用户名: 密码: 验证码:
复合钢板压力容器焊缝高温蠕变研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在高温腐蚀环境中,复合钢板以其可设计性强、耐腐蚀及性价比高等优势在石油化工领域得到越来越广泛的应用。然而在冶金、制造加工以及使用过程中,复合钢板压力容器结构中不可避免带有各种缺陷,特别是复合钢板压力容器焊缝处,因焊接工艺和结构的特殊,以及复合钢板两种组合材料之间的热物理性能、化学成分和组织上存在较大的差别,焊后复合钢板的焊缝出现包括位错、夹杂物和空隙等缺陷,长时间在高温作用下这些缺陷易产生蠕变空洞,出现蠕变裂纹,最终导致容器的蠕变断裂,给生产带来极大的损失,因此,复合钢板压力容器焊缝的高温蠕变研究成为亟待解决的重要课题。由于复合钢板焊接接头蠕变拉伸试件难于制备、蠕变实验耗时较长、费用昂贵,实验研究复合钢板压力容器焊缝的高温蠕变非常困难。而有限元(FEA)方法分析全面、耗时较短、费用低廉,已广泛应用于焊接构件高温性能的研究。
     本文从复合钢板压力容器焊缝的高温蠕变机理、高温作用的蠕变损伤及复合钢板压力容器高温蠕变裂纹的安全评定方法等方面进行了研究。
     1.运用金属材料黏弹性力学理论及损伤力学分析方法,进行了复合钢板压力容器焊缝的高温蠕变机理研究,分析了复合钢板压力容器的各层材质特性、焊缝焊接结构及高温蠕变损伤特性。建立了材料广义Kelvin模型的微分型本构关系,并由此导出了复合钢板压力容器筒体蠕变的粘弹性本构方程。
     2.采用国际通用有限元分析软件ANSYS10.0,对(304+16MnR)不锈钢复合钢板压力容器的焊缝处进行了高温蠕变模拟,其结果与同类实验和理论研究吻合。经数值分析结果表明:复合钢板压力容器焊缝的蠕变程度较母材严重、复层比基层严重,其中蠕变最严重的是焊缝复层热影响区,其次是焊缝过渡层界面。另外,t=0时刻,整个焊缝(复层、基层、过渡层)的蠕变应力与薄膜应力σz大致相等,进入蠕变第一阶段,复层的蠕变应力是逐渐增加,基层的蠕变应力是逐渐减小的,最后趋于稳定,蠕变最大蠕变应力出现在焊缝复层热影响区。
     3.本文采用英国标准BS7910-1999《金属结构中缺陷验收评定方法导则》的评定技术,并结合复合钢板压力容器本身的结构特点,提出一套适合复合钢板压力容器高温完整性的评定方法,将其不同功能的结构分开进行评定,基层按照一般压力容器的检测和评定方法,而复层主要检测评定是否出现裂纹,影响它的腐蚀功能。
     本课题采用有限元数值分析的方法,研究了复合钢板压力容器焊缝各个界面的蠕变应变场与应力场的分布规律,直观地反映焊缝各个界面的蠕变损伤程度,为复合钢板压力容器的优化设计、无损检测以及安全评定提供了可靠的理论依据。
In high-temperature corrosive environment, composite plate are more and more widely applied in the petroleum chemical industry because it can be designed, have corrosion resistance and cost advantage. However, in the process of metallurgy, manufacturing and useing, inevitably, there were various defects in the structure of the composite steel pressure vessel. Especially, in the composite pressure vessel steel’s weld, due to the special welding process and weld structure, and there is a big difference of materials, thermal physical properties, chemical composition and organization between the two kinds of combination of the composite steel plate. After welding, welding seam often appear dislocation, inclusions and voids defects. Under high temperature in a long time, these defects is easy to produce creep crack, eventually leading creep rupture failure to the container, cause a great loss and dangerous to society, so it is need of stuty the composite steel pressure vessel’s weld creep.As the composite plate weld joint creep tensile specimen preparation difficult, creep test takes longer, expensive, experimental study of composite steel pressure vessel weld creep is difficult. But the finite element (FEA) method which is a comprehensive, relatively short time, inexpensive, widely used in high temperature performance of welded components.
     In terms of composite steel pressure vessel weld creep mechanism, composite steel pressure vessel weld different parts and different structures creep damage under high temperature, and composite steel pressure vessel safety assessment of high temperature creep crack and others, this paper completed the study about the composite steel pressure vessel weld creep.
     1. Useing metal viscoelastic material mechanics theory and damage mechanics theory analysis methods, studied composite steel pressure vessel weld creep mechanism, analyzed material characteristics about every layer composite steel plate,weld structure and characteristics of high temperature creep damage. Establish material differential constitutive of Generalized Kelvin model, and thus derived composite steel pressure vessel cylinder visco elastic constitutive equation.
     2. Adoption of international general finite element analysis software ANSYS10.0, completed numerical analysis about stainless steel composite plate (304+16MnR) pressure vessel weld high temperature creep,it is uniform with the results of similar experimental and theoretical studies. The numerical results show that: composite steel pressure vessel weld creep serious is higher than the base metal, the complex layer more serious than the primary, weld heat affected zone creep is the most serious in weld complex layer, followed by the weld interface transition layer. In addition,when t=0, the entire weld (complex, primary, intermediate layer) creep stress is common with membrane stress,enter into the first stage of creep, the complex layer creep stress is gradually increased, primary creep stress is gradually reduced and finally become stable, the maximum creep stress creep present in complex layer weld heat affected zone.
     3. this paper adopted the assessment of technology of the British Standard BS7910-1999 "metal structure defect evaluation method of acceptance of guidelines", combined with composite steel pressure vessel itself structural characteristics, presented a set of composite steel plate pressure vessel high-temperature integrity assessment method which assessed separately the different functions structure, that testing and evaluation methods of foot-layer is in accordance with the general pressure vessels’methods, but the main testing and assessment of complex layer is cracks whether affected its corrosion function.
     This subject adopted finite element numerical analysis method, studied various composite steel pressure vessel weld interfaces creep strain field and stress field distribution, intuitively reflect various weld interfaces creep damage, provided a reliable theoretical basis for optimal design, nondestructive testing and security assessment of the composite steel pressure vessel.
引文
[1]赵路遇,黄维学.爆炸不锈钢复合板及其在石化设备上的应用[J].材料开发与应用,2005,15(1):24-29.
    [2]杨文峰.爆炸不锈钢复合钢板在化工装置中的应用[J].化工装备技术,2007,28(5):34-36.
    [3]李晓波.不锈钢复合板的界面组织结构与性能[J].中北大学学报(自然科学版),2006,2(4):365-367.
    [4]林涛.化工容器用复合钢板现状及应用[J].石油化工设备,2001,30(增刊):83-85.
    [5]涂善东.高温结构完整性原理[M].北京:科学出版社,2003:230-521.
    [6]凌祥,涂善东.高温构件寿命评价技术研究现状和进展[J].机械工程材料,2002,26(10):4-6.
    [7]Nizamettin Kahramana, Behcet Gulenc, Fehim Findik,Joining of titanium/stainless steel by explosive welding and effect on interface[J], Journal of Materials Processing Technology, 169 (2005) 127–133.
    [8]Ramazan Kacar, Mustafa Acarer.An investigation on the explosive cladding of 316L stainless steel-din-P355GH steel[J], Journal of Materials Processing Technology, 152 (2004): 91–96.
    [9]S.A.A. Akbari MousaviP. Farhadi Sartangi,Experimental investigation of explosive welding of cp-titanium/AISI 304 stainless steel[J], Materials and Design,(2008):1-10.
    [10]史长根,王洋,冯建.压力容器用爆炸焊接复合板界面剪切强度标准研究[J].压力容器,24 (2):24-26.
    [11]裴海祥,王立新,张寿禄等.爆炸复合板复合界面微观组织分析[J].材料工程,2002,19 (11):11-14.
    [12]王红梅,王秀芹,李建国.20R+ 0Cr18Ni10Ti不锈复合钢板的焊接[J].山东化工,2007,36(4): 31-33.
    [13]高静,王广明.不锈钢板的焊接[J].现代制造工程.2003(6):54-56.
    [14]俞春尧.AISI405和16MnR不锈复合钢板的焊接[J].焊接技术,2002,119(7):35-37.
    [15]王炳英,刘晓旭.15CrMoR+0Cr18Ni9不锈钢复合钢板焊接工艺[J].石油化工设备.2005,34(5), 47-49.
    [16]郑建西,张连宝,何惠玲等.不锈钢复合钢板的焊接工艺[J].焊接,2005,(1):28-30.
    [17]李为卫,马开阳,朱力挥等.不锈复合钢制压力容器的焊接工艺[J].焊接技术, 2006, 35(6):26-28.
    [18]陈茂爱,陈俊华,高进强.复合材料的焊接[M].北京:化学工业出版社,2004:22-24.
    [19]陆汉惠.不锈钢复合钢板16MnR+316L的焊接[J].焊接技术,2002,31(1):62-63.
    [20]李日娟.310S+Q235B不锈钢复合钢板焊接工艺[J].电焊机,2008,38(7):70-72.
    [21]T.H.Hyde,W.Sun,A.A.Becker.etc,Effect of weld angle and axial load on the creep failure behaviour of an internally pressurised thick walled CrMoV pipe weld[J],International Joumal of Pressure Vessels and Piping,28(2001):365-372.
    [22]杨挺青,罗文波,徐平等.黏弹性理论与应用[M].北京:科学出版社,2004:11-48.
    [23]涂善东.高温结构完整性原理[M].北京:科学出版社,2003:230-521.
    [24]李国深.圆柱壳体的弯曲蠕变屈曲.固体力学学报[J],1981,(4):554-562.
    [25]Lou.Y.C,Schapery.R.A,Viscoelastic characterization of a nonlinear fiber-reinforced plastic[J].J.C.M,1971,5: 208-234.
    [26]屈金山,李娟.利用C-C方法对焊接接头蠕变失效行为的研究[J].西华大学学报·自然科学版,2005,24(3):48-50.
    [27]凌祥,涂善东.高温构件寿命评价技术研究现状和进展[J].机械工程材料,2002,26(10):4-6,43.
    [28]翟俊霞,涂善东.高温下焊接结构完整性评定的方法——R5卷6《异种焊接头的评定方法》简介[J].压力容器,2000,17(1):5-8
    [29]轩福贞,涂善东,王正东.基于TDFAD下的高温缺陷“三级”评定方法[J].中国电机工程学报,2004,24(12):222-226.
    [30]GB/T 2039-1997,金属拉伸蠕变及持久试验方法[S].北京:国家技术监督局,1997.
    [31]姜云鹏,岳珠峰,王心美等.金属基复合材料的蠕变力学研究进展[J].燃气涡轮试验与研究,2003,16(2):53-57.
    [32]张鑫.不锈钢焊接接头蠕变行为的研究[D].成都:西华大学,2005.
    [33]张俊善.材料的高温变形与断裂[D].北京:科学出版社,2007.
    [34]毛雪平,刘宗德,杨昆等.2Cr11NiMoVNbNB钢蠕变规律的研究[J].机械强度,2003,25(4):433-435.
    [35]张建强,张国栋,何洁等.马氏体贝氏体耐热钢焊接接头的界面蠕变损伤行为[J].金属学报,2007,42(12):1275-1281
    [36]吴连生.失效分析技术及其应用[J].理化检验一物理分册.1996,32(4):59-63.
    [37]S.K.Albert,M.Matsui,H.Hongo,Creep rupture properties of HAZs of a high Cr ferritic steel simulated by a weld simulator[J], International Journal of Pressure Vessels and Piping, 81(2004):221–234.
    [38]Shan-Tung Tu, Peter Segle, Jian-Ming Gong.Creep damage and fracture of weldments at high temperature[J]. International Journal of Pressure Vessels and Piping,81(2004): 199-209.
    [39]张义同.变温粘弹性蠕变型本构方程[J].固体力学学报,1995,16(2):152-156.
    [40]ASME锅炉及压力容器规范2007版:国际性规范Ⅱ材料A篇[S].北京:中国石化出版社,2007.
    [41]张康达,洪起超.压力容器手册[M].北京:劳动人事出版社,1987.
    [42]张萍,高增梁,孙伟明等.16MnR钢高温疲劳裂纹扩展行为试验研究[J].石油机械,2005,33(8):
    [43]徐鹏.压力容器用钢16MnR高温损伤后应变疲劳特性研究[D].博士论文。
    [44]R.Rajendran, J.K.Paik, J.M.Lee, etc, Creep life prediction of a high strength steel plate[J], Materials and Design, 29(2008): 427-435.
    [45]D.R.Hayhurst,F.Vakili-Tahami,J.Q.Zhou,Constitutive equations for time independent plasticity and creep of 316 stainless steel at 550℃[J], International Journal of Pressure Vessels and Piping,80(2003):97-109.
    [46]陈年金.高温环境中疲劳蠕变交互作用寿命预测方法研究[D].杭州:浙江工业大学,2006.
    [47]S.A.A.Akbari Mousavi, R.Miresmaeili,Experimental and numerical analyses of residual stress distributions in TIG welding process for 304L stainless steel[J], journal of materials processing technology 208(2008):383-394.
    [48]史进.不锈钢钎焊接头高温强度的研究[D].南京,南京工业大学,2004.
    [49]吴海宏、郭正民.1Cr18Ni9Ti不锈钢蠕变机理及本构方程的研究[R].北京:线材制品国际技术研讨会,2006
    [50]任学平,关丽坤,张乃洪等.复合结构壳体蠕变变形有限元研究[J].力学与实践,2007,27(3):27-30.
    [51]B.Kurnatowski,A.Matzenmiller,Finite element analysis of viscoelastic composite structures based on a micromechanical material model[J],Computational Materials Science,43(2008):957-973.
    [52]韩敏.利用ANSYS软件对压力容器进行应力分析[J].煤矿机械,2008,29(1):73-74.
    [53]王清明.高温条件下压力容器热弹塑性蠕变分析[J].石油机械,2007,35(11):14-16.
    [54]姜勇,巩建鸣,涂善东.采用镍基和奥氏体焊材焊接Cr5Mo钢焊接接头的高温性能[J].压力容器,2004,21(7):13-17.
    [55]I.A.Shibli,N.Le Mat Hamata,creep crack growth in P22 and P91 welds-overview from SOTA and HIDA projects[J], International of Pressure Vessels and Piping,78(2001):785-793.
    [56]轩福贞,涂善东,王正东等.高温环境下在用压力容器检测与安全评估技术研究进展(一)——检测技术与数据库[J].压力容器,2002,19(9):1-5.
    [57]轩福贞,涂善东,王正东等.高温环境下在用压力容器检测与安全评估技术研究进展(二)——评估方法[J].压力容器,2002,19(10):1-6.
    [58]张新斌,蒋晓东,施哲雄.基于BS7910的含焊接缺陷管道的评定方法[J].北京石油化工学院学报,2005,13(2):37-41.
    [59]郭伟杰.电厂含缺陷压力容器安全评定专家系统[D].天津:天津大学,2007.
    [60]尹新升.压力容器检修技术的应用[D].北京:北京化工大学,2002.
    [61]薛宏伟,李增福.浅谈复合板制压力容器设计和制造应注意的问题[J].安装,2005,140(1):25-26
    [62]赖德海.在用不锈钢复合钢板制压力容器检验[J].压力容器,2003,20(2):35-37.
    [63]韩勇,刘东涛,谢云明.无损检测在压力容器定期检测中的应用[J].无损检测,2000,22(7):317.
    [64]李志安,金志浩,宫殿民.压力容器断裂理论与缺陷评定[D].大连:大连理工大学出版社,1994.
    [65]黄小勇.高温下工作的含缺陷构件安全评定方法的研究开发[D].杭州:浙江工业大学,1998.
    [66]P.J.Budden,I.Curbishley,Assessment of creep crack growth in dissimilar metal welds[J],Nuclear Engineering and Design,197(2000):13–23.
    [67]BSI.Guide on methods for assessing tile acceptability of flaws in metallic strucres[S]. Published Document,BS7910,1999.
    [68]BSI.Guidance on the method for assessing the acceptability of flaws in fusion welded structures[S].Published Document,PD6493,1995.
    [69]淡勇,裴世源,李元媛.基于ANSYS的椭圆封头接管结构的安全评定[J].西北大学学报(自然科学版),2008,38(5):749-752.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700