用户名: 密码: 验证码:
第二代定向柱晶高温合金DZ59研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了充分发挥定向柱晶在生产效率、制造成本方面的优势,避免单晶高温合金难以解决的问题,满足我国航空事业发展、特别是先进航空发动机对涡轮叶片承温能力的要求,本文在借鉴国外先进经验的基础上,以研制开发一种新型低成本高性能第二代定向柱晶高温合金为目标,系统研究了合金成分、工艺、服役条件等因素对组织、性能的影响以及相形成与演化规律,得到以下主要结论:
     1)通过成分设计与工艺优化,成功研制的第二代定向柱晶高温合金DZ59达到了预期目标要求,其密度为8.53g/cm~3,室温性能σ_b=1369MPa,σ_(0.2)=1069MPa,δ=10.8%,ψ=11.4%,与基础合金DSжc6y相比,强度和塑性分别提高30%和20%;975℃/230MPa高温蠕变断裂寿命达370hr.,比DSжc6y提高290%;760℃瞬时拉伸强度σ_b=1301MPa,比相同Re含量的第二代单晶高温合金DD6高18%;900℃瞬时拉伸强度σ_b=947MPa,与第一代单晶高温合金DD3相当,较第一代定向柱晶DZ125合金高11%;由L-M综合蠕变指数表征的高温蠕变断裂性能全面超过第一代单晶高温合金,达到国际上典型的第二代单晶高温合金CMSX-4水平;综合制造成本比第一代单晶高温合金可降低25%,比类似成分的第二代单晶高温合金可降低35%。
     2)发现DZ59合金中的μ相具有枝晶间分布的特性,颗粒化的μ相可以有效的阻碍位错运动以及晶界滑移,而成为主要的次生沉淀强化相。DZ59合金枝晶间颗粒化μ相的形成机制为:时效过程中,μ相的形成元素(Re、Mo、Cr等)向界面偏聚以及γ'的形成和成分起伏促进了μ相的形成。
     3)在DZ59合金时效过程中晶界发生多次反应,形成由FGRZ、次生μ相、含Re的M_(23)C_6以及多相晶团所组成的二次晶界反应区(SGRZ),其中含Re的M_(23)C_6型碳化物在以往的定向柱晶高温合金中从未被发现过。SGRZ中胞状晶团的产生受温度、时间、应力影响,在静态时效中,该晶团的产生同γ'的粗化、搭接合并以及μ相的析出等过程相关;在应力时效中,该组织受FGRZ边界位错密度的变化、Re等难溶元素沿位错等溶质高速扩散通道扩散以及γ'的搭接合并过程等综合因素的影响。尺寸较大的胞状晶团增加横向晶界受力界面,高负荷下可能成为蠕变空洞萌生和扩展的起源。
     4)Ta有助于提高DZ59合金凝固过程中各相的转变温度,促进骨架状MC形成,并加重晶界M_6C型碳化物的链状倾向。Ta大量进入γ'相,增大γ'-γ两相的错配度,有助于γ'相形貌的立方化,显著提高室温瞬时拉伸性能、比强度以及高温蠕变断裂性能。
     5)Re降低MC的形成温度,有效抑制M_6C的形成和脆性MC的生长,促进μ相的生成和MC分解。Re原子的弥散分布及难扩散性质还有助于改善晶界沉淀相的形貌和分布,大幅增加基体的强化效果,对高温蠕变断裂性能作用尤为明显。1%(wt)Re的作用同2%(wt)W的强化效果相当。
     6)DZ59合金在900℃/600hr.以内的长期热曝露过程中可以保持较高的高温拉伸性能,但是热曝露超过1000hr.后,性能大幅下降,其中断面收缩率下降尤为明显,此时晶界区域产生较高含量的胞状晶团增加了晶界横向受力面积是合金塑性下降的主要原因。在975℃/255MPa条件下,随着热曝露时间的延长,蠕变断裂强度单调下降,热曝露1000hr.时,合金塑性急剧下降。该合金长期热曝露以及蠕变断裂过程产生0.2-0.4%(体积分数)的μ相,但无论该μ相是短针状还是颗粒状对性能均影响不大。弱化的基体、大尺寸的MC碳化物以及γ/γ'共晶是DZ59合金服役过程主要裂纹萌生源。
In order to meet the demands of aviation career in China,especially turbine blade materials with high temperature bearing capacity in advanced aeroplane engine,on the conceptions of taking advantage of the production efficiency and cost in directionally solidification process and avoiding the blank walls at present in single crystal solidification, the thesis aims to develop a new low-cost high-performance 2~(nd) generation directionally solidified superalloy according to the experience abroad and systematically investigates the influence of composition,process,service environment and other factors on the microstructure,properties,phase transformation.The main conclusions are obtained as follows:
     1.By optimizing the composition and processing,high-performance 2~(nd) generation directionally solidified superalloy DZ59 has been prepared with anticipative requirement: density 9=8.53 g/cm~3,room-temperature tensile strengthσ_b=1369MPa,yield strengthσ_(0.2)=1069MPa,elongation ratioδ=10.8%,section contract ratioΨ=11.4%.The strength and plasticity is increased by 30%and 20%respectively compared with DSжc6y. High-tempeature creep rupture life at 975℃/230MPa is up to 370hr.,increased by 290% than that of DSжc6y.Tensile strength at 760℃is 1301MPa,18%higher than 2~(nd) single-crystal superalloy with same Re content.Tensile strengthσ_b=947MPa at 900℃is comparable with 1~(st) generation single-crystal superalloy DD3,11%larger than the 1~(st) generation single-crystal superalloy.The high-temperature creep rupture properties characterized by L-M comprehensive creep parameters are superior to those of the 1~(st) generation single-crystal superalloy in all sides and comparable with the 2~(nd) generation international typical superalloy CMSX-4.And the total expense is cut down 25%lower than that of the 1~(st) single-crystal superalloy and 35%lower than the 2~(nd) single-crystal superalloy with similar content.
     2.It is found thatμphase in DZ59 alloy is distributed in the interdendritic region. Granularμphase can effectively inhibit the dislocation movement and grain boundary slide and become the main secondary precipitate strengthening phase.The formation ofμphase in the interdendritic region is due to the boundary segregation ofμphase content element. Meanwhile,the composition repel and vibration ofγ' phase also promote the formation ofμphase.
     3.During the aging heat treatment of DZ59 alloy,secondary grain boundary reaction zone(SGRZ) is formed by the first grain boundary reaction zone(FGRZ),secondaryμphase,Re-contained M_(23)C_6 and multiphase colonies,among which Re-contained M_(23)C_6 is seldom reported in DS superalloys.The formation of SGRZ cellular colonies is influence by temperature,time and strain.During strain-free aging heat treatment,the formation of the colonies is related with the coarsen and merge ofγ' phase and precipitation ofμphase. During the aging heat treatment,such microstructure is controlled by the evolution of dislocation density in the FGRZ boundary,diffusion of Re atoms along dislocations,and bridge and merge process ofγ' phase.The transverse interfaces are increased by the larger-size of cellular clonies,which become the possible origin of the creep voids initiation and propagation under high load.
     4.Ta is beneficial to increase the transformation temperature of each phase during the solidification process of DZ59 alloy,promote the formation Of script MC and chain M_6C, and dissolve intoγ' phase,which increaseγ-γ' misfit and cubic degree,at last tensile properties,specific strength and creep properties.
     5.Re decreases the formation temperature of MC phase,effectively inhibits the formation and brittle of M_6C phase and the formation of MC phase,and promotes the formation ofμPhase and decomposition of MC phase.The dispersion and difficulty of difussion of Re are also helpful to improve the morphology and distribution of boundary precipitate phases and increase the strength greatly.Besides,Re addition is significantly beneficial to the high-temperature creep and brittleness,which is as twofold as the same amount addition of W.
     6.DZ59 alloy can be exposed at 900℃for more than 600hr.without too much loss of high-temeprature tensile properties.However,the properties,especially the contraction ratio of section and plasticity would significantly decrease if that is longer than 1000hr.. The creep rapture strength would decrease monotonously with longer heat exposure time at 975℃under 255MPa.Either needle-shaped or granularμphase,which is about 0.2-0.4 %in the heat exposure process or creep rupture process,does not influence the performance.The cracks initiate from the weakened matrix,large size MC carbides orγ/γ' coherence interfaces.Large amount of SGRZ cellular colonies would be formed at the grain boundary region in DZ59 alloys after exposing at 950℃for 1000hr..Decreased plasticity is mainly due to the increased transverse area of grain boundaries.
引文
[1]师昌绪,李恒德,周廉.材料科学与工程(上卷)[M].北京:化学工业出版社,2004.
    [2]黄乾尧,李汉康.高温合金[M].北京:冶金工业出版社,2000.
    [3]M.McLean.Directionally Solidified Materials for High Temperature Service[M],London:TMS,1983.
    [4]陈荣章.航空铸造涡轮叶片合金和工艺发展的回顾与展望[J].航空制造技术.2002(2):19-23
    [5]Nardone V C,Tien J K.On the creep rate stress dependence of particle strengthened alloys[J].Scripta Metallurgica.1986(20):797-802
    [6]Sims C T,Stoloff N S,Hagel W C.Superalloy Ⅱ[M].New York:John Wiley & Sons.1987
    [7]徐强,张幸红,韩杰才,赫晓东.先进高温材料的发展现状与展望[J].固体火箭技术.2002,25(3):51-55
    [8]Versnyder F I,Shank M E.The development of columnar grain and single crystal high temperature materials through directional solidification[J].Materials Science and Engineering.1970(6):213-247
    [9]陈荣章,王罗宝,李建华.铸造高温合金发展的回顾与展望[J].航空材料研究学报.2000,20(1):55-61
    [10]陈国良.高温合金[M].北京:冶金工业出版社.1985
    [11]Decker R F,Freeman J W.The mechanism of beneficial effects of boron and zirconium on creep properties of a complex heat resistant alloy[J].Trans.AIME.1960(218):277-85.
    [12]仲增墉,师昌绪.中国高温合金四十年发展历程[A].见原:师昌绪,陆达,荣科主编.中国高温合金四十年[C].北京:中国科学技术出版社,1996:3-13
    [13]Liu L R,Jin T,Zhao N R,Wang Z H,Sun X F,Guan H R,Hu Z Q.Effect of carbon addition on the creep properties in a Ni-based single crystal superalloy[J].Mater.Sci.Eng.A.2004(385A):105-112
    [19]燕冰川.碳、硼对Ex9镍基定向凝固高温合金组织和力学性能的影响[D].博士学位论文,中科院金属研究所,2007
    [15]Gell M,Duhl D N,Giame A F.The development of single crystal superalloy turbine blades[A].Proc.of 4th Int.Symp.on superalloy[C].Pennsylvania,1980:205-207
    [16]Ross E W,O'Hara K.S.Ren(?) N4:a first generation single crystal turbine airfoil alloy with improved oxidation resistance,low angle boundary strength and superior long time rupture strength[A].In:Kissinger R D.et al.(Eds.),Superalloys 1996[C],The Minerals,Metals & Materials Society,Pennsylvania,1996:19-25
    [17]Harris K,Erickson G L,Schwer R E,Mar-M247derivations -CM247LC DS alloy,CMSX single crystalalloys,properties and performance[A].In:Gell M.et al.(Eds.),Superalloys 1984[C],The Metallurgical Society of AIME,Pennsylvania,1984:221-230
    [18]Khan T,Caron P.Effect of processing conditions and heat treatments on mechanical properties of single-crystal superalloy CMSX-2[J].Mater.Sci.Tech.1986(2):486-492
    [19]Blavette D,Caron P,Khan T.An atom probe investigation of the role of rhenium additions in improving creep resistance of Ni-base superalloys[J].Scripta Metallurgica.1986(20):1395-1400
    [20]Anton D L,Giamei A F.Porosity distribution and growth during homogenization in single crystals of a nickel-base superalloy[J].Mater.Sci.Eng.A.1985(76A):173-180
    [21]骆宇时,刘世忠,孙凤礼.Re在单晶高温合金中强化机理的研究现状[J].材料导报.2005,19(8):55-58
    [22]Tin S,Yeh A.C.Effect of Ru and Re additions on the high temperature flow stresses of Ni-base single crystal superalloys[J].Scripta Materialia.2005(52):519-524
    [23]Fu C L,Reed R,Janotti A,Krcmar M.On the diffusion of alloying elements in the nickel-base superalloys[A].In:Green K A.et al.(Eds.),Superalloys 2004[C],The Metallurgical Society of AIME,Pennsylvania,2004:867-876
    [24]Caron P,khan T.A Model based computer analysis of data(crispen):applications to nikel-base superalloys[A].In:Duhl D N.et al.(Eds.),Superalloys1988[C],The Metallurgical Society of AIME,Pennsylvania,1988:683-692
    [25]Blavette D,Caron P,Khan T.An atom-probe study of some fine-scale microstructural features in ni-based single crystal superalloys[A].In:Duhl D N.et al.(Eds.),Superalloys 1988[C],The Metallurgical Society of AIME,Pennsylvania,1988:305-314
    [26]W(O|¨)llmer S,Mack T,Glatzel U.Influence of tungsten and rhenium concentration on creep properties of a second generation superalloy[J].Mater.Sci.Eng.A.2001(319A):792-795
    [27]Erickson G L.The development and application of CMSX-10[A].In:Kissinger R D.et al.(Eds.),Superalloys 1996[C],The Minerals,Metals & Materials Society,Pennsylvania,1996:35-44
    [28]Warren P J,Cerezo A,Smith G D W.An atom probe study of the distribution of rhenium in a nickel-based superalloy[J].Mater.Sci.Eng.A.1998(250A):88-92
    [29]Hemmersmeier U,Feller-Kniepmeier M.Element distribution in the macro-and microstructure of nickel base superalloyCMSX-4[J].Mater.Sci.Eng.A.1998(248A):87-97
    [30]Cetel A D,Duhl D N.Second-generation nickel-base single crystal superalloy[A].In:Duhl D N.et al.(Eds.),Superalloys 1988[C],The Metallurgical Society of AIME,Pennsylvania,1988:235-244
    [31]Caron P,Khan T.Evolution ofNi-based superalloys for single crystal gas tubine blade applications[J].Aerosp.Sci.Technol..1999(3):513-523
    [32]Caron P,Khan T.Development of a new nickel based single crystal turbine blade alloy for very high temperatures[A].In:Exner H.E.et al.(Eds.).Advanced Materials and Processes,Vol.1[C].DGM Informationsgesellschaft mbH,Oberursel,1990:333-338
    [34]Walston W S,O'Hara K S,Ross E W,Pollock T M,Murphy W H.Ren(?) N6:third generation single crystal superalloy[A].In:Kissinger R D.et al.(Eds.),Superalloys 1996[C],The Minerals,Metals & Materials Society,Pennsylvania,1996:27-34.
    [35]Kobayashi T.,Koizumi Y,Nakazawa S,Yamagata T,Harada H.Design of high rhenium containing single crystal superalloys with balanced intermediate and high temperature creep strengths[A].In:Strang A.et al.(Eds.),Advances in Turbine Materials,Design and Manufacturing[C],The Institute of Materials,London,1997:766-773.
    [36]Zhang J X,Wang J C,Harada H,Koizumi Y.The effect of lattice misfit on the dislocation motion in superalloys during high-temperature low-stress creep[J].Acta Materialia.2005(53):4623-4633
    [37]Zhang J X,Murakumo T,Harada H,Koizumi Y,Kobayashi T.Relationships between microstructural instabilities and mechanical behaviourin new generation nikel-based single crystal superalloys[A].In:Green K A.et al.(Eds.),Superalloys 2004[C],The Minerals,Metals & Materials Society,Pennsylvania,2004:667-675
    [38]陈荣章.单晶高温合金发展现状[J].材料工程.1995(8):1-12
    [39]Walston W R.et al.U.S.Patent 5270123,1993
    [40]Naik S D.U et al.U.S.Patent 5077141,1991
    [41]C.M.Auslin et al.U.S.Patent 5151249,1992
    [42]周鹏杰.M951合金成分的作用及力学性能的研究[D].博士学位论文,中科院金属研究所,2007
    [43]Aimone R,McCormick R L,The effects of yttrium and sulfur on the oxidation resistance of an advanced single crystal nikel based superalloy[A].In:Antolovich S D.et al.(Eds.),Superalloys 1992 [C],The Minerals,Metals & Materials Society,Pennsylvania,1992:817-823
    [44]Marchinni M,Goldschmidt D,Maldini M.High temperature mechanical properties of CMSX-4+yttrium single-crystal nikel-base superalloy [A].In:Antolovich S D.et al.(Eds.),Superalloys 1992 [C],The Minerals,Metals & Materials Society,Pennsylvania,1992:775-785
    [45]O'Hara K S.et al.U.S.Patent 5482789
    [46]Yeh A C,Tin S.Effects of Ru and Re additions on the high temperature flow stresses of Ni-base single crystal superalloys [J].Scripta Mater.2005(52):519-524
    [47]Yokokawa T,Oseawa M,Nishide K,Kobayashi T,Koizumi Y,Harada H.Partitioning behavior of platinum group metals on the y and y' phase of Ni-base superalloys at hegh temperatures [J].Scripta Metall.2003(49):1041-1046
    [48]Zheng Y R,Wang X P,Dong J X,Han Y F.Effect of ru addition on cast nickel base superalloy with low content of Cr and hegh content of W [A].In:Polloc T M.et al.(Eds.),Superalloys 2000 [C],The Minerals,Metals & Materials Society,Pennsylvania,2000:305-313
    [49]Caron P.High y' solvus new generation nickel-based superalloys for sincle crystal turbine blade applications [A].In:Pollock T M.et al.(Eds.),Superalloys 2000 [C],The Minerals,Metals & Materials Society,Pennsylvania,2000:737-745
    [50]Muakami H,Honma T,Koizumi Y,Harada H.Distribution of platinum group metals in ni-base single crystal superalloy [A].In:Pollock T M.et al.(Eds.),Superalloys 2000 [C],The Minerals,Metals & Materials Society,Pennsylvania,2000:747-756
    [51]Harris K.U.S.Patent 4582548,1986
    [52]Wukusick C S.GBP Patent 2235697A,1991
    [53]Walston W R.et al.,USP Patent 5270123,1993
    [54]Erickson G L.USP Patent 5366952,1994
    [55]Chen Q Z,Jones N,Knowles D M.The microstructures of base/modified RR2072 SX superalloys and their effects on creep properties at elevated temperatures [J].Acta Materialia.2002(50):1095-1112
    [56]Tin S,Pollock T M.Phase instabilities and carbon additions in single-crystal nickel-base superalloys [J].Mater.Sci.Eng.A.2003(348A):111-121
    [57]Rae C M F,Reed R C.The precipitation of topologically close-packed phase in rhenium-containing superalloys [J].Acta Mater..2001(49):4113-4125
    [58]Darolia R,Lahrman D F,Field R D.Formation of topologically closed packed phases in nickel base single crystal superalloys [A].In:Duhl D N.et al.(Eds.),Superalloys 1988 [C],The Metallurgical Society of AIME,Pennsylvania,1988:255-265
    [59]Pessah M,Caron P,Khan T.In:S.D.Antolovich.et al.(Eds.),Superalloys 1992 [C],The Minerals,Metals & Materials Society,Pennsylvania,1992:567-576
    [60]Simonetti M,Caron P.Role and behaviour of μ phase during deformation of a nickel-based single crystal superalloy [J].Mater.Sci.Eng.A.1998(254A):1-12
    [61]Walston W S,Schaeffer J C,Murphy W H.A new type of microstructural instability in superalloys-SRZ [A].In:Kissinger R D.et al.(Eds.),Superalloys 1996 [C],The Minerals,Metals & Materials Society,Pennsylvania,1996:9-18
    [62]Lavigne O,Ramusat C,Drawin S,Caron P,Boivin D,Pouchou J L.Relationships between microstructural instabilities and mechanical behaviourin new generation nickel-based single crystal superalloys [A].In:Green K A.et al.(Eds.),Superalloys 2004 [C],The Metallurgical Society of AIME,Pennsylvania,2004:667-675
    [63]Matsuoka Y,Aoki Y,Matsumoto K,Satou A,Suzuki T,Chikugo K,Murakami K.The formation of SRZ on afourth generation single single crystal superalloy applied with aluminide coating [A].In:Green K A.et al.(Eds.),Superalloys 2004 [C],The Metallurgical Society of AIME,Pennsylvania,2004:637-642
    [64]Pollock T M,Murphy W H.The breakdown of single-crystal solidification in high refractory nickel-base alloys [J].Metall Mater Trans.1996(27A):1081-1094
    [65]Schneider M C,Gu J P,Bekermann C,Boettinger W J,Kattner U R.Modeling of micro- and macrosegregation and freckle formation in single-crystal nickel-base superalloy directional solidification [J].Metall Mater Trans.1997(28A):1517-1531
    [66]Pollock T M,Murphy W H,Goldman E H,Uram D L,Tu J S.Grain defect formation during directional solidification of nickel base single crystals [A].In:Antolovich S D.et al.(Eds.),Superalloys 1992 [C],The Minerals,Metals & Materials Society,Pennsylvania,1992:125-134
    [67]Dollar M,Bernstein I M.Formation of topologically closed packed phases in nickel base single crystal superalloys [A].In:Duhl D N.et al.(Eds.),Superalloys 1988 [C],The Metallurgical Society of AIME,Pennsylvania,1988:255-234
    [68]Sass V,Glatzel U,Feller-Kniepmeier M.Creep anisotropy in the monocrystalline nickel-base superalloy CMSX-4 [A].In:Kissinger R D.et al.(Eds.),Superalloys 1996 [C],The Minerals,Metals & Materials Society,Pennsylvania,1996:283-290
    [69]Fuchs G E.Solution heat treatment response of a third generation single crystal Ni-base superalloy[J].Mater.Sci.Eng.A.2001(300A):52-60
    [70]郑运荣,韩雅芳.燃气涡轮用单晶高温合金的成本因素[J].金属学报.2002,38(11):1203-1209
    [71]Jo C Y,Cho H Y,Kim H M.Effixt of recrystallization on microstructural evolution and mechanical properties of single crystal nickel base superalloy CMSX-2[J].Mater.Sci.Technol.2003(19):1665-1670
    [72]Wang L,Xie G,Zhang J,Lou L H.On the role of carbides during the recrystallization of a directionally solidified nickel-base superalloy[J].Scripta Mater.2006(55):457-460
    [73]陈荣章.第二代定向凝固高温合金[J].航空材料学报.1995,8(1):47-55
    [74]Harris K,Erickon G L,Sikkenga S L,Brentnall W D,Aurrecoechea J M,Kubarych K G.Development of the rhenium containing superalloys CMSX-4 & CM186LC for single crystal blade and directionally solidified vane applications[A].In:Antolovich S D.et al.(Eds.),Superalloys 1992[C],The Minerals,Metals & Materials Society,Pennsylvania,1992:297-306
    [75]Cetel A D,Duhl D N.Second generation columnar grain nikel-base superalloy[A].In:Antolovich S D.et al.(Eds.),Superalloys 1992[C],The Minerals,Metals & Materials Society,Pennsylvania,1992:287-296
    [76]Ross E W,O'Hara K S.Rene'142:A High strength,oxidation resistant DS turbine airfoil alloy[A].In:Antolovich S D.et al.(Eds.),Superalloys 1992[C],The Minerals,Metals & Materials Society,Pennsylvania,1992:257-266
    [77]B(u|¨)rgel R,Grossmann J,L(u|¨)seberink O,Mugurabi H,Pyczak F,Singer R F,Volek A.Development of a new alloy for directional solidification of large industrial gas turbine blades[A].In:Green K A.et al.(Eds.),Superalloys 2004[C],The Metallurgical Society of AIME,Pennsylvania,2004:25-34
    [78]Kobayashi T,Sato M,Koizumi Y,Harada H,Yamagata T,Tamura A,Fujioka J.In:Pollock T M.et al.(Eds.),Superalloys 2000[C],The Minerals,Metals & Materials Society,Pennsylvania,2000:323-327
    [79]Wanderka N,Glatzel U.Chemical composition measurements of a nickel-base superalloy by atom probe field ion microscopy[J].Mater.Sci.Eng.A.1995(203A):69-74
    [80]Volek A,Pyczak F,Singer R F,Mughrabi H.Partitioning of Re between γ and γ' phase in nickel-base superalloys[J].Scripta Materialia.2005(52):141-145
    [81]王文珍.铼和钴在单晶高温合金中的作用[D].博士学位论文,中科院金属研究所,2007
    [82]田素贵.单晶镍基合金组织演化与蠕变行为及微观特征的研究[D].博士学位论文,东北大学,1998
    [83]殷风仕.熔体处理和热处理对M963合金微观结构及力学性能的影响[D].博士学位论文,中科院金属研究所,2002
    [84]Nathal M V,Maier R D,Ebert L J.The influence of cobalt on the microstructure of the nickel-base superalloy Mar-M247[J].Metall.Trans A.1982(13A):1775-1783
    [85]Nathal M V,Ebert L J.The influence of cobalt,tantalum and tungsten on the microstructure of single crystal nickel-base superalloys[J].Metall.Trans A.1985(16A):1849-1862
    [86]Nabarro F R N,Cress C M,Kotschy P.The thermodynamic driving force for rafting in superalloys[J].Acta Materialia.1996(44):3189-3198
    [87]Baldan A.Review Progress in Oswald ripeningtheories and their applications to the γ'-precipitates in nickel-base superalloys[J].Joumal of Materials Science.2002(37):2379-2405
    [88]彭志方,任遥遥,樊宝珍,燕平,赵京晨,王延庆,孙家华.镍基单晶高温合金γ'定向粗化机理[J].金属学报.1999,35(1):9-14
    [89]Khan T,Caron P.Effect of processing conditions and heat treatments on mechanical properties of single-crystal superalloy CMSX-2[J].Mater.Sci.Tech..1986(2):486-492
    [90]W.Schneider,J.Hammer,H.Mughrabi.Creep deformation and rupture behaviour of the monocrystalline superalloy CMSX-4-A comparison with the alloy SRR99[A].In:Antolovich S D.et al.(Eds.),Superalloys 1992[C],The Minerals,Metals & Materials Society,Pennsylvania,1992:589-598
    [91]Biermann H,Tetzlaff U,Von Grossmann B,Mughrabi H,Schulze V.Rafting in monocrystalline nickel-base superalloys induced by shot peening[J].Scripta Materialia.2000(43):807-812
    [92]基什金,斯特洛干诺夫.铸造镍基高温合金中的碳化物强化[J].航空材料研究学报.1991,11(2):1-8
    [93]Chert J,Lee J H,Jo C Y,Choe S J,Lee Y T.MC carbide formation in directionally solidified MAR-M247 LC superalloy[J].Mater.Sci.Eng.A.1998(247A):113-125
    [94]He L Z,Zheng Q,Sun X F,Guan H R,Hu Z Q,Tieu A K,Lu C,Zhu H T.Effect of carbides on the creep proper ties of a Ni-base superalloy M963[J].Mater.Sci.Eng.A.2005(397A):297-304
    [95]何立子,孙晓峰,郑启,侯贵臣,张承忠,管恒荣,胡壮麒.高w型Ni基高温合金M963中碳化物研究[J].材料工程.2004(2):40-43
    [96]Wang H M,Zhang J H,Tang Y J,Hu Z Q,Yukawa N,Morinaga M,Murata Y.Rapidly solidified MC carbide morphologies of a laser-glazed single-crystal nickel-base superalloy[J].Mater.Sci.Eng.A.1992(156A):109-116
    [97]赵坦,燕冰川,申健,张健,楼琅洪.液态金属冷却定向凝固对铸件显微组织的影响[C].第十一届全国高温合金年会,2007:432-436.
    [98]Bae J S,Lee J H,Kim S S,Jo C Y.Formation of MC-γ/γ' eutectic fibers and their effect on stress rupture behavior in D/S Mar-M247LC superalloy[J].Scripta Materialia.2001(45):503-508
    [99]Chen Q Z,Jones C N,Knowles D M.Effect of alloying chemistry on MC carbide morphology in modified RR2072 and RR2086 SX superalloys[J].Scripta Materialia.2002(47):669-675
    [100]Chen Q Z,Jones C N,Knowles D M.The microstructures of base/modified RR2072SX superalloys and their effects on creep properties at elevated temperatures[J].Acta Materialia.2002(50):1095-1112
    [101]蔡玉林,郑运荣.高温合金的金相研究[M].北京,国防工业出版社,1986
    [102]郑运荣.铸造镍基高温合金中的初生μ相[J].金属学报.2004,40(3):285-290
    [103]殷凤仕,孙晓峰,侯贵臣,郑启,管恒荣,胡壮麒.热处理对M963合金显微组织和拉伸性能的影响[J].稀有金属材料与工程.2004,33(1):23-26
    [104]Yang J X,Zheng Q,Sun X F,Guan H G,Hu Z Q.Relative stability of carbides and their effects on the properties of K465 superalloy[J].Mater.Sci.Eng.A.2006(429A):341-347
    [105]杨金侠.K465镍基高温合金的组织和性能稳定性及热疲劳性能[D].博士学位论文,中科院金属研究所,2007
    [106]李培恩,张俊善,金俊泽.高温蠕变中晶界沉淀强化的一种唯象模型.金属学报.1990,26(4):280-283
    [107]Liu L R,Jin T,Zhao N R,Wang Z H,Sun X F,Guan H R,Hu Z Q.Formation of carbides and their effects on stress rupture of a Ni-base single crystal superalloy[J].Mater.Sci.Eng.A.2003(361):191-197
    [108]Koul A K,Castillo R.Assessment of service induced microstructural damage and its rejuvenation in turbine blades[J].Metall.Trans.1988(19A):2049-2066
    [109]Furillo F T,Davidson J M,Tien J K,Jackman L A.The Effects of Grain Boundary Carbides on the Creep and Back Stress of a Nickel-base Superalloy[J]. Mater.Sci.Eng.A.1979(39):267-273
    [110]Chen Q Z,Jones C N,Knowles D M.The grain boundary microstructures of the base and modified RR 2072 bicrystal superalloys and their effects on the creep properties[J].Mater.Sci.Eng.A.2004(385):402-418
    [111]Blavette D,Caron P,Khan T.An atom probe investigation of the role of rhenium additions in improving creep resistance of Ni-base superalloys[J].Scripta Metall.Mater.1986(20):1395-1400
    [112]Kong Y H,Chen Q Z.Effect of minor additions on the formation of TCP phases in modified RR2086 SX superalloys[J].Mater.Sci.Eng.A.2004(366):135-143
    [113]Rae C M F,Hook M S,Reed R C.The effect of TCP morphology on the development of aluminide coated superalloys,Mater.Sci.Eng.A.2004(396):231-238
    [114]Yang J X,Zheng Q,Sun X F,Guan H R,Hu Z Q.Formation of μ phase during thermal exposure and its effect on the properties of K465 superalloy[J].Scripta Materialia.2006(55):331-334
    [115]Pessah M,Caron P,Khan T.Effect μ phase on the mechanical properties of a nikel-base single crystal superalloy,In:Antolovich S D.et al.(Eds.),Superalloys 1992[C],The Minerals,Metals & Materials Society,Pennsylvania,1992:567-576
    [116]徐庭栋.非平衡晶界偏聚动力学和晶f白J脆性断裂[M].北京:科学出版社,2006
    [117]Pollock T M.The growth and elevated temperature stability of hegh refractory nikel-base single crystal[J].Mater.Sci.Eng.B.1995(32):255-266
    [118]周尧和,胡壮麒,介万奇.凝固技术[M].北京:机械工业出版社,1998
    [119]Zhang J,Lou L H,Directional solidification assisted by liquid metal cooling[J].Journal of Material Science and Technology.2007(23):289-299
    [120]Konter M,Kats E,Hofmann N.A novel casting process for single crystal gas turbine components[A].In:Pollock T M.et al.(Eds.),Superalloys 2000[C],The Minerals,Metals & Materials Society,Pennsylvania,2000:189-200
    [121]Singer R F.Materials for advanced power engineering,Part Ⅱ[M].Coutsouradis D.et al.ed,Kluwer Academic Publishers,1994
    [122]Rasing J,Wanderka N,Czubayko U,Naundorf V,Mukherji D,R(O|¨)sler J.Rhenium distribution in the matrix and near the particle-matrix interface in a model Ni-A1-Ta-Re superalloy[J].Scripta Mater.2002(46):235-240
    [123]孟昭钰,孙根昌,李明伦,谢锡善.钽在镍基高温合金中的强化作用[A].铸造高温合金论文集,1986:53-58
    [124]Zheng L,Gu C C et al.Effect of Ta Addition Microstructure of Cast Nikel Base Superalloys Contsining Low Level of Cr and High Level of W[J].Raremetal Materials and Engineering.2005;34(2):194-198
    [125]Qiu Y M,Zhu Y X.Rule of Segregation Alloying Elements in Cast Ni-Base Superalloys[J].Acta Metall Sin.1989,25(1):78-80
    [126]Chen J,Lee J H et al.MC carbide formation in directionallysolidified Mar-M247LC superalloy[J].Mater.Sci.Eng.A.1998(247 A):113-125
    [127]Wang H M,Hu Z Q et al.Rapidly solidified MC carbide morphologies of a laser glazed single crystal Nikel-base superalloy[J].Mater.Sci.Eng.A.1992(156A):109-116
    [128]Chen Y,Wang H M.Liquid/Solid interface structure and growth mechanism of MC carbide under non-equilibrium solidification condition[J].Acta Metall Sin.2003,39(3):254-258
    [129]Chert Y,Wang H M.Steady and non-steady-state solidification mechanism of MC carbide.The Chinese Journal of Nonferrous metals[J].2002,12(2):305-308
    [130]Janine M N,Nichols J G.Containing refractory carbide dispersions[A].In:Antolovich S D.et al.(Eds.),Superalloys 1992[C],The Minerals,Metals & Materials Society,Pennsylvania,1992:113-121
    [131]于金江,侯贵臣,赵乃仁,金涛,孙晓峰,管恒荣,胡壮麒.一种含Re单晶高温合金的拉伸断裂行为[J].稀有金属材料与工程.2006,35(8):1231-1234
    [132]Caron P,Khan T.Improvement of creep strength in a nickel-base single crystal superalloy by heat treatment[J].Mater.Sci.Eng.A.1983(61A):173-184
    [133]Khan T,Caron E Effect of processing conditions and heat treatments on mechanical properties of single crystal superalloy CMSX-2[J].Mater.Sci.Tech..1986(2):486-492
    [134]Miyazaki T,Nakamura K,Mori H.J.Mater.Sci..1979(14):1827-1833
    [135]Muller L,Glatzel U,Feller-Kniepmeier M.Modelling thermal misfit stresses in nicke-base superalloys containing high volume fraction of γ' phase[J].Acta Metall.Mater..1992,40(6):1321-1327
    [136]Miyazaki T,Koyama T,Doi M.Effect of coherent strain energy on γ/γ' phase in Ni-A1-Ti alloys[J].Acta Metall.Mater..1994,42(10):3417-3424
    [137]Raghavan M,Mueller R R,Klein C F,Vanughn G A.Carbides in Ni-Cr-Mo system [J].Scripta Metallurgica.1983(17):1189-1194
    [138]曾强,马书伟,郑运荣.Re对Al在Ni中扩散的影响[J].中国有色金属学报.2003,13(4):899-902
    [139]Kramb R C,Antony M M,Semiatin S L.Homogenization of a nickel-base superalloy ingot material[J].Scripta materialia.2006(54):1645-1649
    [140]田素贵,周惠华,张静华,杨洪才,徐永波,胡壮麒.一种单晶镍基合金蠕变初期的位错组态[J].金属学报.1998,34(2):123-128
    [141]Khachaturyan A G,Semenovskaya S V,Morris J W.Theoretical analysis of strain-induced shape changes in cubic precipitates during coarsening[J].Acta Metall.1988(36):1563-1572
    [142]张炫.DD98镍基单晶高温合金的热处理和拉伸、疲劳性能研究[D].博士学位论文,中科院金属研究所,2006
    [143]Acharya M V,Fuchs G E.The effect of long-term thermal exposures on the microstructure and properties of CMSX-10 single crystal Ni-base supperalloys[J].Mater.Sci.Eng.A.2004(381 ):143-153

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700