用户名: 密码: 验证码:
汉江大跨越输电塔动态安全评估方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大跨越高压输电塔具有塔体高、跨距大、柔性强等高耸结构和大跨度结构的共同特点,且对地震、风和导线覆冰等环境荷载的反应较为敏感,容易发生极端条件下的动态倒塌破坏,故对其安全状态进行评估,以提前采取补救措施,保证主干电网安全,具有重要的研究意义和应用价值。
     近年来,随着基于环境振动的模态参数识别技术水平的不断提高,结构动态安全评估方法已在大跨桥梁和其他高耸结构中得到较为广泛的应用,但是目前国内外针对输电塔结构的损伤研究较少,且大多使用理论模态参数构造识别指标,在实际应用中的可行性尚难以预料。
     本文以汉江1000kv特高压大跨越输电塔体系实际工程为背景,对其动态安全状态评估方法进行研究,主要研究工作及得到的结论包括以下方面:
     ①传感器的优化布设研究
     针对输电塔线体系具有明显的二维振动特性,提出同时考虑双向测点优化布置的有效独立法。该方法根据模态振型最大线性无关性和较大能量分布原则可同时计算横导线和顺导线的测点优化布置。分析结果表明:对同时考虑空间二维振动的大跨越特高压输电塔结构,该方法能得到较为理想的测点布置方案。
     ②结构模态参数的识别
     根据数据驱动随机子空间法的原理,编制了输电塔模态参数识别程序。利用输电塔在模拟风荷载作用下的时程响应数据,采用该识别程序得到了输电塔的模态参数,通过与理论模态参数的对比验证了识别程序的可靠性。
     ③损伤识别研究
     针对单一模态指标方法在酒杯型等有刚度突变的输电塔易出现误报警和损伤定位不准的难题,提出了基于模态双指标(振型差和模态柔度改变率)进行损伤定位的方法。研究了输电塔在测点不完备、测试噪声以及温度改变、断线、裹冰等复杂环境情况下的双指标方法的损伤定位效果。结果表明:该方法在各种情况下均可有效地对酒杯型输电塔的单处及多处损伤进行定位,为实塔的长期健康监测提供了有效的理论方法支撑。
Long span transmission tower has the common features of high-rise structure and long-span structure, such as great height, large span and high flexibility. The dynamic collapse failure of long span transmission tower was happened easily under seismic and wind loads. It was necessary to take measures in advance to ensure safety in main power system by the safety assessment. It has important research meanings and application value to evaluate the safety state of the long span transmission tower.
     In recent years, with the development of modal parameter identification techniques based on structural vibration, the structure dynamic security assessment method has been widely used in long-span bridge and high-rise structure. But there is little research on the damage identification based on transmission tower in the world at present,and most of the researches proposed damage identification signature using theoretical modal parameter. Its feasibility is difficult to expect in practical applications.
     In the paper, based on the engineering of 1000kv Han River extra high-voltage transmission tower, dynamic security assessment method has been researched. The research work completed in this paper mainly includes:
     ①Research on the optimal sensor placement method
     According to the two-dimension vibration characteristic of long span transmission line system, the optimal placement method of bidirectional accelerometers for the tower was proposed. This method can optimize the sensor placement in the direction of transversal and longitudinal wires at the same time, according to the most linear independence and greater energy distribution of modal shape. Analysis results show that the method optimize the sensor placement of bi-directional accelerometers effectively.
     ②Structural modal parameter identification
     The program composition with MATLAB was proposed based on the theoretical of the data-driven stochastic subspace. According to the time-history record of simulated fluctuating wind load, the modal parameter of transmission tower was identified by this program. Comparing with the modal analysis results obtained from finite element calculation. A good agreement has been achieved.
     ③Research on the damage location
     Considering the false alarm is induced easily in the stiffness changing point of the glass-type power transmission tower, the indicator of Vibration Mode Difference is proposed to identify the damage location on the stiffness changing point firstly, and the remainder damage locations are identified by the indicator of Modal Flexibility Index. The influence of the modal identification errors on the damage localization has been analyzed. The numerical simulation calculation of the actual transmission tower shows that the method can identify the damage location effectively, and the modal identification error has little effect on damage localization.
引文
[1]梁波,徐建良.架空输电铁塔动力风响应的数值模拟[J].同济大学学报,2002,30(5)
    [2]刘万群,大跨越输电塔线体系风振响应研究,上海同济大学硕士学位论文,2006
    [3]李宏男,李东升.土木工程结构安全性评估[J].地震工程与工程震动,2002,22(3).
    [4]袁万诚,崔飞,张启伟.桥梁健康监测与状态评估的研究现状与发展[J].同济大学学报,1997,27(2).
    [5]高维成,刘伟,邹经湘.基于结构振动参数变化的损伤探测方法综述[J].振动与冲击, 2004,23(4)
    [6]黄东梅.高耸塔架结构节点损伤的两步诊断法[D].武汉理工大学硕士论文,2003
    [7]郭佳凡.高耸塔架结构节点损伤的诊断法[D].武汉理工大学硕士论文,2005
    [8]瞿伟廉,秦文科,梁政平.基于输电塔风致响应的节点螺栓脱落损伤自动诊断的小波识别方法[J].地震工程与工程振动,2008,8(4):146-153.
    [9]楼文娟,林宝龙.基于小波变换的大型输电铁塔损伤位置识别[J].工程力学,2006,23(6):157-162.
    [10]许建安. 35~110kv输电线路设计.中国水利水电出版社,2002.
    [11]胡松.大跨越输电线路风振反应分析及振动控制研究[D].同济大学博士论文,1999.
    [12]崔飞,袁万城,史家钧.传感器优化布设在桥梁健康监测中的应用[J].同济大学学报, 1999,27(1):165-169.
    [13]刘斌,姚永丁,叶贵如.斜拉桥传感器优化布点的研究[J].工程力学,2005,22: 171-175.
    [14]张胜明.基于有限元软件ANSYS7.0的结构分析.清华大学出版社,2003.
    [15]尚晓江等. ANSYS结构有限元高级分析方法与应用范例.中国水利水电出版社,2005.
    [16] Kammer D C. Sensor placements for on orbit modal identification of large space structures [J]. Journal of Guidance, Control, and Dynamics,1991,14 (2):252-259.
    [17] Kammer D C. Sensor set expansion for modal vibration testing[J]. Mechanical Systems and Signal Processing. 2005,19:700-713.
    [18] Hemez F M,Farhart C. An energy based optimum sensor placement criteria and its application to structural damage detection [A].Proc 12th int modal anal conf [C].Honolulu: Society of Experimental Mechanic,1994.1569~1575.
    [19] Guyan R J. Reduction of stiffness and mass matrices [J]. AIAA Journal,1965,3(2):380.
    [20] Shi Z Y,Law S S,Zhang L M. Optimizing sensor placement for structural damage detection[J].Journal of Engrg Mech,ASCE,2000,126(11):1173~1179.
    [21] G Heo,M L Wang,D Satpathi. Optimal transducer placement for health monitoring of longspan bridge [J]. Soil Dynamic and Earthquake Engineering,1997,16:495~502.
    [22] K Worden, A P Burrows, Optimal sensor Placement for fau1t detection[J],Engineering Strcture,2001,23:885-901.
    [23]李戈,秦权,董聪.用遗传算法选择悬索桥监测系统中传感器的最优布点[J],工程力学,2000,17(l):25-34.
    [24] Meo M, Zumpano G. On the optimal sensor placement techniques for a bridge structure [J]. Engineering Structures. 2005, 27:1488-1497
    [25]曹枚根,徐忠根,刘智勇.大跨越输电钢管组合塔结构动力特性的理论分析[J].电力建设,2005,26(12):51-54.
    [26]岳增国.大跨度空间结构的损伤检测与诊断研究[D].天津大学.硕士论文.2005.
    [27] Kammer D.C. Effect of Modal Erroron on Placement for On-Orbit Modal Identification of Large Space Structures [J].Journal of Guidance, Control, and Dynamics. 1992, 15(2):334~341.
    [28] Ewins D J. Modal Testing: Theory, Practice and Application. 2nd ed. Research Studies Press Ltd, 2000
    [29] Kammer D C. Optimal placement of triaxial accelerometers for modal vibration tests [J]. Mechanical Systems and Signal Processing, 2004, 1: 29-41
    [30] Van Overschee P,De Moor B. Subspace algorithms for the stochastic identification problem. In: Proceedings of the 30th IEEE Conference on Decision and Control; 1991; Brighton; 1991:1321~1326.
    [31] Van Overschee P.,De Moor B. Subspace Identification for Linear Systems: Theory, Implementation, Applications. Dordrecht, theNetherlands: Kluwer Academic Publishers;1996.
    [32]禹丹江.土木工程结构模态参数识别—理论、实现与应用[D].福州大学博士论文,2006.
    [33] Cawley P, Adams R D. The Locations of Defects in Structures Form Measurements of Natural Frequencies [J]. Journal of Strain Analysis.1979,14(2):49-57.
    [34] Stubbs N, Osegueda R. Global Damage Detection in Solids-Experimental Verification [J]. The International journal of analytical and experimental modal analysis.1990,5(2):81-97.
    [35]李志强.基于结构健康检测理论的构件损伤识别研究.中国海洋大学硕士学位论文,2006.
    [36]岳艳芳.基于动力分析的结构损伤检测方法研究.东南大学硕士学位论文,2004
    [37] Allemany R J, Brown D L. A Correlation Coefficient for Modal Vector Analysis. Proc. of the lst IMAC,1982:100-116.
    [38] Lieven N A, Ewins D J. Spatial Correlation of Mode Shape, the Coordinate Modal Assurance Criterion(Comac). Proc .of the 6th IMAC, 1988:690-695.
    [39] Shi Z Y, Law S S, Zhang L M. Structural Damage Localization from Modal Strain EnergyChange [J]. Journal of Sound and Vibration.1998,218(5):825-844.
    [40] Shi Z Y, Law S S, Zhang L M. Improved Damage Quantification from Elemental Modal Strain Energy Change [J]. Journal of Engineering Mechanics.2002,128(5):521.
    [41]史治宇,吴令毅.由模态应变能法诊断结构破损的实验研究.东南大学学报[J].1999,29(2).
    [42] Doebling, S.W., Farrar, C.R., et al, A review of damage identification methods that examine changes in dynamic properties [J], Shock and Vibration Dig, 1998,30(2):91-105.
    [43]曹晖,张新亮,李英民.利用模态柔度曲率差识别框架的损伤[J].振动与冲击,2007,26 (6):116-120.
    [44] Pandey A K, BiswasM. Damage Detection in Structures Using Changes in Flexibility [J]. Journal of Sound and Vibration, 1994, 169: 3-17.
    [45] Ko J M, et al. Multi-stage Identification Scheme for Detecting Damage in Cable-stayed Kap ShuiMun Bridge [J]. Engineering Structures, 2002, 24:857-868.
    [46] Zhang Z &Aktan A E. Application of modal flexibility and its derivatives in structural identification[J].Research in Nondestructive Evaluation,1998,Vol.10,No.1:43-61.
    [47] Xia Y, Hao H, Giovanna Zanardo. Long term vibration monitoring of an RC slab: Temperature and humidity effect [J]. Engineering Structures 2006; 28 (2006) 441–452.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700