and Clark P. Structure and chemistry of the urease Ni(II) active site. Journal of Inorganic Biochemistry, 1989, 36: 300-215
    7. Ermler U, Grabarse W, Shima S, Goubeaud M and Thauer R K. Active sites of transition-metal enzymes with a focus on nickel. Current Opinion in Structural Biology, 1998, 8: 749-758
    8. Volbeda A, Fontecilla-Camps J C and Frey M. Novel metal sites in protein structures. Current Opinion in Structural Biology, 1996, 6: 804-812
    9. Cartana J and Arola L. Nickel-induced hyperglycaemia: the role of insulin and glucagon. Toxicology, 1992, 71: 181-192
    10. Goutet M, Ban M and Binet S. Effects of nickel sulfate on pulmonary natural immunity in Wistar rats. Toxicology, 2000, 145: 15-26
    11. Smialowicz R J, Rogers R R, Riddle M M and Stott G A. Immunologic effects of nickel: I. Suppression of cellular and humoral immunity. Environmental Research, 1984, 33: 413-427
    12. Graham J A, Miller F J, Daniels M J, Payne E A and D. Gardner E. Influence of cadmium, nickel, and chromium on primary immunity in mice. Environmental Research, 1978, 16: 77-87
    13. Feher A, Boross P, Sperka T, Oroszlan S and Tozser J. Expression of the murine leukemia virus protease in fusion with maltose-binding protein in Escherichia coli. Protein Expression and Purification, 2004, 35: 62-68
    14. Piefer A J and Jonsson C B. A comparative study of the human T-cell leukemia virus type 2 integrase expressed in and purified from Escherichia coli and Pichia pastoris. Protein Expression and Purification, 2002, 25: 291-299
    15. Engelman A. Biochemical Characterization of Recombinant Equine Infectious Anemia Virus Integrase. Protein Expression and Purification, 1996, 8: 299-304
    16. Shimada H, Funakoshi T, Inoue T and Kojima S. The effects of sulfhydryl blockers and metal ions on nickel accumulation by rat primary hepatocyte cultures. Toxicology Letters, 2000,118: 87-92
    17. Holmes T J and Rainsford K D. Differential effects of non-genotoxic carcinogens and proliferating agents on cell growth, survival and apoptosis in hepatic cells in vitro. Life Sciences, 2001, 69: 2975-2992
    1. Fediuc E and Erdei L. Physiological and biochemical aspects of cadmium toxicity and protective mechanisms induced in Phragrnites australis and Typha latifolia. Journal of Plant Physiology, 2002, 159: 265-271
    2. Coban T, Beduk Y and Iscan M. In vitro effects of cadmium and nickel on glutathione, lipid peroxidation and glutathione S-transferase in human kidney. Toxicology in Vitro, 1996, 10: 241-245
    3. Rosenberg D W and Kappas A. Induction of heme oxygenase in the small intestinal epithelium: a response to oral cadmium exposure. Toxicology, 1991, 67: 199-210
    4.不破敬一郎,王子亮.生物体与重金属.北京:中国环境科学出版社,1985.
    5. Otsuka F and Ohsawa M. Differential susceptibility of T- and B-lymphocyte proliferation to cadmium: Relevance to zinc requirement in T-lymphocyte proliferation. Chemico-Biological Interactions, 1991, 78: 193-205
    6. Cifone M G, Alesse E, Procopio A, Paolini R, Morrone S, Di Eugenio R, Santoni G and Santoni A. Effects of cadmium on lymphocyte activation. Biochimica et Biophysica Acta (BBA) -Molecular Cell Research, 1989, 1011: 25-32
    7. Bozelka B E and Burkholder P M. Inhibition of mixed leukocyte culture responses in cadmium-treated mice. Environmental Research, 1982, 27: 421-432
    8. Bin X, Zhan L, Zhiming L and Xian Z. Effect of Cadmium on Immune Function and Lymphocyte Calcium Homeostasis. European Neuropsychopharmacology. 1996, 6: 8
    9. Mesna O J, Steffensen I L, Hjertholm H and Andersen R A. Accumulation of metallothionein and its multiple forms by zinc, cadmium and dexamethasone in human peripheral T and B lymphocytes and monocytes. Chemico-Biological Interactions, 1995, 94: 225-242
    10. Azzouzi B E, Tsangaris G T, Pellegrini O, Manuel Y, J. Benveniste and Y. Thomas. Cadmium induced apoptosis in a human T cell line. Toxicology, 1994, 88: 127-139
    11. Sone T, Koizumi S and Kimura M. Cadmium-induced synthesis of metallothioneins in human lymphocytes and monocytes. Chemico-Biological Interactions, 1988, 66: 61-70
    12. Hernandez M and Macia M. Common and differential features in the cadmium and nickel stimulation of macrophage and poly-morphonuclear leukocyte early adherence. Toxicology Letters, 1996, 88: 77
    13. Coteur G, Gillan D, Pernet P and Dubois P. Alteration of cellular immune responses in the seastar Asterias rubens following dietary exposure to cadmium. Aquatic Toxicology, 2005, 73: 418-421
    14. Kasprzak K S, Nakabeppu Y, Kakuma T, Sakai Y, Tsuruya K, Sekiguchi M, Ward J M, Diwan B A, Nagashima K and Kasprzak B H. Intracellular distribution of the antimutagenic enzyme MTH1 in the liver, kidney and testis of F344 ratsand its modulation by cadmium. Experimental and Toxicologic Pathology, 2001, 53: 325-335
    15. Dudley R E, Gammal L M and Klaassen C D. Cadmium-induced hepatic and renal injury in chronically exposed rats: Likely role of hepatic cadmium-metallothionein in nephrotoxicity. Toxicology and Applied Pharmacology, 1985,77:414-426
    16. Mendez-Armenta M and Rios C. Cadmium neurotoxicity. Environmental Toxicology and Pharmacology, 2007,23: 350-358
    17. Morselt A F W, Leene W, De Groot C, Kipp J B A, Evers M, Roelofsen A M and Bosch K S. Differences in immunological susceptibility to cadmium toxicity between two rat strains as demonstrated with cell biological methods. Effect of cadmium on DNA synthesis of thymus lymphocytes. Toxicology, 1988, 48: 127-139
    18. Martin P, Fareh M, Poggi M C, Boulukos K E and Pognonec P. Manganese is highly effective in protecting cells from cadmium intoxication. Biochemical and Biophysical Research Communications, 2006, 351: 294-299
    19. George Fotakis J A T. Role of trace elements in cadmium chloride uptake in hepatoma cell lines. Toxicology Letters, 2006, 164: 97-103

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700