用户名: 密码: 验证码:
血浆内毒素在牙周炎患者罹患冠心病中的作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:通过分析牙周炎患者血浆内毒素与冠心病及其危险因素的相关性及牙周炎主要致病菌牙龈卟啉单胞菌(P.g)脂多糖(LPS)对人脐静脉内皮细胞(HUVEC)细胞间连接蛋白VE-cadherin表达及细胞增殖和调亡的影响,探讨血浆牙周炎致病菌内毒素在牙周炎患者罹患冠心病中的作用及相关机制。
     方法:1.临床研究采用病例对照研究设计,于2012年5月-7月在天津医科大学第二医院干部保健科进行体检的1089人中,选取牙周炎患者201人,并根据是否存在冠心病将其分为病例组(牙周炎合并冠心病)和对照组(牙周炎不合并冠心病),同时纳入43例健康查体对象设为空白组。通过鲎试剂动态浊度法与ELISA法分别测定血浆内毒素及同型半胱氨酸含量,并根据血浆内毒素四分位数将病例组人群进一步分成Q1组(>0%且≤25%)、Q2组(>25%且≤50%)、Q3组(>50%且≤75%)和Q4组(>75%且≤100%)。同时,对全部纳入对象中的男性和老年(年龄≥65岁)亚组人群分别进行了进一步相关研究。
     2.实验研究:在体外将P.g菌LPS与HUVEC共培养,根据P.g菌LPS浓度分为空白对照组、10pg/mL组、50pg/mL组、100pg/mL组及1ng/mL组。分别培养2h、6h、12h及24h后,采用Western blot和RT-PCR分别检测VE-cadherin蛋白及mRNA表达情况。培养28h后采用MTT法及流式细胞仪分别测定细胞增殖活力及凋亡情况,并通过Western blot检测caspase-3激活情况。
     结果:1.在全部入选研究对象中,3组人群的年龄、内毒素、收缩压(SBP)、总胆红素(STB)、同型半胱氨酸(Hcy)、总胆固醇(TC)、低密度脂蛋白胆固醇(LDL-C)、极低密度脂蛋白胆固醇(VLDL-C)、高密度脂蛋白胆固醇(HDL-C)差别均有统计学意义(P<0.01)。在病例组人群中,舒张压(DBP)、LDL-C及STB在血浆内毒素水平四分位组间的差异均有统计学意义(P<0.05),其中LDL-C随内毒素水平升高呈逐渐增高的趋势;血浆内毒素与TC和LDL-C之间存在正相关(r分别为0.438、0.457,P均为0.000),校正年龄因素影响后,它们之间仍然存在正相关(r分别为0.349、0.423,P分别为0.003、0.000)。血浆HCY及内毒素水平增加、年龄增长和舒张压升高可能是牙周炎患者罹患冠心病的促进因素,而女性性别优势可能是其抑制因素。
     2.在男性亚组中,3组人群的年龄、内毒素、SBP、DBP、STB、Hey、TC、LDL-C、VLDL-C、HDL-C差别均有统计学意义(P<0.05)。在男性病例组人群中,不同血浆内毒索水平四分位组间STB的差异有统计学意义(P<0.01);血浆内毒素与TC和LDL-C之间存在正相关(r分别为0.427、0.452,p均小于0.000),校正年龄因素影响后,它们之间J仍然存在正相关(r分别为0.361、0.454,P分别为0.006、0.000)。血浆Hcy及内毒素水平增加和年龄增长可能是促进男性牙周炎患者罹患冠心病的影响因素,而血浆Fbg水平增加可能是其抑制因素。
     3.在老年亚组中,3组人群的年龄、内毒素、SBP、STB、Hcy、TC、LDL-C、 HDL-C差别均有统计学意义(P<0.05)。在老年病例组人群中,STB和DBP在血浆毒素水平四分位组间的差异均有统计学意义(P<0.05);血浆内毒素与TC和LDL-C之间存在正相关(r分别为0.418、0.443,P均小于0.000),校正年龄因素影响后它们之间仍然存在正相关(r分别为0.320、0.399,P分别为0.008、0.001)。老年牙周炎患者罹患冠心病的易患因素可能是血.浆Hcy及内毒素水平增加,而其抑制因素可能是女性性别优势。
     4.浓度为1ng/mL时,P.g菌LPS能以时间依赖方式下调HUVEC细胞VE-cadherin蛋白及mRNA表达;100pg/mL浓度的P.g菌LPS仅在处理24h后才表现出上述下调作用;而10pg/mL和50pg/mL浓度的P.g菌LPS对HUVEC细胞VE-cadherin蛋白及mRNA表达无明显影响。
     5. HUVEC细胞增殖活力在10pg/mL组与空白对照组之间的差异没有统计学意义(P>0.05),细胞凋亡和caspase-3激活程度在这两组间也没有明显差异;50pg/mL组、100pg/mL组和1ng/mL组HUVEC细胞增殖活力明显低于空白对照组及10pg/mL组(P<0.01),并且随着P.g菌LPS浓度增加,HUVEC细胞增殖活力逐渐减低,而HUVEC细胞发生凋亡及caspase-3激活程度却逐渐增加。
     结论:1.血浆中牙周炎致病菌内毒素水平增加可能是促使牙周炎患者罹患冠心病的影响因素,并且牙周炎致病菌内毒素可能是通过与血.浆TC、LDL-C和Hcy及年龄增长等因素协同作用共同促进冠心病的发生与发展。
     2.牙周炎主要致病菌P.g菌脂多糖可能是通过抑制HUVEC细胞增殖和诱导HUVEC细胞凋亡的机制,直接引起血管内皮损伤,从而促进动脉粥样硬化病变的发生发展。
     3.P.g菌LPS可能不是通过直接影响HUVEC细胞VE-cadherin表达的途径增加内皮细胞间通透性,以利于动脉粥样硬化病变的形成。
     4.P.g菌LPS可能是通过激活caspase-3途径诱导HUVEC细胞产生凋亡的。
Objective:Through analysis the correlation between plasma endotoxin and coronary heart disease as well as its risk factors in patients with periodontitis and the effect of porphyromonas gingivalis-lipopolysaccharide (P.g-LPS) on VE-cadherin expression, cell proliferation and apoptosis in human umbilical vein endothelial cels (HUVEC), to study the role and mechanism of plasma periodontal pathogens endotoxin in periodontitis patients suffering from coronary heart disease (CHD).
     Method:1. Clinical studies using a case-control study design, two hundred and one patients with periodontitis were choosed frome1089physical examination population, which were examined at the Second Hospital of Tianjin Medical University cadres Health Division in May-July2012. All of the201patients were divided into the case group (with both of periodontitis and CHD) and the control group (with periodontitis, but not CHD). Fourty and three healthy people were included as blank group. The plasma endotoxin and homocysteine were analyised through limulus Amebocyte lysate assay and ELISA assay, respectively. According to quartiles of plasma endotoxin, the case group people were divided into Ql group (>0%and≤25%), Q2group(>25%and≤50%), Q3group(>50%and≤75%) and Q4group(>75%and≤100%). At the same time, further study were done in male and elderly (≥65years) subgroup.
     2. Experimental trails:In vitro, P.g-LPS and HUVEC were co-cultured. According to the concentration of P.g-LPS, the cells were divided into blank control group,10pg/mL group,50pg/mL group,100pg/mL group and1ng/mL group. After incubated for2h,6h,12h and24h, VE-cadherin protein and mRNA expression were detected by Western blot and RT-PCR, respectively. After incubated for28h, the cell proliferation activity and apoptosis were detected by MTT assay and flow cytometry assay, and the activation of caspase-3was detected by Western blot, aslo.
     Results:1. In All of the study objectes, the difference of the age, endotoxin, systolic blood pressure (SBP), total bilirubin (STB), homocysteine (Hcy), total cholesterol (TC), lowdensity lipoprotein cholesterol (LDL-C), very low density lipoprotein cholesterol (VLDL-C) and high-density lipoprotein cholesterol (HDL-C) during the3groups were statistically significant (P<0.01). During the case group population, the difference of diastolic blood pressure (DBP), LDL-C and STB were statistically significant (F<0.05) in plasma endotoxin levels quartile groups and with increasing of endotoxin levels, LDL-C levels showed a trend of gradually increase, and we discovered positive correlation between plasma endotoxin and TC and LDL-C (R=0.438,0.457; P=0.000). After adjusting for age factors, they also ran a positive correlation (R=0.349,0.423; P=0.003,0.000). Increasing of plasma Hcy, endotoxin and DBP, and aging may be the promote factors of periodontitis patients suffering from CHD, but female gender advantage was a protective factor.
     2. In male subgroup, the difference of the age, endotoxin, SBP, DBP, STB, Hcy, TC, LDL-C, VLDL-C and HDL-C during the3groups were statistically significant (P<0.05). In the case group of male subgroup, the difference of STB were statistically significant (P<0.05) in plasma endotoxin levels quartile groups, and we discovered positive correlation between plasma endotoxin and TC and LDL-C (R=0.427,0.452; F=0.000,0.000). After adjusting for age factors, they also ran a positive correlation (R=0.361,0.454; P=0.006,0.000). Increasing plasma Hey and endotoxin, and aging may promote male periodontitis patients suffering from CHD, but increasing plasma fibrinogen may be a protective factor.
     3. In elderly subgroup, the difference of the age, endotoxin, SBP, STB, Hcy, TC, LDL-C and HDL-C during the3groups were statistically significant (P<0.05). In the case group of elderly subgroup, the difference of STB and DBP were statistically significant (P<0.05) in plasma endotoxin levels quartile groups, and positive correlation ship was discovered between plasma endotoxin and TC and LDL-C (R=0.418,0.443; P<0.000). After adjusting for age factors, they also ran a positive correlation (R=0.320,0.399;P=0.008,0.001). Elderly periodontitis patients with increasing plasma Hey and endotoxin may be likely to suffer from CHD, but the protective factor may be with female gender advantage.
     4. P.g-LPS with concentration of1ng/mL can downregulate VE-cadherin protein and mRNA expression in the HUVEC cells with a time-dependent manner. P.g-LPS with100pg/mL showed the downward effect only after deal with24hours. However, P.g-LPS with10pg/mL and50pg/mL had no significant effect on VE-cadherin protein and mRNA expression.
     5. The difference of HUVEC cell proliferation activity between10pg/mL group and blank control group was not statistically significant (P>0.05), and the degree of apoptosis and caspase-3activation in these two groups did not differ significantly. However HUVEC cell proliferation activity was significantly lower in50pg/mL group,100pg/mL group and1ng/mL group than in blank control group and10pg/mL group (P<0.01), and with concentrations increasing of P.g-LPS, the cell proliferation activity gradually decreased, but the degree of apoptosis and caspase-3activation was gradually increased.
     Conclusion:1. Increased plasma periodontal pathogens endotoxin was a promote factor of periodontitis patients suffering from CHD, and it may be promote the development of CHD by joint with TC, LDL-C, Hcy and aging.
     2. The LPS of periodontitis main pathogens P.g may be through inhibition of HUVEC cell proliferation and induce its apoptosis directly cause vascular endothelial injury, and promote the development of atherosclerotic lesions.
     3. P.g-LPS may not increase the permeability of endothelial cells through directly affect the HUVEC cells VE-cadherin expression pathway, in order to facilitate the atherosclerosis lesion formation.
     4. P.g-LPS may be induce apoptosis of HUVEC cells through activate caspase-3.
引文
[1]Bentham J, Nieminen MS, Valtonen VV, et al. Association between dental Health and acute myocardial infarction [J]. Br Med J,1989,298(6676):779-781.
    [2]Cohen B, Vittinghoff E, Whooley M. Association of socioeconomic status and exercise capacity in adults with coronary heart disease (from the Heart and Soul Study) [J]. Am J Cardiol,2008,101(4):462-466.
    [3]Nash DT. Insulin resistance, ADMA levels, and cardiovascular disease [J]. JAMA, 2002,287(11):1451-1452.
    [4]Mouithys-Mickalad A, Deby-Dupont G, Dogne JM, et al. Effects of COX-2 inhibitors on ROS produced by Chlamydia pneumoniae-primed human promonocytic cells (THp-1) [J]. Biochem Biophys Res Commun,2004,325(4): 1122-1130.
    [5]Sun YY, Jing Wl, luo XI, et al. Detection of serum Chlamydia pheumohiae(Cpn) immune complex and Cpn antibody in patients with coronary heart disease [J]. Di Yi Jun Yi Da Xue Xue Bao,2004,24(4):365-366,391.
    [6]Shoenfeld Y, Sherer Y, Harats D. Artherosclerosis as an infectious,inflammatory and autoimmune disease [J]. Trends Immunol,2001,22(6):293-295.
    [7]Herzberg MC, Nobbs A, Tao 1, et al. Oral streptococci and cardiovascular disease: searching for the platelet aggregation-associated protein gene and mechanisms of Streptococcus sanguis-induced thrombosis [J]. J periodontol,2005,76(11 Suppl): 2101-2105.
    [8]Mattila KJ, Nieminen MS,Valtonen VV, et al. Association between dental Health ans acute myocardial infarction [J]. BMJ,1989,298(6676):779-781.
    [9]Mattila KJ, VAlle MS, Nieminen MS, et al. Dental infections and coronary atherosclerosis [J]. Atherosclerosis,1993,103(2):205-211.
    [10]DeStefano F, Anda RF, Kahn HS, et al. Dental disease and risk of coronary heart disease and mortality. [J]. BMJ,1993,306(6879):688-691.
    [11]Arbes SJ Jr, Slade GD, Beck JD. Association between extent of periodontal attachment loss and self-roported history of heart attack:an analysis of NHANES Ⅲ data [J]. J Dent Res,1999,78(12):1777-1782.
    [12]Morrison HI, Ellison IF, Taylor GW. periodontal disease and risk of fatal coronary heart and cerebrovascular diseases [J]. J Cardiovasc Risk,1999;6(1): 7-11.
    [13]Hujoel pp, Drangsholt M, Spiekerman C, et al. periodontal disease and coronary heart disease risk [J]. JAMA,2000,284(11):1406-1410.
    [14]Rech R1, Nurkin N, da Cruz I, et al. Association between eriodontal disease and acute coronary syndrome [J]. Arq Bras Cardiol,2007,88(2):185-190.
    [15]Gu Y, lee HM, Sorsa T, et al. Non-antiBacterial tetracyClines modulate mediators of periodontitis and atherosclerotic cardiovascular disease:a mechanistic link between local and systemic inflammation [J]. pharmacol Res, 2011,64(6):573-579.
    [16]Mattila KJ, Valtonen VV, Nieminen MS, et al. Dental infections and the risk of new coronary events:prospective study of patients with documented coronary artery disease [J]. Clin Infect Dis,1995,20(3):588-592.
    [17]Joshipura KJ, Rimm EB, Douglas CW, et al. poor Oral Health and coronary heart disease [J]. J Dent Res,1996,75(9):1631-1636.
    [18]Jansson 1, lavstedt S, Frithiofl,et al. Relationship between Oral Health and mortality in cardiovascular diseases [J]. J Clin periodontol,2001;28(8):762-768.
    [19]Hujoel pp, Drangsholt M, Spiekerman C, et al. periodontal disease and coronary heart disease risk [J]. JAMA,2000;284(11):1406-1410.
    [20]Joshipura KJ, Rimm EB, Douglass CW, et al. poor Oral Health and coronary heart disease [J]. J Dent Res,1996;75(9):1631-1636.
    [21]Howell TH, Ridker pM, Ajani UA, et al. periodontal disease and risk of subsequent cardiovascular disease in U.S. fmale physicians [J]. J Am Coll Cardiol,2001;37(2):445-450.
    [22]Mattila KJ, Asikainen S, Wolf J, et al. Age, dental infections, and coronary heart disease [J]. J Dent Res,2000;79(2):756-760.
    [23]Hujoel pp, Drangsholt M, Spiekerman C, et al. Examining the link between coronary heart disease and the elimination of chronic dental infections [J]. J Am Dent Assoc,2001; 132(7):883-889.
    [24]D'Aiuto F, parkar M, Andreou G, et al. periodontitis and systemic inflammation: control of the local infection is associated with a reduction in serum inflammatory markers [J]. J Dent Res,2004,83(2):156-160.
    [25]Tonetti MS, D'Aiuto F, Nibalil, et al. Treatment of periodontitis and endothelial function [J]. N Engl J Med,2007,356(9):911-920.
    [26]Blun A, Kryuger K, Mashiach EM, et al. periodontal care may improve endothelial function [J]. Euro J Intern Med,2007,18(4):295-298.
    [27]Chiu B. Multiple infections in carotid atherosclerotic plaques [J]. Am Heart J, 1999,138(5 pt 2):S534-536.
    [28]Haraszthy VI, Zambon JJ, Trevisan M, et al. Identification of periodontal pathogens in atheromatous plaques [J]. J periodontal,2000,71(10):1554-1560.
    [29]Cairo F, Gaeta C, Dorigo W, et al. periodontal pathogens in atheromatous plaques:A controlled Clinical and laborotory trial[J]. J periodontal Res, 2004,39(6):442-446.
    [30]padilla C, lobos O, Hubert E, et al. periodontal pathogens in atheromatous plaques isolated from patients with chronic periodontitis [J]. J periodontal Res, 2006,41 (4):350-353.
    [31]Ford pJ, Gemmell E, Chan A, et al. Inflammation, heat shock proteins and periosontal pathogens in atherosclerosis:an immunohistologic study [J]. Oral MicroBiol Immunol,2006,21 (4):206-211.
    [32]Dogan B, Buduneli E, Emingil G, et al. Characteristics of periodontal microflora in acute myocardial infarction [J]. J periodontal,2005,76(5):740-748.
    [33]Spahr A, Klein E, Khuseyinova N, et al. periodontal infection and coronary heart disease [J]. Arch Intrern Med,2006,166(5):554-559.
    [34]Renvert S, pettersson T, Ohlsson O, et al. Bacterial profile and burden of periodontal infection in suhjects with a diagnosis of acute coronary syndrome [J].J periodontal,2006,77(7):1110-1119.
    [35]Jain A, Batista E1, Serhan C, et al. Role for periodontitis in the progression of lipid deposition in an animal model [J]. Infect immun,2003,71(10):6012-6018.
    [36]Giacona MB, pappanou pN, lamster IB, et al. porphyromonas gingivalis induces its uptake by human macrophages and promotes foam cell formation in vitro [J]. FEMS MicroBiol lett,2004,241(1):95-101.
    [37]pussinen pJ, Jousilahti p, Alfthan G, et al. Antibodies to periodontal pathogens are associated with coronary heart disease [J]. Arterioscler Thromb Vasc Biol, 2003,23(7):1250-1254.
    [38]Beck JD, Eke p, Heiss G, et al. periodontal disease and coronary heart disease: a reappraisal of the exposure [J]. Circulation,2005,112(1):19-24.
    [39]pussinen pJ, Nyyssonen K, Alfthan G, et al. Serum antibody levels to actinobacillus actinomycetemcomitans predict the risk for coronary heart disease [J]. Arterioscler Thromb Vasc Biol,2005,25(4):833-838.
    [40]Bahekar AA, Singh S, Saha S, et al. The prevalence and incidence of coronary heart disease is signifi cantly increased in periodontitis:a meta-analysis [J]. Am Heart J,2007,154(5):830-837.
    [41]Haraszthy VI, Zambon JJ, Trevisan M, et al. Identification of periodontal pathogens in atheromatous plaques [J]. J periodontol,2000,71(10):1554-1560.
    [42]Qin C, liu Z. In atherogenesis the apoptosis of endothelial cell itself could directly induce over-dproliferation of smooth muscle cells [J]. Med Hypotheses, 2007,68(2):275-277.
    [43]Kirikae T, Nitta F, Kirikae Y, et al. lipopolysaccharides (LPS) of Oral black-pigmented bacteria induce tumor necrosis factor production by LPS-refractory C3H/HeJ macrophages in a way different from that of Salmonella LPS [J]. Infect Immun,1999,67(4):1736-1742.
    [44]Tanamoto K, Azumi S, Haishima Y, et al. The lipid A moiety of porphyromonas gingivalis lipopolysaccharide specificAlly mediates the activation of C3H/HeJ mice [J]. J Immunol,1997,158(9):4430-4436.
    [45]Ogawa T, Nakazawa M, Masui K, et al. Immunopharmacological activities of the nontoxic monophosphoryl lipid A of porphyromonas gingivalis [J]. Vaccine, 1996,14(1):70-76.
    [46]Ogawa T, Shimauchi H, Uchida H, et al. Stimulation of splenocytes in C3H/HeJ mice with porphyromonas gingivalis lipid A in comparison with entero Bacterial lipid A [J]. Immuno Biology,1996,196(4):399-414.
    [47]Shimauchi H, Ogawa T, Uchida H, et al. Splenic B-cell activation in lipopolysaccharide-non-responsive C3H/HeJ mice by lipopolysaccharide of porphyromonas gingivalis [J]. Experientia,1996,52(9):909-917.
    [48]Miyake K. Roles for accessory molecules in microbial recognition by Toll-like receptors [J]. J Endotoxin Res,2006,12(4):195-204.
    [49]Werts C, Tapping RI, Mathison JC, et al. leptospiral lipopolysaccharide activates cells through a TLR2-dependent mechanism [J]. Nat Immunol,2001,2(4):346-352.
    [50]Netea MG, van Deuren M, Kullberg BJ, et al. Does the shape of lipid A determine the interaction of LPS with Toll-like receptors? [J]. Trends Immunol, 2002,23(3):135-139.
    [51]Ogawa T, Asai Y, Makimura Y, et al. Chemical structure and immuno-Biological activity of porphyromonas gingivalis lipid A [J]. Front Biosci,2007, 1(12):3795-3812.
    [52]陆再英,钟南山.内科学[M].7版.北京:人民卫生出版社,2008:267-302.
    [53]Delahoy pJ, Magliano DJ, Webb K, et al. The Relationship between reduction in low-density lipoprotein cholesterol by statins and reduction in risk of cardiovascular outcomes:an updated meta-analysis [J]. Clin Ther,2009,31(2): 236-244.
    [54]laRosa JC, Grundy SM, Waters DD, et al. Intensive lipid lowering with atorvastatin in patients with stable coronary disease [J]. N Engl J Med,2005,352 (14):1425-1435.
    [55]Miller M, Cannon Cp, Murphy SA, et al. Impact of triglyceride levels beyond low-density lipoprotein cholesterol after acute coronary syndrome in the pROVE IT-TIMI 22 trial[J]. J Am Coll Cardiol,2008,51(7):724-730.
    [56]Sarwar N, Danesh J, Eiriksdottir G, et al. Triglycerides and the risk of coronary heart disease:10,158 incident cases among 262,525 participants in 29 Western prospective studies [J]. Circulation,2007,115(4):450-458.
    [57]leiter 1A, lundman p, da Silva pM, et al. persistent lipid abnormalities in statin-treated patients with diabetes mellitus in Europe and Canada:results of the Dyslipidaemia International Study [J]. Diabet Med,2011,28(11):1343-1351.
    [58]中国心脏调查组.中国住院冠心病患者糖代谢异常研究—中国心脏调查[J].中华内分泌代谢杂志,2006,2(1):7-10.
    [59]Scott R, O'Brien R, Fulcher G, et al. Effects of fenofibrate treatment on cardiovascular disease risk in 9,795 individuals with type 2 diabetes and various components of the metabolic syndrome:the Fenofibrate Intervention and Event lowering in Diabetes (FIE1D) study [J]. Diabetes Care,2009,32(3):493-498.
    [60]ACCORD Study Group, Ginsberg HN, Elam MB, et al. Effects of combination lipid therapy in type 2 diabetes mellitus [J]. N Engl J Med,2010,362(17):1563-1574.
    [61]Otvos JD, Collins D, Freedman DS, et al. low-density lipoprotein and high-density lipoprotein particle subclasses predict coronary events and are favorably changed by gemfibrozil therapy in the Veterans Affairs High-Density lipoprotein Intervention Trial [J]. Circulation,2006,113(12):1556-1563.
    [62]AIM-HIGH Investigators, Boden WE, probstfield Jl, et al. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy [J]. N Engl J Med, 2011,365(24):2255-2267.
    [63]Holman RR, paul S, Farmer A, et al. Atorvastatin in Factorial with Omega-3 EE90 Risk Reduction in Diabetes (AFORRD):a randomised controlled trial[J]. Diabetologia,2009,52(1):50-59.
    [64]Igland J, Vollset SE, Nygard OK, et al. Relative importance of risk factors for coronary heart disease-the Hordaland Homocysteine study [J]. Scand Cardiovasc J,2012,46(6):316-23.
    [65]Sun Y, Chien Kl, Hsu HC, et al. Use of serum homocysteine to predict stroke, coronary heart disease and death in ethnic Chinese.12-year prospective cohort study [J]. Circ J,2009,73(8):1423-30.
    [66]Humphrey 11, Fu R, Rogers K, et al. Homocysteine level and coronary heart disease incidence:a systematic review and meta-analysis [J]. Mayo Clin proc, 2008,83(11):1203-12.
    [67]Wenger NK. Coronary heart disease:the fefmale heart is vulnerable [J]. prog Cardiovasc Dis,2003,46(3):199-229.
    [68]Spoletini I, Vitale C, Rosano GM. Biomarkers for predicting postmenopausal coronary heart disease [J]. Biomark Med,2011,5(4):485-95.
    [69]Chen Y, Zeleniuch-Jacquotte A, Arslan AA, et al. Endogenous hormones and coronary heart disease in postmenopausal women [J]. Atherosclerosis,2011,216 (2):414-9.
    [70]Rudnicka AR, Mt-Isa S, Meade TW. Associations of plasma fibrinogen and factor Ⅶ clotting activity with coronary heart diseaseand stroke:prospective cohort study from the screening phase of the Thrombosis prevention Trial [J]. J Thromb Haemost,2006,4(11):2405-10.
    [71]Smith GD, Harbord R, Milton J, et al. Does elevated plasma fibrinogen increase the risk of coronary heart disease? Evidence from a meta-analysis of genetic association studies [J]. Arterioscler Thromb Vasc Biol,2005,25(10):2228-33.
    [72]Maitra U, li 1. Molecular mechanisms responsible for the reduced expression of cholesterol transporters from macro phages by low-dose endotoxin [J]. Arterioscler Thromb Vasc Biol,2013,33(1):24-33.
    [73]Khovidhunkit W, Moser AH, Shigenaga JK, et al. Endotoxin down-regulates ABCG5 and ABCG8 in mouse liver and ABCA1 and ABCG1 in J774 murine macrophages:differential Role of 1XR [J]. J lipid Res,2003,44(9):1728-1736.
    [74]Schwartz YSh, Dushkin MI. Endotoxin-lipoprotein complex formation as a factor in atherogenesis:associations with hyperlipidemia and with lecithin: cholesterol acyltransferase activity [J]. Biochemistry (Mosc),2002,67(7):747-752.
    [75]Feingold KR, Spady DK, pollock AS, et al. Endotoxin, TNF, and Ⅱ-1 decrease cholesterol 7 alpha-hydroxylase mRNA levels and activity [J]. J lipid Res, 1996,37(2):223-228.
    [76]Schwartz YSh, Dushkin MI. In vitro accumulation of complexes of endotoxin and low-density lipoproteins by macrophages and arterial wAll [J]. Bull Exp Biol Med,2009,147(2):189-192.
    [77]Feingold KR, Hardardottir I, Memon R, et al. Effect of endotoxin on cholesterol biosynthesis and distribution in serum lipoproteins in Syrian hamsters [J]. J lipid Res,1993,34(12):2147-258.
    [78]Cutler CW, Shinedling EA, Nunn M, Association between periodontitis and hyperlipidemia:cause or effect? [J]. J periodontol,1999,70(12):1429-1434.
    [79]Ebersole J1, Cappelli D, Mott G, et al. Systemic manifestations of periodontitis in the non-human primate [J]. J periodontal Res,1999,34(7):358-362.
    [80]Goteiner D, Craig RG, Ashmen R, et al. Endotoxin levels are associated with high-density lipoprotein, triglycerides, and troponin in patients with acute coronary syndrome and angina:possible contributions from periodontal sources [J]. J periodontol,2008,79(12):2331-2339.
    [81]pussinen pJ, Vilkuna-Rautiainen T, Alfthan G, et al. Severe periodontitis enhances macrophage activation via increased serum lipopolysaccharide [J]. Arterioscler Thromb Vase Biol,2004,24(11):2174-2180.
    [82]lakio 1, lehto M, Tuomainen AM, et al. pro-atherogenic properties of lipopolysaccharide from the periodontal pathogen Actinobacillus actinomyc-etemcomitans [J]. J Endotoxin Res,2006,12(1):57-64.
    [83]lin Jp, Vitek 1, Schwertner HA. Serum bilirubin and genes controlling bilirubin concentrations as biomarkers for cardiovascular disease [J]. Clin Chem,2010,6 (10):1535-1543.
    [84]Tanaka M, Fukui M, Tomiyasu K, et al. low serum bilirubin concentration is associated with coronary artery calcification (CAC) [J]. Atherosclerosis,2009, 206(1):287-291.
    [85]Shcherbinina MB. low blood bilirubin level:possible diagnostic and prognostic importance [J]. Klin Med (Mosk),2007,85(10):10-14.
    [86]Troughton JA, Woodside JV, Young IS, et al. Bilirubin and coronary heart disease risk in the prospective Epidemiological Study of Myocardial Infarction (PRIME) [J]. Eur J Cardiovasc prev Rehabil,2007,14(1):79-84.
    [87]HorsfAll U, Nazareth I, petersen I. Cardiovascular events as a function of serum bilirubin levels in a large, statin-treated cohort [J]. Circulation,2012,126(22): 2556-2564.
    [88]Huang SS, Huang pH, Wu TC, et al. Association of serum bilirubin with contrast-induced nephropathy and future cardiovascular events in patients undergoing coronary intervention [J]. ploS One,2012,7(8):e42594.
    [89]Erdogan T, Ci9ek Y, Kocaman SA, Increased serum bilirubin level is related to good Collateral development in patients with chronic total coronary occlusion [J]. Intern Med,2012,51 (3):249-55.
    [90]Kuwano T, Miura S, Shirai K, et al. Serum levels of bilirubin as an independent predictor of coronary in-stent restenosis:a new look at an old molecule [J]. J Atheroscler Thromb,2011,18(7):574-583.
    [91]Yeung CY, Ngai KC. Cytokine-and endotoxin-enhanced bilirubin cytotoxicity [J]. J perinatol,2001,21(1):S56-58; discussion S59-62.
    [92]Yamaguchi T, Hashizume T, Tanaka M, et al. Bilirubin oxidation provoked by endotoxin treatment is suppressed by feeding ascorbic acid in a rat mutant unable to synthesize ascorbic acid [J]. Eur J Biochem,1997,245(2):233-240.
    [93]Yamaguchi T, Horio F, Hashizume T, et al. Bilirubin is oxidized in rats treated with endotoxin and acts as a physiological antioxidant synergisticAlly with ascorbic acid in vivo [J]. Biochem Biophys Res Commun,1995,214(1):11-19.
    [94]Cardoso Fl, Kittel A, Veszelka S, et al. Exposure to lipopolysaccharide and/or unconjugated bilirubin impair the integrity and function of brain microvascular endothelial cells [J]. ploS One,2012,7(5):e35919.
    [95]Zelenka J, Muchova l, Zelenkova M, et al. Intracellular accumulation of bilirubin as a defense mechanism against increased oxidative stress [J]. Biochimie, 2012,94(8):1821-1827.
    [96]Wegiel B, GAllo D, Csizmadia E,et al. Biliverdin inhibits Toll-like receptor-4 (TLR4) expression through nitric oxide-dependent nuclear translocation of biliverdin reductase [J]. proc Natl Acad Sci USA,2011,108(46):18849-18854.
    [97]Aleksic N, Wang YW, Ahn C, et al. Assessment of coronary heart disease risk by combined analysis of coagulation factors [J]. Atherosclerosis,2008198(2): 294-300.
    [98]Swardfager W, Herrmann N, Cornish S, et al. Exercise intervention and inflammatory markers in coronary artery disease:a meta-analysis [J]. Am Heart J,2012,163(4):666-676.
    [99]lupi A, Secco GG, Rognoni A,et al. plasma fibrinogen levels and restenosis after primary percutaneous coronary intervention [J]. J Thromb Thrombolysis, 2012,33(4):308-317.
    [100]Xu F, lv S, Chen Y, et, al. Macrophage inflammatory protein-1β and fibrinogen are synergistic predictive markers of prognosis of intermediate coronary artery lesions [J]. Cardiology,2012,121 (1):12-19.
    [101]Ndrepepa G, Braun S, King l et al. Relation of fibrinogen level with cardiovascular events in patients with coronary artery disease [J]. Am J Cardiol, 2013,111(6):804-810.
    [102]Silveira Vl, limaos EA. Effect of Bacterial endotoxin on plasma concentration of haptoglobin and fibrinogen in rats treated with metopyrone [J]. Agents Actions,1990,31(1-2):143-147.
    [103]Bertini R, Bianchi M, Erroi A. Dexamethasone modulation of in vivo effects of endotoxin, tumor necrosis factor, and interleukin-1 on liver cytochrome p-450, plasma fibrinogen, and serum iron [J]. J leukoc Biol,1989,46(3):254-262.
    [104]Deldar A, Naylor JM, Bloom JC. Effects of Escherichia coli endotoxin on leukocyte and platelet counts, fibrinogen concentrations, and blood clotting in colostrum-fed and colostrum-deficient neonatal calves [J]. Am J Vet Res,1984, 45(4):670-677.
    [105]Yu X, Wu Q. lipopolysaccharide induces exposure of fibrinogen receptors on human platelets [J]. Chin Med Sci J,1995,10(2):73-77.
    [106]Cruz-Topete D, Iwaki T, ploplis VA,et al. Delayed inflammatory responses to endotoxin in fibrinogen-deficient mice [J]. J pathol,2006,210(3):325-333.
    [107]lund T,(?)sterud B. Fibrinogen increases lipopolysaccharide-induced tumor necrosis factor-alpha and interleukin-8 release, and enhances tissue factor activity in monocytes in a modified whole blood system [J]. Blood Coagul Fibrinolysis,2001,12(8):667-75.
    [108]Wahaidi VY, Kowolik MJ, Eckert GJ,et al. Endotoxemia and the host systemic response during experimental gingivitis [J]. J Clin periodontol,2011,38(5): 412-417.
    [109]Eberhard J, Grote K, luchtefeld M, et al. Experimental gingivitis induces systemic inflammatory markers in young Healthy individuals:a single-subject interventional study [J]. ploS One,2013,8(2):e55265.
    [110]Kocaman SA, Sahinarslan A, Cemri M, et al. Independent Relationship of serum uric acid levels with leukocytes and coronary atherosclerotic burden [J]. Nutr Metab Cardiovasc Dis,2009,19(10):729-735.
    [111]Duran M, Kalay N, Akpek M, et al. High levels of serum uric acid predict severity of coronary artery disease in patients with acute coronary syndrome [J]. Angiology,2012,63(6):448-452.
    [112]He p, Xie XH, Ding Yp, et al. Correlation between high sensitive C-reactive protein, lipoprotein(a), blood uric acid and severity of coronary artery disease [J]. Zhonghua Yi Xue Za Zhi,2010,90(28):1989-1991.
    [113]Al-Meshaweh AF, Jafar Y, Asem M, et al. Determinants of blood uric acid levels in a dyslipidemic Arab population [J]. Med princ pract,2012,21(3): 209-216.
    [114]Zhang Z, Bian 1, Choi Y. Serum uric acid:a marker of metabolic syndrome and subClinical atherosclerosis in Korean men [J]. Angiology,2012,63(6):420-428.
    [115]Rothenbacher D, Kleiner A, Koenig W, et al. Relationship between inflammatory cytokines and uric acid levels with adverse cardiovascular outcomes in patients with stable coronary heart disease [J]. ploS One,2012, 7(9):e45907.
    [116]Ndrepepa G, Braun S, King 1, et al. Association of uric acid with mortality in patients with stable coronary artery disease [J]. Metabolism,2012,61(12): 1780-1786.
    [117]De luca G, Secco GG, Santagostino M,et al. Uric acid does not affect the prevalence and extent of coronary artery disease. Results from a prospective study [J]. Nutr Metab Cardiovasc Dis,2012,22(5):426-433.
    [118]Netea MG, Kullberg BJ, Blok Wl,et al. The Role of hyperuricemia in the increased cytokine production after lipopolysaccharide chAllenge in neutropenic mice [J]. Blood,1997,89(2):577-582.
    [119]Vestweber D, Winderlich M, Cagna G, et al. Cell adhesion dynamics at endothelial junctions:VE-cadherin as a major player [J]. Trends Cell Biol, 2009,19(1):8-15
    [120]Boda-Heggemann J, Regnier-Vigouroux A, Franke WW. Beyond vessels: occurrence and regional clustering of vascular endothelial (VE-) cadherin-containing junctions in non-endothelial cells [J]. Cell Tissue Res,2009,335(1): 49-65.
    [121]Zhang 1Z, Mei J, Qian ZK, et al. The Role of VE-cadherin in osteosarcoma cells [J]. pathol Oncol Res,2010,16(1):111-117.
    [122]Oberlin E, E1 Hafny B, petit-Cocault 1, et al. Definitive human and mouse hematopoiesis originates from the embryonic endothelium:anew class of HSCs based on VE-cadherin expression [J]. Int J Dev Biol,2010,54(6-7):1165-1173.
    [123]Dejana E, Vestweber D. The Role of VE-Cadherin in Vascular Morphogenesis and permeability Control [J]. prog Mol Biol Transl Sci,2013,116:119-144.
    [124]Orsenigo F, Giampietro C, Ferrari A, et al. phosphorylation of VE-cadherin is modulated by haemodynamic forces and contributes to the regulation of vascular permeability in vivo [J]. Nat Commun,2012,3:1208.
    [125]Zang G, Christoffersson G, Tian G, et al. Aberrant association between vascular endothelial growth factor receptor-2 and VE-cadherin in response to vascular endothelial growth factor-a in Shb-deficient lung endothelial cells [J]. Cell Signal,2013,25(1):85-92.
    [126]lopez D, Niu G, Huber p. Tumor-induced upregulation of twist, snail, and slug represses the activity of the human VE-cadherin promoter [J]. Arch Biochem Biophys,2009,482(1-2):77-82.
    [127]Allingham MJ, van Buul JD, Burridge K. ICAM-1-mediated, Src-and pyk2-dependent vascular endothelial cadherin tyrosine phosphorylation is required for leukocyte transendothelial migration [J]. Immunol,2007,179(6): 4053-4064.
    [128]potter MD, Barbero S, Cheresh DA. Tyrosine phosphorylation of VE prevents binding of p120-and beta-catenin and maintains the cellular mesenchymal state [J]. Biol Chem,2005,280(36):31906-31912.
    [129]Turowski p, Martinelli R, Crawford R, et al. phosphorylation of vascular endothelial cadherin controls lymphocyte emigration [J]. J Cell Sci,2008, 121 (pt 1):29-37.
    [130]Gavard J, Gutkind JS. VEGF controls endothelial cell permeability by promoting the arrestin-dependent endocytosis of VE [J]. Nat Cell Biol,2006, 8(11):1223-1234.
    [131]WAllez Y, Cand F, Cruzalegui F, et al. Src kinase phosphorylates vascular endothelialcadherin in response to vascular endothelial growth factor: identification of tyrosine 685 as the unique target site [J]. Oncogene,2006, 26(7):1067-1077.
    [132]Yamaoka-Tojo M, Tojo T, Kim HW, et al. IQGAp1 mediates VE-based cell-cell contacts and VEGF signaling at adherence junctions linked to angiogenesis [J]. Arterioscler Thromb Vasc Biol,2006,26(9):1991-1997.
    [133]Nourse MB, Halpin DE, Scatena M, et al. VEGF induces differentiation of functional endothelium from human embryonic stem cells:implications for tissue engineering [J]. Arterioscler Thromb Vasc Biol,2010,30(1):80-89.
    [134]Mehta D, Konstantoulaki M, Ahmmed GU, et al. Sphingosine 1-phosphate-induced mobilization of intracellular Ca2+ mediates rac activation and adherens junction assembly in endothelial cells [J]. J Biol Chem,2005,280(17):17320-7328.
    [135]Xu M, Waters Cl, Hu C, et al. Sphingosine 1-phosphate rapidly increases endothelial barrier function independently of VE but requires cell spreading and Rho kinase [J]. Am J physiol Cell physiol,2007,293(4):C1309-C1318.
    [136]臧婵媛,康毅,温克等.1-磷酸鞘氨醇对血小板活化因子所致大鼠肠系膜微血管通透性增高的影响[J].中国病理生理杂志,2010,26(4):681-685.
    [137]Orlova VV, Economopoulou M, lupu F, et al. Junctional adhesion molecule-C regulates vascular endothelial permeability by modulating VE-cadherin-mediated cell-cell contacts [J]. J Exp Med,2006,203(12):2703-2714.
    [138]Nawroth R, poell G, Ranft A, et al. VE-pTp and VE ectodomains interact to facilitate regulation of phosphorylation and cell contacts [J]. EMBO J,2002,21 (18):4885-4895.
    [139]Wegmann F, petri B, Khandoga AG, et al. ESAM supports neutrophil extravasation, activation of Rho and VEGF-induced vascular permeability [J]. J Exp Med,2006,203(7):1671-1677.
    [140]Sakurai A, Fukuhara S, Yamagishi A, et al. MAGI-1 is required for Rapl activation upon cell-cell contact and for enhancement of vascular endothelial cadherinmediated cell adhesion [J]. Mol Biol Cell,2006,17(2):966-976.
    [141]Cowan CE, Kohler EE, Dugan TA, et al. Kruppel-like factor-4 transcriptionally regulates VE-cadherin expression and endothelial barrier function [J]. Circ Res,2010,107(8):959-966.
    [142]Xua J liu X, Chen J, et al. Cell-cell interaction promotes rat marrow stromal cell differentiation into endothelial cell via activation of TACE/TNF-alpha signaling [J]. Cell Transplant,2010,19(1):43-53.
    [143]Harris ES, Nelson WJ. ApC regulates endothelial cell migration independent of Roles in β-atenin signaling and cell-cell adhesion [J]. Mol Biol Cell,2010, 21(15):2611-23.
    [144]Grinnell Kl, Chichger H, Braza J, et al. protection against LPS-induced pulmonary edema through the attenuation of protein tyrosine phosphatase-1B oxidation [J]. Am J Respir Cell Mol Biol,2012,46(5):623-632.
    [145]Gong p, Angelini DJ, Yang S, et al. TLR4 Signaling Is Coupled to SRC Family Kinase Activation, Tyrosine phosphorylation of Zonula Adherens proteins, and Opening of the paracellular pathway in Human lung Microvascular Endothelia [J]. J Biol Chem,2008,283(19):13437-13449.
    [146]Chatterjee A, Snead C, Yetik-Anacak G, et al. Heat shock protein 90 inhibitors attenuate LPS-induced endothelial hyperpermeability [J]. Am J physiol lung Cell Mol physiol,2008,294(4):1755-763.
    [147]pang H, Yi p, Wu p, et al. Effect of lipoxin A4 on lipopolysaccharide-induced endothelial hyperpermeability [J]. Scientific World Journal,2011,5(11):1056-1067.
    [148]Wan R, Guo R, Chen C, et al. Urocortin increased LPS-induced endothelial permeability by regulating the cadherin-catenin complex via corticotrophin-releasing hormone receptor 2 [J]. J Cell physiol,2013,228(6):1295-1303.
    [149]Bainbridge BW. Coats SR, Darveau Rp. porphyromonas gingivalis lipopolys-accharide displays functionAlly diverse interactions with the innate host defense system [J]. Ann periodontol,2002,7(1):29-37.
    [150]Ogawa T, Asai Y, Makimura Y, et al. Chemical structure and immun-obiological activity of porphyromonas gingivalis lipid A [J]. Front Biosci, 2007,1(12):3795-3812.
    [151]Hama S, Takeichi O, Fujisaki K, et al. Nitric oxide attenuates vascular endothelial cadherin-mediated vascular integrity in human chronic inflammation [J]. Clin Exp Immunol,2008,154(3):384-390.
    [152]Reed JC. Mechanisms of apoptosis [J]. Am J pathol.2000,157(5):1415-1430.
    [153]Sladek Z, Rysanek D. Apoptosis of polymorphonuclear leukocytes of the juvenile bovine mammary gland during induced influx [J]. Vet Res,2000, 31(6):553-563.
    [154]Thornberry NA and lazebnik Y. Caspases:enemies within [J]. Science,1998, 281(5381):1312-1316.
    [155]Abe W, Nasu K, Nakada C, et al. miR-196b targets c-myc and Bcl-2 expression, inhibits dproliferation and induces apoptosis in endometriotic stromal cells [J]. Hum Reprod,2013,28(3):750-761.
    [156]Hopkins S, linderoth E, Hantschel O, et al. Mig6 is a sensor of EGF receptor inactivation that directly activates c-Ab1 to induce apoptosis during epithelial homeostasis [J]. Dev Cell,2012,23(3):547-559.
    [157]Ren X, Xu J, Cooper Jp, et al. c-Ab1 is an upstream regulator of acid sphingo-myelinase in apoptosis induced by inhibition of integrins αvβ3 and αvβ5 [J]. ploS One,2012,7(8):e42291.
    [158]Xu J, Millard M, Ren X, et al. c-Ab1 mediates endothelial apoptosis induced by inhibition of integrins alphavbeta3 and alphavbeta5 and by disruption of actin [J]. Blood,2010,115(13):2709-2718.
    [159]Chen JJ, Mikelis CM, Zhang Y, et al. TRAll induces apoptosis in Oral squamous carcinoma cells-a crosstalk with oncogenic Rasregulated cell surface expression of death receptor 5 [J]. Oncotarget,2013,4(2):206-217.
    [160]perrin AJ, Gunda M, Yu B, et al. Noncanonical control of C. elegans germline apoptosis by the insulin/IGF-1 and Ras/MApK signaling pathways [J]. Cell Death Differ,2013,20(l):97-107.
    [161]Chen J, Sun 1. Formononetin-induced apoptosis by activation of Ras/p38 mitogen-activated protein kinase in estrogen receptor-positive human breast cancer cells [J]. Horm Metab Res,2012,44(13):943-948.
    [162]Neel BD, Aouacheria A, Nouvion Al, et al. Distinct protease pathways control cell shape and apoptosis in v-src-transformed quail neuroretina cells [J]. Exp Cell Res,2005,311(1):106-116.
    [163]Zhong M, Shen Y, Zheng Y, et al. phospholipase D prevents apoptosis in v-Src-transformed rat fibroblasts and MDA-MB-231 breast cancer cells [J]. Biochem Biophys Res Commun,2003,302(3):615-619.
    [164]Johnson D, Agochiya M, Samejima K, et al. Regulation of both apoptosis and cell survival by the v-Src oncoprotein [J]. Cell Death Differ,2000,7(8):685-696.
    [165]Bruchmann A, Roller C, Walther TV, et al. Bcl-2 associated athanogene 5 (Bag5) is overexpressed in prostate cancer and inhibits ER-stress induced apoptosis [J]. BMC Cancer,2013,1 (13):96.
    [166]pan Z, Gollahon 1. paclitaxel attenuates Bcl-2 resistance to apoptosis in breast cancer cells through an endoplasmic reticulum-mediated calcium release in a dosage dependent manner [J]. Biochem Biophys Res Commun,2013,432(3): 431-437.
    [167]li 1, Wu W, Huang W, et al. NF-κB RNAi decreases the Bax/Bcl-2 ratio and inhibits TNF-a-induced apoptosis in human alveolar epithelial cells [J]. Inflamm Res,2013,62(4):387-397.
    [168]Mpakou VE, Kontsioti F, papageorgiou S, et al. Dasatinib inhibits dproliferation and induces apoptosis in the KASUMI-1 cell line bearing the t(8;21)(q22;q22) and the N822K c-kit mutation [J]. leuk Res,2013,37 (2):175-182.
    [169]Zeng H, li 1, Chen JX. Overexpression of angiopoietin-1 increases CD1337c-kit+ cells and reduces myocardialapoptosis in db/db mouse infarcted hearts [J]. ploS One,2012,7(4):e35905.
    [170]Belloc F, Airiau K, Jeanneteau M, et al. The stem cell factor-c-KIT pathway must be inhibited to enable apoptosis induced by BCR-AB1 inhibitors in chronic myelogenous leukemia cells [J]. leukemia,2009,23(4):679-685.
    [171]Han YK, Ha TK, Kim YG, et al. Bcl-x(l) overexpression delays the onset of autophagy and apoptosis in hyperosmotic recombinant Chinese hamster ovary cell cultures [J]. J Biotechnol,2011,156(1):52-55.
    [172]Vogler M, Hamali HA, Sun XM, et al. BC12/BC1-X(1) inhibition induces apoptosis, disrupts cellular calcium homeostasis, and prevents platelet activation [J]. Blood,2011,117(26):7145-7154.
    [173]plotz M, Gillissen B, Hossini AM, et al. Disruption of the VDAC2-Bak interaction by Bcl-x(S) mediates efficient induction of apoptosis in melanoma cells [J]. Cell Death Differ,2012,19(12):1928-1938.
    [174]Zheng Yl, Hu YF, Zhang A, et al. Overexpression of p35 in Min6 pancreatic beta cells induces a stressed neuron-likeapoptosis [J]. J Neurol Sci,2010,299 (1-2):101-107.
    [175]Utreras E, Maccioni R, Gonzalez-Billault C. CyClin-dependent kinase 5 activator p35 over-expression and amyloid beta synergism increase apoptosis in cultured neuronal cells [J]. Neuroscience,2009,161(4):978-987.
    [176]li M, Yu M, liu C, et al. miR-34c works downstream of p53 leading to dairy goat fmale germline stem-cell (mGSCs)apoptosis [J]. Cell prolif,2013,46(2): 223-231.
    [177]liu B, Behura SK, Clem RJ, et al. p53-Mediated Rapid Induction of Apoptosis Conveys Resistance to Viral Infection in Drosophila melanogaster [J]. ploS pathog,2013,9(2):e1003137.
    [178]lentine B, Antonucci 1, Hunce R, et al. Dephosphorylation of threonine-821 of the retinoblastoma tumor suppressor protein (Rb) is required for apoptosis induced by UV and Cdk inhibition [J]. Cell Cycle,2012,11(17):3324-3330.
    [179]Chen YQ, Hsieh JT, Yao F, et al. Induction of apoptosis and G2/M cell cycle arrest by DCC [J]. Oncogene,1999,18(17):2747-2754.
    [180]Brewster Jl, Martin SI, Toms J, et al. Deletion of Dadl in mice induces an apoptosis-associated embryonic death [J]. Genesis,2000,26(4):271-278.
    [181]li Q, Wang Y, Wang Y, et al. Distinct different sensitivity of Treg and Th17 cells to Fas-mediated apoptosis signaling in patients with acute coronary syndrome [J]. Int J Clin Exp pathol,2013,6(2):297-307.
    [182]lopez-Mufioz H, Escobar-Sanchez Ml, lopez-Marure R, et al. Cervical cancer cells induce apoptosis in TCD4+ lymphocytes through the secretion of TGF-β [J]. Arch Gynecol Obstet,2013,287(4):755-763.
    [183]Vaux D1, Hacker G. Cloning of mouse Rp-8 cDNA and its expression during apoptosis of lymphoid and myeloid cells [J]. DNA Cell Biol,1995,14(3):189-193.
    [184]Wright pS, Cross-Doersen D, Th'ng Jp, et al. A ribonucleotide reductase inhibitor, MD1101,731, induces apoptosis and elevates TRpM-2mRNA levels in human prostate tumor xenografts [J]. Exp Cell Res,1996,222(1):54-60.
    [185]Singhal pC, Gibbons N, Franki N, et al. Simulated glomerular hypertension promotes mesangial cell apoptosis and expression of cathepsin-B and SGp-2 [J]. J Investig Med,1998,46(2):42-50.
    [186]Eisinger-Mathason TS, Andrade J, Groehler Al, et al. Codependent functions of RSK2 and the apoptosis-promoting factor TIA-1 in stress granule assembly and cell survival [J]. Mol Cell,2008,31(5):722-736.
    [187]Monsalve DM, Merced T, Fernandez IF, et al. Human VRK2 modulates apoptosis by interaction with Bcl-xl and regulation of BAX gene expression [J]. Cell Death Dis,2013,28(4):e513.
    [188]Suzuki Y, Farbman AI. Tumor necrosis factor-alpha-induced apoptosis in olfactory epithelium in vitro:possible Roles of caspase 1 (ICE), caspase 2 (1CH-1), and caspase 3 (Cpp32) [J]. Exp Neurol,2000,165(1):35-45.
    [189]Seimon TA, Wang Y, Han S, et al. Macrophage deficiency of p38 alpha MApK promotes apoptosis and plaque necrosis in advanced atherosclerotic lesions in mice [J]. J Clin Invest,2009,119(4):886-898.
    [190]Morillas p, de Andrade H, Castillo J, et al. Inflammation and apoptosis in hypertension. Relevance of the extent of target organ damage [J]. Rev Esp Cardiol (Engl Ed),2012,65(9):819-825.
    [191]Assaly R, Olson D, Hammersley J, et al. Initial evidence of endothelial cell apoptosis as a mechanism of systemic capillary leak syndrome [J]. Chest,2001, 120(4):1301-1308.
    [192]Deaciuc IV, Fortunato F, D'Souza NB, et al. Modulation of caspase-3 activity and Fas ligand mRNA expression in rat liver cells in vivo by alcohol and lipopolysaccharide [J]. Alcohol Clin Exp Res,1999,23(2):349-356.
    [193]Bannerman DD, Tupper JC, Ricketts WA, et al. A constitutive cytoprotective pathway protects endothelial cells from lipopolysaccharide-induced apoptosis [J]. J Biol Chem,2001,276(18):14924-14932.
    [194]Kawasaki M, Kuwano K, Hagimoto N, et al. protection from lethal apoptosis in lipopolysaccharide-induced acute lung injury in mice by a caspase inhibitor [J]. Am J pathol,2000,157(2):597-603.
    [195]Choi KB, Wong F, Harlan JM, et al. lipopolysaccharide mediates endothelial apoptosis by a FADD-dependent pathway [J]. J Biol Chem,1998,273(32): 20185-20188.
    [196]Karahashi H and Amano F. lipopolysaccharide (LPS)-induced cell death of C3H mouse peritoneal macrophages in the presence of cycloheximide:different susceptibilities of C3H/HeN and C3H/HeJ mice macrophages [J]. J Endotoxin Res,2000,6(1):33-39.
    [197]Bannerman DD, Tupper JC, Erwert RD, et al. Divergence of Bacterial lipo-polysaccharide proapoptotic signaling downstream of IRAK-1 [J]. J Biol Chem, 2002,277(10):8048-8053.
    [198]Kuang AA, Diehl GE, Zhang J, et al. FADD is required for DR4-and DR5-mediated apoptosis:lack of trailinduced apoptosis in FADD-deficient mouse embryonic fibroblasts [J]. J Biol Chem,2000,275(33):25065-25068.
    [199]Muzio M, Stockwell BR, Stennicke HR, et al. An induced proximity model for caspase-8 activation [J]. J Biol Chem,1998,273(5):2926-2930.
    [200]Hirata H, Takahashi A, Kobayashi S, et al. Caspases are activated in a branched protease cascade and control distinct downstream processes in Fas-induced apoptosis [J]. J Exp Med,1998,187(4):587-600.
    [201]Munshi N, Fernandis AZ, Cherla Rp, et al. lipopolysaccharide-induced apoptosis of endothelial cells and its inhibition by vascular endothelial growth factor [J]. J Immunol,2002,168(11):5860-5866.
    [202]Bannerman DD, Erwert RD, Winn RK, et al.TIRAp mediates endotoxin-induced NF-κB activation and apoptosis in endothelial cells [J]. Biochem Biophys Res Commun,2002,295(1):157-162.
    [203]Hull C, Mclean G, Wong F, et al. lipopolysaccharide signals an endothelial apoptosis pathway through TNF receptor-associated factor 6-mediated activation of c-Jun NH2-terminal kinase [J]. J Immunol,2002,169(5):2611-2618.
    [204]Karahashi H, Amano F. Changes of caspase activities involved in apoptosis of a macrophage-like cell line J774.1/JA-4 treated with lipopolysaccharide (LPS) and cycloheximide [J]. Biol pharm Bull,2000,23(2):140-144.
    [205]Bannerman DD, Tupper JC, Ricketts WA, et al. A constitutive cytoprotective pathway protects endothelial cells from lipopolysaccharide-induced apoptosis [J]. J Biol Chem,2001,276(18):14924-14932.
    [206]Kawasaki M, Kuwano K, Hagimoto N, et al. protection from lethal apoptosis in lipopolysaccharide-induced acute lung injury in mice by a caspase inhibitor [J]. Am J pathol,2000,157(2):597-603.
    [207]Seo T, Cha S, Kim TI, et al. porphyromonas gingivalis-derived lipopolys-accharide-mediated activation of MApK signaling regulates inflammatory response and differentiation in human periodontal ligament fibroblasts [J]. J MicroBiol,2012,50(2):311-319.
    [208]Imatani T, Kato T, Okuda K, et al. Histatin 5 inhibits apoptosis in human gingival fibroblasts induced by porphyromonas gingivalis cell-surface polysaccharide [J]. Eur J Med Res,2004,9(11):528-532.
    [209]li HX, Yan FH, lei 1. Effects of porphyromonas gingivalis lipopolys-accharide on apoptotic genes in foam cells [J]. Zhonghua Kou Qiang Yi Xue Za Zhi, 2010,45(5):274-278.
    [210]Slomiany B1, Slomiany A. Constitutive nitric oxide synthase-mediated caspase-3 S-nitrosylation in ghrelin protection against porphyromonas gingivalis-induced salivary gland acinar cell apoptosis [J]. Inflammopharmac-ology,2010,18(3):119-125.
    [211]Slomiany B1, Slomiany A. platelet-activating factor mediates porphyromonas gingivalis lipopolysaccharide interference with salivary mucin synthesis via phosphatidylinositol 3-kinase-dependent constitutive nitric-oxide synthase activation [J]. J physiol pharmacol,2004,55(1 pt l):85-98.
    [212]Slomiany B1, Slomiany A. leptin suppresses porphyromonas gingivalis lipo-polysaccharide interference with salivary mucin synthesis [J]. Biochem Biophys Res Commun,2003,312(4):1099-1103.
    [213]preshaw pM, Schifferle RE, Walters JD. porphyromonas gingivalis lipopo-lysaccharide delays human polymorphonuclear leukocyte apoptosis in vitro [J]. J periodontal Res,1999,34(4):197-202.
    [214]Murray DA, Wilton JM. lipopolysaccharide from the periodontal pathogen porphyromonas gingivalis prevents apoptosis of H160-derived neutrophils in vitro [J]. Infect Immun,2003,71 (12):7232-7235.
    [215]Hirai K, Yoshizawa H, Hasegawa H, et al. Comparison of ability of apoptosis induction by lipopolysaccharide of porphyromonas gingivalis with Escherichia coli [J]. Eur J Med Res,2003,8(5):208-211.
    [1]Qin C, Liu Z. In atherogenesis the apoptosis of endothelial cell itself could directly induce over-proliferation of smooth muscle cells [J]. Med Hypotheses, 2007,68(2):275-277.
    [2]Spahr A, Klei n E, Khuseyinova N, et al. Periodontal in fection sand coronary heart disease:role of periodontal bacteria and importance of total pathogen burden in the Coronary Event and Periodontal Disease (CORODONT) study [J]. Arch Intern Med,2006,166(5):554-559.
    [3]Cavrini FV, Sambri A, Moter D, et al. Molecular detection of Treponema denticule and Porphyromonas gingivalis in coronary heart disease in the United States [J]. Infect Immun,2005,153(21):2489-2494.
    [4]Sambri V, Marangoni A, Cavrini F, et al. Need for procedural details in detection of periodontopathic bacterial DNA in the atheromatous plaque by PCR [J]. J Clin Microbiol,2004,42(10):4914-4915.
    [5]Haraszthy VI, Zambon JJ,Trevisan M, et al. Identification of periodontal patho-gens in atheromatous plaques [J]. J Periodontol,2000,71(10):1554-1560.
    [6]Kozarov E, Sweier D,Shelburne C,et al. Detection of bacterial DNA in athero-matous plaques by quantitative PCR [J]. MicrobesInfect,2006,8(3):687-693.
    [7]宋红,马秦,吕听,等.牙龈卟啉单胞菌对心血管内皮细胞黏附和入侵的研究[J].心脏杂志,20 1 0,22(5):692-694.
    [8]Gibson FC, Hong C, Chou HH, et al. Innate immune recognition of invasive bacteria accelerates atherosclerosis in apolipoprotein E-deficient mice [J]. Circulation,2004,109(22):2801-2806.
    [9]Gibson FC 3rd, Yumoto H, Takahashi Y, et al. Innate immune signaling and Porphyromonas gingivalis-accelerated atherosclerosis [J].J Dent Res,2006,85(2): 106-121.
    [10]Song H, Belanger M, Whitlock J, et al. Hemagglutinin B is involved in the adherence of Porphyromonas gingivalis to human coronary artery endothelial cells [J]. Infect Immun,2005,73(11):7267-7273.
    [11]Yamatake K, Maeda M, Kadowaki T, et al. Role for gingipains in Porphyromonas gingivalis traffic to phagolysosomes and survival in human aortic endothelial cells[J]. Infect Immun,2007,75(5):2090-2100.
    [12]Kang IC, Kuramitsu HK. Induction of monocyte chemoattractant Protein-1 by porphyromonas gingivalis in human endothelial cells [J]. Immunol Med Microbiol,2002,34(4):311-317.
    [13]Li L, Michel R, Cohen J, et al. Intracellular survival and vascular cell-to-cell transmission of Porphyromonas gingivalis[J]. BMC Microbiol,2008,6(8):26.
    [14]Khlgatian M, Nassar H, Chou HH, et al. Fimbria-dependent activation of cell adhesion molecule expression in Porphyromonas gingivalis-infected endothelial cells [J]. Infect Immun,2002,70(1):257-267.
    [15]Assinger A, Buchberger E, Laky M, et al. Periodontopathogens induce soluble P-selectin release by endothelial cells and plateLets [J]. Thromb Res,2011,127(1): e20-26.
    [16]Nakamura N, Yoshida M, Umeda M, et aL. Extended exposure of lipopolys-accharide fraction from Porphyromonas gingivalis facilitates mononuclear cell adhesion to vascular endothelium via Toll-like receptor-2 dependent mechanism [J]. Atherosclerosis,2008,196(1):59-67.
    [17]Hashizume T, Kurita-Ochiai T, Yamamoto M, et aL. Porphyromonas gingivalis stimulates monocyte adhesion to human umbilical vein endothelial cells [J]. FEMS Immunol Med Microbiol,2011,62(1):57-65.
    [18]Ford PJ, Gemmell E, Chan A, et al. Inflammation, heat shock proteins and periodontal pathogens in atherosclerosis:an immunohistologic study [J]. Oral Microbiol Immunol,2006,21 (4):206-211.
    [19]Choi J, Chung SW, Kim SJ, et al. Establishment of Porphyromonas gingivalis specific T-cell lines from atherosclerosis patients [J]. Oral Microbiol Immunol, 2001,16(5):316-318.
    [20]Wikstrom M, Potempa J, PoLanowski A, et al. Detection of Porphyro-monas gingivalis in gingival exudate by a dipeptide enhanced trypsin-like activity [J]. J Periodontol,1994,65(1):47-55.
    [21]封艳.口腔致病菌与动脉粥样硬化的研究进展[J].牙体牙髓牙周炎学杂志,2005,15(12):699-702.
    [22]Wang CH, Li SH, Weisel RD, et al. C-reactive protein upregulates angiotensin type 1 receptors in vascular smooth muscle [J]. Circulation,2003,107(13):1783-1790.
    [23]Noack B, Genco RJ, Trevisan M, et al. Periodontal infections contribute to eleva-ted systemic C-reactive protein level [J]. J Periodontol,2001,72(9):1221-1227.
    [24]Kuramitsu HK, Miyakawa H, Qi M, et al. Cellular responses to oral pathogens [J]. Ann Periodontol,2002,7(1):90-94.
    [25]Tonetti MS, D'Aiuto F, Nibali L, et al. Treatment of peirodontitis and endothelial function [J]. N Engl J Med,2007,356(9):911-920.
    [26]Piconi S, Trabattoni D, Luraghi C, et al. Treatment of periodontal disease results in improvements in endothelial dysfunction and reduction of the carotid intima media thickness [J]. FASEB J,2009,23(4):1196-1204.
    [27]周小波,吴慧琴,张雪梅等.血管内皮炎症与动脉粥样硬化[J].中国心血管痫研究,2008,6(4):308-309.
    [28]Rastaldo R, Pagliaro P, Cappello S, et al. Nitric oxide and cardiac function [J]. Life Sci,2007,81(10):779-793.
    [29]金惠铭,孟淑美.一氧化氮病理生理学[M].上海:上海医科大学出版社,1996:101-112.
    [30]Verbeuren TJ, Bonhomme E, Laubie M, et al. Evidence for induction of a nonendothelial NO synthase in aortas of cholesterol-fed rabbits [J]. J Cardiovasc Pharmacol,1993,21(5):841-845.
    [31]吴娟,孙卫斌,季勇,等.牙龈卟啉单胞菌促进人脐静脉内皮细胞一氧化氮的生成[J].南京医科大学学报(自然科学版),2009,29(2):205-210.
    [32]Sun W, Wu J, Lin L, et al. Porphyromonas gingivalis stimulates the release of nitric oxide by inducing expression of inducible nitric oxide synthases and inhibiting endothelial nitric oxide synthases [J]. J Periodontal Res,2010,45(3): 381-388.
    [33]张冬梅,赵戬,潘亚萍,等P.gingivalis感染对血管内皮细胞VCAM-1表达的影响[J].实用口腔医学杂志,2009,25(3):381-384.
    [34]Kang DG, Moon MK, Lee AS, et al. Comuside suppresses cytokine induced proinflammatory and adhesion molecules in the human umbilical vein endothelial cells [J]. Biol Pharm Bull,2007,30(9):1796-1799.
    [35]张冬梅,潘亚萍,林莉,等.牙龈卟啉单胞菌侵入对血管内皮细胞E选择素表达的影响[J].上海口腔医学,2008,17(2):170-175.
    [36]Stangl V, Lorenz M, Ludwig A, et al. The flavonoid phloretin suppresses stimulated expression of endothelial adhesion molecules and reduces activation of human platelets [J]. J Nutr,2005,135(2):172-178.
    [37]Ghersa P, Whelan J, Cambet Y, et al. Distamycin prolongs E-selectin expression by interacting with a specific NF-kappaB-HMG-1(Y) binding site in the promoter [J]. Nucleic Acids Res,1997,25(2):339-346.
    [38]Yumoto H, Chou HH, Takahashi Y, et aL. Sensitization of human aortic endothelial cells to lipopolysaccharide via regulation of Toll-like receptor 4 by bacterial fimbria-dependent invasion [J]. Infect Immun,2005,73(12):8050-8059.
    [39]Assinger A, Buchberger E, Laky M, et al. Periodontopathogens induce soluble P-selectin release by endothelial cells and platelets [J]. Thromb Res,2011,127(1): e20-26.
    [40]Kocgozlu L, Elkaim R, Tenenbaum H, et al. Variable cell responses to P. gingivalis lipopolysaccharide [J]. J Dent Res,2009,88(8):741-745.
    [41]毛松,前野伸昭,小田宏.多粘菌素B和热处理对牙龈卟啉单胞菌诱导ECHUV产生sICAM-1的影响[J].牙体牙髓牙周炎学杂志,2002,12(1):13-16.
    [42]Zhang D, Zheng H, Zhao J, et al. Porphorymonas gingival is induces intracellular adhesion molecule-1 expression in endothelial cells through the nuclear factor-kappaB pathway, but not through the p38 MAPK pathway[J]. J Periodontal Res,2011,46(1):31-38.
    [43]Park HJ, Jeong SK, Kim SR, et al. Resveratrol inhibits Porphyromonas gingivalis lipopolysaccharide-induced endothelial adhesion molecule expression by suppressing NF-kappaB activation [J]. Arch Pharm Res,2009,32(4):583-591.
    [44]Maekawa T, Takahashi N, Honda T, et al. Porphyromonas gingivalis antigens and interleukin-6 stimulate the production of monocyte chemoattractant protein-1 via the upregulation of early growth response-1 transcription in human coronary artery endothelial cells [J]. J Vase Res,2010,47(4):346-354.
    [45]Shelbume CE, Coopamah MD, Sweier DG, et al. HtpG, the Porphyromonas gingivalis HSP-90 homologue, induces the chemokine CXCL8 in human monocytic and microvascular vein endothelial cells [J]. Cell Microbiol, 2007,9(6):1611-1619.
    [46]Wu YM, Chen LL, Yan J, et al. Effect of Porphyromonas gingivalis PrtC on cytokine expression in ECV304 endothelial cells and its level in subgingival plaques from patients with chronic periodontitis [J]. Acta Pharmacol Sin,2007, 28(7):1015-1023.
    [47]田娜,欧阳翔英.牙龋外琳单胞菌胞外蛋白对牛主动脉内皮细胞存活的影响[J].上海口腔医学,2008,17(4):386-389.
    [48]Zhang DM, Pan YP, Zhao J, et al. Experimental study of Porphyromonas gingivalis on the proliferation and apoptosis of vascular endothelial cells [J]. Zhong hua Kou Qiang Yi Xue Za Zhi,2008,43(6):343-346.
    [49]Tian N, Ouyang XY. Trypsin-like protease-active extracellular protein extracts from Porphyromonas gingivalis ATCC 33277 induce apoptosis in bovine aortic endothelial cells [J]. J Periodontal Res,2010,45(5):650-657.
    [50]Zahlten J, Riep B, Nichols FC, et al. Porphyromonas gingivalis dihydroceramides induce apoptosis in endothelial cells [J]. J Dent Res,2007,86(7):635-640.
    [51]Sheets SM, Potempa J, Travis J, et al. Gingipains from Porphyromonas gingivalis W83 synergistically disrupt endothelial cell adhesion and can induce caspase-independent apoptosis [J]. Infect Immun,2006,74(10):5667-5678.
    [52]Kobayashi-Sakamoto M, Hirose K, Nishikata M, et al. Osteoprotegerin protects endothelial cells against apoptotic cell death induced by Porphyromonas gingivalis cysteine proteinases [J]. FEMS Microbiol Lett,2006,264(2):238-245.
    [53]Sheets SM, Potempa J, Travis J, et al. Gingipains from Porphyr-omonas gingivalis W83 induce cell adhesion molecule cleavage and apoptosis in endothelial cells [J]. Infect Immun,2005,73(3):1543-1552.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700