用户名: 密码: 验证码:
前列腺癌磁共振功能成像及其与生物学特性的相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     前列腺癌(PCa)的生物学特性个体间存在明显差异,制定个体化的治疗方案对于提高疗效至关重要。肿瘤自主增殖的特性导致组织内产生缺氧、高酸的微环境,肿瘤通过调整基因表达提高低氧耐受力和促进血管生成,血管生成、细胞增殖及组织微观环境之间存在相对动态平衡。MR功能成像能反映肿瘤的代谢、微观水分子运动及血流灌注变化等,为评价PCa生物学行为提供新的视角,明确功能成像与PCa生物学特性之间的关系,是制定个体化治疗方案的信息保证。
     第一部分MRSI和DWI特征与前列腺癌血管生成、细胞增殖及组织内微环境的相关性研究
     1.研究目的
     比较PCa、BPH及正常志愿者~1H-MRSI和DWI特点,分析(Cho+Cr)/Cit比值、ADC值与肿瘤的血管生成、细胞增殖及组织微环境内在关系,了解前列腺癌影像学特征的内涵和分子生物学基础。
     2.材料与方法
     前列腺MRSI平HDWI都采用Siemens Sonata 1.5T超导成像仪和腹部相控阵线圈,研究对象为PCa、BPH患者及正常志愿者,应用西门子Leonardo工作站相应的软件进行数据处理。计算PCa、BPH及PZ不同感兴趣区的(Cho+Cr)/Cit比值及ADC值,对获得的组织标本进行常规HE和免疫组化染色,记录BPH和PCa的VEGF、MVD、PCNA、细胞密度及HIF-1α,分析(Cho+Cr))/Cit比值、ADC值及其与组织病理结果内在关系。
     3.结果
     3.1.前列腺不同感兴趣区的MRI/MRSI和DWI特征
     PZ、BPH和PCa代谢物谱线存在明显差异,其(Cho+Cre)/Cit比值分别为0.32±0.03、0.55±0.04和4.19±0.25,PZ、BPH和PCa的(Cho+Cre)/Cit比值依次升高,三者均值比较差别有统计学意义(P<0.05)。
     随b值升高,PZ、BPH和PCa DWI信号变化特点不同,三者的ADC值分别为130.20±26.20×10~(-5)mm~2/s、91.23±12.24×10~(-5)mm~2/s和52.11±10.19×10~(-5)mm~2/s,PCa的ADC值最低,三者差别具有统计学意义(P<0.05)。
     (Cho+Cre)/Cit比值较高的前列腺癌ADC值相对较低,两者存在负相关关系(P<0.05)。
     3.2.前列腺癌和BPH血管生成、细胞增殖和HIF-1α表达水平比较
     PCa的血管生成指标(MVD和VEGF)、细胞增殖的指标(细胞密度和PCNA-LI)和HIF-1α表达均明显高于BPH的表达水平(P<0.05)。前列腺癌MVD、细胞密度、PCNA-LI、HIF-1α和分期相互之间存在正相关关系(P<0.05),VEGF与MVD、PCNA-LI及HIF-1α之间的正相关性具有统计学意义(P<0.05)。
     3.3.(cho+Cr)/Cit的比值和ADC值与血管生成、细胞增殖和HIF-1α的关系
     PCa的(Cho+Cre)/Cit比值与MVD、VEGF、细胞密度、PCNA-LI、HIF-1α、Gleason分级和分期存在正相关关系(P<0.05)。PCa的ADC值与细胞密度、PCNA-LI、MVD及HIF-1α存在负相关性(r=-0.64、-0.44、-0.51、-0.36,P<0.05)。BPH组(Cho+Cre)/Cit比值、ADC值与MVD、VEGF、细胞密度、PCNA-LI及HIF-1α相关性无统计学意义(P>0.05)。
     第二部分前列腺PWI、DTI和BOLD成像研究
     1.研究目的
     对研究对象行PWI、DTI和BOLD-fMRI成像研究,评估前列腺不同组织成像的特征和应用价值。
     2.材料与方法
     使用GE Echo-speed 1.5T MRI成像仪对49例前列腺癌患者行PWI成像检查。通过GE 4.2高级工作站进行数据处理,采用闭孔内肌灌注指标作为内部参考,得到PCa、BPH和PZ相对灌注指标:rNEI、rMTE、rTTM、rMSD和rBF。分析PZ、BPH和PCa三种ROI的相对灌注指标及其与Gleason分级、分期及PSA的相关性。
     DTI和BOLD成像都采用Siemens Sonata 1.5T超导成像仪和腹部相控阵线圈,应用西门子Leonardo工作站相应的软件进行数据处理。DTI记录感兴趣区FA值、平均ADC值、e1、e2和e3,绘制相应参数图和纤维示踪图像(DTT)。BOLD成像结合吸入混合气(95°%O_2%5%CO_2)状态下完成,记录时间-信号强度曲线(SI-TC),计算吸入混合气前后信号强度平均增加率,对比不同感兴趣区的相应成像指标的差异。
     3.结果
     3.1.前列腺磁共振灌注成像(PWI)
     PCa的SI-TC特点为注入对比剂迅速出现较大幅度的倒置峰值,信号强度在对比剂首次通过后迅速上升,但低于对比剂到达前水平。BPH和PZ区的SI-TC下降上升都较缓慢。PZ、BPH和PCa的rNEI分别为1.37±0.88、3.22±2.07和6.44±4.29。PCa的rNEI、rMSD和rBF高于BPH和PZ:BPH的rNEI、rMSD和rBF低于前列腺癌区域而高于正常PZ区(<0.05)。前列腺癌的rMTE低于BPH和PZ(P<0.05)。前列腺痛rNEI与PSA水平、Gleason分级及TNM分期存在正相关关系(P<0.05);rTTM与Gleason分级、TNM分期存在负相关关系(P<0.05)。
     3.2.前列腺磁共振扩散张量成像(DTI)
     PZ、BPH和PCa的FA值分别为0.16±0.03、0.23±0.04和0.46±0.02,前列腺癌的FA值最大,正常外周带最小,BPH介于两者之间,三者FA值差异具有统计学意义(P<0.05)。PZ、BPH和PCa的平均ADC值、e1、e2和e3之间都存在明显差异(P<0.05)。不同感兴趣区三个方向本征向量e1、e2和e3相互之间也存在差异(P<0.05)。
     3.3.前列腺磁共振血氧水平依赖功能MRI(BOLD-fMRI)
     PZ、CZ、BPH和PCa的信号强度都随着第一次吸入混合气曲线不断升高,在吸入空气后信号强度慢慢回到基线,不同感兴趣区的信号上升幅度存在差异。PZ、BPH和PCa吸气后信号增加率分别为7.80±0.06%、12.00±0.13%和5.00±0.03%。正常志愿者CZ的吸气后信号增加率高于PZ(P<0.05)。BPH的信号增加率高于PCa和PZ(P<0.05)。
     4.结论
     (1)前列腺不同感兴趣组织~1H-MRSI和DWI各有不同特征,PCa(Cho+Cr)/Cit比值与MVD、PCNA、细胞密度及HIF-1α表达水平存在相关性;PCa的ADC值大小与组织的细胞密度、PCNA、MVD及HIF-1α表达存在负相关性,~1H-MRSI与DWI可对PCa的血管生成、细胞增殖及肿瘤微环境进行评估,有助于为前列腺癌治疗、随访提供个体化信息;
     (2)前列腺癌血管生成(MVD,VEGF)、细胞增殖(PCNA、细胞密度)及HIF-1α存在相关性,进一步证实三者之间存在的相对动态平衡,保持相对平衡对于恶性肿瘤的发生发展起到重要的作用;
     (3) PWI能较好地反映组织微循环灌注水平,前列腺癌病灶具有特征性表现,结合常规MRI检查能显著提高前列腺癌的检出效率,磁共振灌注相关指标可初步评估前列腺癌的分级、分期;
     (4)正常前列腺中央腺区和外周带、前列腺癌与前列腺良性组织的FA、ADC、e1、e2、e3存在明显差异,DTI能够有效通过观察微观组织结构的差异,在前列腺疾病诊断随访中有较好的应用前景;
     (5)吸入混合气状态下对前列腺的BOLD成像具有可行性,时间信号曲线和信号强度平均增加率能够显示前列腺不同组织血氧饱和度变化,BOLD有望用于组织血管成熟度的评估;
     (6)功能磁共振成像能反映出前列腺疾病分子水平改变,在完整的生理微环境中无创的获得不同个体前列腺疾病的特异性信息,多种磁共振功能成像技术结合,可从不同角度了解前列腺癌分子生物学特性,为前列腺癌诊断、治疗和随访提供信息保证。
Backgrounds
     Prostate cancer(PCa) is a biologically heterogeneous disease for which a variety of treatment options are available.To achieve more precise biological characterization of PCa is essential for developing individualized treatment programs and improving the efficacy.Autonomous proliferation of tumor will lead to hypoxic and high-acid micro-environment.The tumor enhances the endurance of the ability to survive the poor micro-environment and promote the angiogenesis by adjusting the relevant gene expression.Therefore,there may be a relatively dynamic balance among angiogenesis, cell proliferation and tissue micro-environment.With the development of imaging techniques,magnetic resonance(MR) with some functional imaging methods which can reflect the cell metabolism,water molecular diffusion,micro-architecture and the blood flow perfusion have been used to evaluate the angiogenesis in vivo.These functional MRI techniques provide new perspectives to evaluate the biological behavior of PCa,which is the information assurance of individualized treatment. PartⅠCorrelative study of MRSI/DWI and angiogenesis,cell proliferation and HIF-lαof prostate cancer
     1.Objective
     The main objective of this part is to analyze the relationships between MRSI/DWI and angiogenesis,proliferation and HIF-1αof prostate cancer,as well as the significance of MRSI/DWI in assessing the biological behavior of prostate cancer.
     2.Materials and methods
     MRSI and DWI were performed using a 1.5 Tesla superconducting magnetic scanner(Siemens) equipped with a pelvic phased-array multi-coil.Healthy volunteers and patients with prostate cancer or benign prostate hyperplasia were included in this study.All data were transferred to Siemens Leonardo Workstation and regions of interest(ROI) of PCa,benign prostate hyperplasia(BPH),and peripheral zone(PZ) were drawn by a radiologist.The(Cho+Cr)/Cit ratios and ADC values were calculated.Cellularities of PCa were recorded based on hematoxylin and eosin staining.The microvessel density(MVD),vascular endothelial growth factor(VEGF), proliferating cell nuclear antigen(PCNA) and hypoxia inducible factor-1 alpha (HIF-1α) of PCa and BPH were detected by immunohistochemical techniques.The relationships among(Cho+Cr)/Cit ratio,ADC values,angiogenesis,proliferation and HIF-1αwere analyzed.
     3.Results
     3.1,The features of PCa and BPH on MRI/MRSI and DWI
     The MR spectrum of prostate cancer was different from those of BPH and PZ. The average value of(Cho+Cr)/Cit ratio of PZ,BPH and PCa were 0.32±0.03, 0.55±0.04 and 4.19±0.25.The(Cho+Cr)/Cit ratios of prostate cancer were higher than those of PZ and BPH(P<0.05).
     With the increasing of b value,the signal intensity of PZ,BPH and PCa changed differently fiom each others.The ADC values of PZ,BPH and PCa were 130.20±26.20×10~(-5)mm~2/s,91.23±12.24×10~(-5)mm~2/s and 52.11±10.19×10~(-5)mm~2/s respectively.The ADC values of Pea were lower than those of BPH and PZ(P<0.05).
     The higher(Cho+Cr)/Cit ratio of PCa corresponded to lower ADC values.The (Cho+Cr)/Cit ratio of PCa was correlated negatively with ADC values(P<0.05).
     3.2.Comparative analysis of angiogenesis,proliferation and HIF-1αbetween PCa and BPH
     The angiogenesis(VEGF,MVD),proliferation(PCNA,cellularity) and HIF-1αof PCa were higher than those of BPH(P<0.05).The MVD,PCNA,cellularity, HIF-1αand stage of prostate cancer were correlated with each other positively (P<0.05).The VEGF was correlated positively with MVD,PCNA,HIF-1α,Gleason grade and stage of prostate cancer were correlated with each other(P<0.05).
     3.3.The relationships between MRSI,DWI and angiogenesis,proliferation and HIF-1αof PCa and BPH
     The(Cho+Cr)/Cit ratios of PCa were correlated positively with VEGF,MVD, PCNA,cellularity,HIF-1α,Gleason grade and stage(P<0.05).The ADC values of PCa were correlated negatively with cellularity,PCNA,HIF-1α,and MVD(P<0.05). No relationships were observed among MRSI,DWI and the biological indexes of BPH(P>0.05).
     PartⅡThe Study of PWI,DTI and BOLD in Prostate
     1.Objective
     The objective of this part is to investigate the features and application value of PZ,BPH and prostate cancer in PWI,DTI and BOLD-fMRI.
     2.Materials and methods
     The clinic and pathologic information of 49 patients with histologically proven PCa were studied.The examination was performed in the supine position using 1.5T superconductive magnet Echo-speed scanner with intergrated endorectal surface coil and pelvic phased array multi-coil.Perfusion weighted imaging(PWI) was acquired using a modified single shot SE echo planar imaging(EPI) sequence.All of the data were transferred to GE Advanced Workstation 4.2.In order to eliminate the variation of individuals,the indexes of obturator internus were used as internal references.The indexes of PWI were calculated by Functool 2 which included signal intensity-time curve(SI-TC),relative negative enhancement integral(rNEI),mean time to enhance (rMTE),time to minimum(rTTM),maximum slope of decrease(rMSD) and blood flow(rBF).
     DTI and BOLD were performed using a 1.5 Tesla superconducting magnetic scanner(Siemens) equipped with a pelvic phased-array multi-coil.Healthy volunteers and patients with prostate cancer or benign prostate hyperplasia were included in this study.BOLD data were acquired during 5×2minute episodes alternating between air and carbogen(95%O_2/5%CO_2) breathing.All data were transferred to Siemens Leonardo Workstation and different regions of interest(ROI) of PCa,BPH,and PZ were drawn by a radiologist.Using the DTI card,the FA,mean ADC values,el,e2 and e3 of DTI were calculated and the corresponding index maps were produced.The SI-TC and percentage of signal increase were recorded.
     3.Results
     3.1.Perfusion Weighted Imaging MR(PWI) of PZ,BPH and PCa
     The SI-TC of PCa showed rapid and steep inverted peak after the injection of contrast.The signal intensity increased quickly after the firs-pass of contrast with the signal intensity lower than that of before contrast's arrival.The rNEI of PZ,BPH and PCa were 1.37±0.88,3.22±2.07 and 6.44±4.29.The rNEI,rTTM and rMSD of prostate cancer were higher than those of BPH and PZ(P<0.05),while the MTE and TTM of prostate cancer were shorter than those of normal PZ and BPH(P<0.05). Positive correlation was found between rNEI and Gleason grade,TNM and PSA level (P<0.05).There was a negative correlation between rTTM and Gleason grade,TNM of prostate cancer(r=-0.46;-0.51,P<0.05).
     3.2.Diffusion Tensor Imaging MR(DTI) of PZ,BPH and PCa
     The tractional anisotropy(FA) of PZ,BPH and PCa were 0.16±0.03,0.23±0.04 and 0.46±0.02.The FA of prostate cancer were higher than those of BPH and PZ (P<0.05).The ADC values,e1,e2 and e3 of PZ,BPH and PCa were different from each others(P<0.05).Obvious differences among e1,e2 and e3 were observed (P<0.05).
     3.3.Blood oxygen level-dependent(BOLD) MR of PZ,BPH and PCa
     The SI-TC showed obvious enhancement during carbogen breathing.The signal intensity returned to baseline during the following period of normal air breathing.A repeated but less sharp signal changes were observed during the second period of carbogen breathing.The increasing rate of SI PZ,BPH and PCa were 7.80±0.06, 12.00±0.13 and 5.00±0.03,respectively.The increasing rate of SI of normal central gland was higher than that of peripheral zone(P<0.05).The increasing rate of SI of BPH were higher than those of PZ and PCa(P<0.05).
     4.Conclusion
     (1).The ROIs of PZ,BPH and PCa have the different characteristics respectively on MRSI and DWI.The(Cho+Cr)/Cit ratios of PCa were correlated positively with VEGF,MVD,PCNA,cellularity,Gleason grade and stage.The ADC values of PCa were correlated negatively with cellularity,PCNA and MVD.Therefore,~1H-MRSI and DWI are helpful to predict the variables of angiogenesis,proliferation and microenvironment of prostate cancer.(2).The correlation among angiogenesis, proliferation and microenvironment demonstrate that there is a dynamic balance between the biological features of prostate cancer.This dynamic balance is crucial to the development of prostate cancer.(3).PWI can reflect the difference in microcirculation between PCa and benign tissues.Combined with conventional MRI, PWI is helpful to detect lesions.According to the correlation between indexes of PWI and clinicopathological results of prostate cancer,PWI can be used to evaluate the biological features.(4).The FA,ADC,e1,e2 and e3 acquired from DTI can used to evaluate the three-dimensional architecture of PZ,BPH and PCa.The DTI and DTT have the potential to evaluate the micro-structural changes of prostatic diseases. (5).BOLD-fMRI during carbogen breathing is feasible.Its signal changes can be distinguished clearly between prostate cancer and contrlateral normat prostate tissue, which contributes to the diagnosis of early prostate cancer.According to the BOLD-fMRI,the function and maturity of micro-vascular may be evaluated.(6)Every functional MR technique is provided with their own advantages.Multiple functional magnetic resonance technologies can reflect the molecular level changes from different prospectives and assess the individualized biological characteristics of prostate cancer non-invasively.So,combining multi-methods together may offer more information for clinical diagnosis and therapy.
引文
[1]Wingo PA,Howe HL,Thun MJ,et al.A national framework for cancer surveillance in the United States[J].Cancer Causes Control,2005,16(2):151-170.
    [2]刘恩菊,项永兵,金凡,等.上海市区恶性肿瘤发病趋势分析(1972-1999)[J].肿瘤,2004,24(1):11-15.
    [3]Mearini L,Rosi P,Zucchi A,et al.Staging of prostatic carcinoma:TRUS prospective study versus endocoil MRI[J].Arch Ital Urol Androl,2002,74(4):309-313.
    [4]Kravchick S,Cytron S,Peled R,et al.Colour Doppler ultrasonography for detecting perineural invasion(PNI) and the value of PNI in predicting final pathological stage:a prospective study of men with clinically localized prostate cancer[J].BJU Int,2003,92(1):28-31.
    [5]Dobrowolski ZF,Jaszczynski J,Drewniak T,et al.Vascular angiographic asymmetry on three-dimensional transrectal power Doppler ultrasonography in patients with organ-confined prostate cancer[J].BJU Int,2002,89(6):614-615.
    [6]Effert PJ,Bares R,Handt S,et al.Metabolic imaging of untreated prostate cancer by positron emission tomography with 18fluorine-labeled deoxyglucose[J].Urol,1996,155(3):994-998.
    [7]牛庆亮,王锡臻,王滨.MSCT多期增强扫描在良性前列腺增生和前列腺癌诊断及鉴别诊断的价值[J].医学影像学杂志,2007,17(10):1019-1023.
    [8]Harvey CJ,Blomley MJ,Dawson P,et al.Functional CT Imaging of the Acute Hyperemic Response to Radiation Therapy of the prostate gland:Early experience[J].J Comput Assist Tomogr,2001,25(1):43-49.
    [9]刘金刚,王滨,牛庆亮,等.前列腺癌MSCT多期增强特征与bFGF及血管生成关系的研究[J].临床放射学杂志,2008,27(6):807-810.
    [10]Nakashima J,Tanimoto A,Imai Y,et al.Endorectal MRI for prediction of tumor site,tumor size,and local extension of prostate cancer[J].Urology,2004,64(1):101-105.
    [11]Cornud F,Belin X,Flam T,et al.Local staging of prostate cancer by endorectal MRI using fast spin-echo sequences:prospective correlation with pathological findings after radical prostatectomy[J].Br J Urol,1996,77(6):843-850.
    [12]Mueller-Lisse UG,Vigneron DB,Hricak H,et al.Localized prostate cancer:effect of deprivation therapy measured by using combined three-dimensional 1H MR spectroscopic and MR imaging:clinicopathologic case-controlled study[J].Radiology,2001,221(2):380-390.
    [13]Bartolozzi C,Crocetti L,Menchi I,et al.Endorectal magnetic resonance imaging in local staging of prostate carcinoma[J].Abdom Imaging,2001,26(2):111-122.
    [14]Menard C,Smith IC,Somorjai RL,et al.Magnetic resonance spectroscopy of the malignant prostate gland after radiotherapy:a histopathologic study of diagnostic validity[J].Int J Radiat Oncol Bilo Phys.2001,50(2):317-323.
    [15]王滨,Lowry M,Trunbull L.应用MRI药物代谢动力学模型评价前列腺不同组织的增强作用[J].医学影像学杂志,2001,11(6):371-373.
    [16]Rajesh A,Coakley FV,Kurhanewicz J.3D MR spectroscopic imaging in the evaluation of prostate cancer[J].Clin Radiol,2007,62(10):921-929.
    [17]Diergarten T,Martirosian P,Kottker R,et al.Functional Characterization of Prostate Cancer by Integrated Magnetic Resonance Imaging and Oxygenation Changes During Carbogen Breathing[J].Invest Radiol,2005,40(2):102-109.
    [18]王锡臻,王滨,牛庆亮,等.MRI扩散加权成像和ADC值对前列腺癌的诊断应用[J].临床放射学杂志,2007,26(6):581-584.
    [19]Checkley D,Tessier JJ,Kendrew J,et al.Use of dynamic contrast-enhanced MRI to evaluate acute treatment with ZD6474,a VEGF signalling inhibitor,in PC-3prostate turnouts[J].Br J Cancer,2003,89(10):1889-1895.
    [20]Strohmeyer D,Strauss F,Rossing C,et al.Expression of bFGF,VEGF and c-met and their correlation with microvessel density and progression in prostate carcinoma [J].Anticancer Res,2004,24(3a):1797-1804.
    [21]Taftachi R,Ayhan A,Ekici S,et al.Proliferating-cell nuclear antigen(PCNA) as an independent prognostic marker in patients after prostatectomy:a comparison of PCNA and Ki-67[J].BJU Int,2005,95(4):650-654.
    [22]Gray MJ,Zhang J,Ellis LM,et al.HIF-1alpha,STAT3,CBP/p300 and Ref-1/APE are components of a transcriptional complex that regulates Src-dependent hypoxia-induced expression of VEGF in pancreatic and prostate carcinomas[J].Oncogene,2005,24(19):3110-3120.
    [23]Kumar V,Jagannathan NR,Kumar R,et al.Transrectal ultrasound-guided biopsy of prostate voxels identified as suspicious of malignancy on three-dimensional(1)H MR spectroscopic imaging in patients with abnormal digital rectal examination or raised prostate specific antigen level of 4-10 ng/ml[J].NMR Biomed,2007,20(1):11-20.
    [24]Jiang L,Zhao D,Constantinescu A,et al.Comparison of BOLD contrast and Gd-DTPA dynamic contrast enhanced imaging in rat prostate tumor[J].Magn Reson Med.2004,51(5):953-960.
    [25]张继斌,沈钧康,许建铭,等.前列腺癌MR灌注成像与肿瘤血管生成相关性研究[J].临床放射学杂志,2004,23(6):485-488.
    [26]Ren J,Huan Y,Wang H,et al.Dynamic contrast-enhanced MRI of benign prostatic hyperplasia and prostatic carcinoma:correlation with angiogenesis[J].Clin Radiol,2008,63(2):153-159.
    [27]Sugahara T,Korogi Y,Kochi M,et al.Usefulness of diffusion-weighted MRI with echo-planar technique in the evaluation of cellularity in gliomas[J].J Magn Reson Imaging,1999,9(1):53-60.
    [28]Weidner N.Intratumor microvessel density as a prognostic factor in cancer[J].Am J Pathol,1995,147(1):9-19.
    [29]Kurhanewicz J,Vigneron DB,Males RG,et al.The prostate:MR imaging and spectroscopy,Present and future[J].Radiol Clin North Am,2000,38(1):115-138.
    [30]Ackerstaff E,Pflug BR,Nelson JB,et al.Detection of Increased Choline Compounds with Proton Nuclear Magnetic Resonance Spectroscopy Subsequent to Malignant Transformation of Human Prostatic Epithelial Cells[J].Cancer Research,2001,61(9):3599-3603.
    [31]Li SY,Chen M,Wang R,et al.Differentiation between benign prostatic hyperplasia and prostate cancer in the transitional zone evaluated by 1H magnetic resonance spectroscopic imaging[J].Chin Med Sci J,2007,22(4):238-242.
    [32]王霄英,周良平,丁建平,等.MRS对中国人前列腺癌鉴别诊断标准的初步研究[J].中国医学影像技术,2004,20(8):150-153.
    [33]Casciani E,Polettini E,Bertini L,et al.Prostate cancer:evaluation with endorectal MR imaging and three-dimensional proton MR spectroscopic imaging[J].Radiol Med(Torino),2004,108(5-6):530-541.
    [34]Kurhanewicz J,Dahiya R,Macdonald JM,et al.Citrate alterations in primary and metastatic human prostatic adenocarcinomas: 1H magnetic resonance spectroscopy and biochemical study [J]. Magn Reson Med 1993, 29(2):149-157.
    
    [35] Hahn P, Smith ICP, Leboldus L, et al. The classification of benign and malignant human prostate tissue by multivariate analysis of 1H magnetic resonance spectra [J]. Cancer Research, 1997, 57(6): 3398-3401.
    
    [36] Costello LC, Franklin RB. Concepts of citrate production and secretion by prostate: 2. Hormonal relationships in normal and neoplastic prostate [J]. Prostate. 1991, 19(3): 181-205.
    
    [37] Swanson MG, Vigneron DB, Tabatabai ZL, et al. Proton HR-MAS spectroscopy and quantitative pathologic analysis of MRI/3D-MRSI-targeted postsurgical prostate tissues [J]. Magn Reson Med, 2003, 50(5):944-954.
    
    [38] Scheidler J, Hricak H, Vigneron DB, et al. Prostate cancer: localization with three-dimensional proton MR spectroscopic imaging-clinicopathologic study [J]. Radiology, 1999, 213(2): 473-480.
    
    [39] Moseley ME, Cohen T, Kucharcay KJ. Diffusion weighted MR imaging of anisotropic water diffusion in cat Central nervous system [J]. Radiology, 1990, 176(2):439-446.
    
    [40] Cercignani M, Hordfield MA. The physical basis of diffusion-weighted MRI [J]. J Neurol Sci, 2001, 186 (Suppl 1): 11-14.
    
    [41] Delano MC, Cooper TG, Siebert JE. High-b-value MR diffusion-weighted imaging of the brain: Image contrast and apparent diffusion coefficient map features [J]. AJNR, 2000, 21(10):1830-1836.
    
    [42] Chan JH, Pen WC, Tsui EY, et al. Acute vertebral body compression fractures: discrimination between benign and malignant causes using apparent diffusion coefficients [J]. Br J Radiol, 2002, 75(891):207-214.
    
    [43] Gibbs P, Tozer DJ, Liney GP, et al. Comparison of quantitative T2 mapping and diffusion-weighted imaging in the normal and pathologic prostate [J]. Magn Reson Med, 2001,46(6): 1054-1058.
    
    [44] Randolph TL, Amin MB, Ro JY, et al. Histologic variants of adenocarcinoma and other and clinical significance carcinomas of prdstate: Pathologic criteria and clinical significance [J]. Mod Pathol, 1997, 10(6):612-629.
    
    [45] Kim CK, Choi D, Park BK, et al. Diffusion-weighted MR imaging for the evaluation of seminal vesicle invasion in prostate cancer:initial results[J].J Magn Reson Imaging,2008,28(4):963-969.
    [46]Zhu L,Loo WT,Louis WC.PTEN and VEGF:possible predictors for sentinel lymph node micro-metastasis in breast cancer[J].Biomed Pharmacother,2007,61(9):558-561.
    [47]Heo JH,Lucero J,Abumiya T,et al.Matrix metalloproteinases increases very early during experimental focal cerebral ischemia[J].J Cereb Blood Flow Metab,1999,19(6):624-633.
    [48]Kohn S,Nagy JA,Dvorak HF,et al.Pathways of macromolecular tracer transport across venules and small veins.Structural basis for the hyperpermeability of tumor blood vessels[J].Lab Invest,1992,67(5):596-607.
    [49]Helczynska K,Larsson AM,Holmquist Mengelbier L,et al.Hypoxia-inducible factor-2alpha correlates to distant recurrence and poor outcome in invasive breast cancer[J].Cancer Res,2008,68(22):9212-9220.
    [50]Tojan L,Thomas D,Friedrich D,et al.Expression of different vascular endothelial markers in prostate cancer and BPH tissue:an immunohistochemical and clinical evaluation[J].Anticancer Res,2004,24(3a):1651-1656.
    [51]王亮,陈昭颉,王庆掌,等.低氧诱导因子1α及血管内皮生长因子在前列腺癌中的表达及意义[J].中华男科学杂志,2006,12(1):57-59.
    [52]Strohmeyer D,R(o|¨)ssing C,Bauerfeind A,et al.Vascular endothelial growth factor and its correlation with angiogenesis and p53 expression in prostate cancer[J].Prostate,2000,45(3):216-224.
    [53]王旭霞,王景杰,刘震雄,等.端粒酶和p53及PCNA蛋白过度表达与胃癌临床病理特征的关系[J].中华肿瘤防治杂志,2006,13(1):32-34.
    [54]王业华,姜英,顾沈阳,等.前列腺组织EGFR和PCNA表达的相关性[J].现代泌尿外科杂志,2003,8(1):17-19.
    [55]Sulik M,Guzinska-Ustymowicz K.Expression of Ki-67 and PCNA as proliferating markers in prostate cancer[J].Rocz Akad Med Bialymst,2002,47:262-269.
    [56]Lekas A,Lazaris AC,Deliveliotis C,et al.The expression of hypoxia-inducible factor-1alpha(HIF-1alpha) and angiogenesis markers in hyperplastic and malignant prostate tissue[J].Anticancer Res,2006,26(4B):2989-2993.
    [57]Narayan P,Jajodia P,Kurhanewicz J,et al.Characterization of prostate cancer,benign prostatic hyperplasia and normal prostates using transrectal 31phosphorus magnetic resonance spectroscopy:a preliminary report[J].J Urol,1991,146(1):66-74.
    [58]Swindle P,McCredie S,Russell P,et al.Pathologic characterization of human prostate tissue proton MR spectroscopy[J].Radiology,2003,228(1):144-151.
    [59]Garcita-segura JM,Chapado MS,Iharburen C,et al.In vivo proton magnetic resonance spectroscopy of diseased prostate:spectroscopic features of malignant versue benign pathology[J].Magnetic Resonance Imaging,1999,17(5):755-765.
    [60]秦海燕,白人驹,孙浩然,等.肾上腺肿瘤MR扩散加权成像表现与细胞密度相关性的初步研究[J].临床放射学杂志,2007,26(6):575-580.
    [61]Kumar V,Jagannathan NR,Kumar R,et al Correlation between metabolite ratios and ADC values of prostate in men with increased PSA level[J].Magn Reson Imaging,2006,24(5):541-548.
    [1]Cha S.Perfusion MR imaging:Basic principles and clinical applications[J].Magn Reson Imaging,2003,11(3):403-413.
    [2]Cha S,Knopp EA,Johnson G,et al.Intracranial mass lession:Dynamic contrast-enhanced susceptibility-weighted echo-planar perfusion MR imaging[J].Radiology,2002,223(1):11-29.
    [3]Sugahara T,Korogi Y,Kochi M,et al.Correlation of MR imaging-determined cerebral blood volume maps with histologic and angiographic determination of vascularity of gliomas[J].AJR Am J Roentgenol,1998,171(6):1479-1486.
    [4]Dvorak AM,Feng D.The vesiculo-vacuolar organelle(VVO):A new endothelial cell permeability organelle[J].J Histochem Cytochem,2001,49(4):419-432.
    [5]Strohmeyer D,Strauss F,Rossing C,et al.Expression of bFGF,VEGF and c-met and their correlation with microvessel density and progression in prostate carcinoma [J].Anticancer Res,2004,24(3a):1797-1804.
    [6]Strohmeyer D,Rossing C,Bauerfeind A,et al.Vascular endothelial growth factor and its correlation with angiogenesis and p53 expression in prostate cancer[J].Prostate,2000,45(3):216-224.
    [7]Walsh K,Sriprasad S,Hopster D,et al.Distribution of vascular endothelial growth factor(VEGF) in prostate disease[J].Prostate Cancer Prostatic Dis,2002,5(2):119-122.
    [8]Ito H,Kamoi K,Yokoyama K,et al.Visualization of prostate cancer using dynamic contrast-enhanced MRI:comparison with transrectal power Doppler ultrasound[J].Br J Radiol,2003,76(909):617-624.
    [9]Kozlowski P,Chang SD,Jones EC,et al.Combined diffusion-weighted and dynamic contrast-enhanced MRI for prostate cancer diagnosis—correlation with biopsy and histopathology[J].J Magn Reson Imaging,2006,24(1):108-113.
    [10]于德新,王滨,周茂义,等.肝细胞癌螺旋CT增强表现特征与微血管形成的关系研究[J].实用放射学杂志,2004,20(5):424-428.
    [11]张继斌,沈钧康,许建铭,等.前列腺癌MR灌注成像与肿瘤血管生成相关性研究[J].临床放射学杂志,2004,23(6):485-488.
    [12]Basser PJ,Mattiello J,LeBihan D.MR diffusion tensor spectroscopy and imaging [J]. Biophys J, 1994, 66(1):259-267.
    
    [13] Pierpaoli C, Jezzard P, Basser PJ, et al. Diffusion tensor MR imaging of the human brain [J]. Radiology, 1996, 201(3):637-648.
    
    [14] Sinha S, Sinha U. In vivo diffusion tensor imaging of the human prostate [J]. Magn Reson Med, 2004, 52(3):530-537.
    
    [15] Gibbs P, Pickles MD, Turnbull LW. Repeatability of echo-planar-based diffusion measurements of the human prostate at 3T [J]. Magn Reson Imaging, 2007,25(10): 1423-1429.
    
    [16] Werring DJ, Toosy AT, Clark CA, et al. Diffusion tensor imaging can detect and quantify corticospinal tract degeneration after stroke [J]. J Neurol Neurosurg Psychiatry, 2000, 69(2):269-272.
    
    [17] Wang W, Steward CE, Desmond PM. Diffusion tensor imaging in glioblastoma multiforme and brain metastases: the role of p, q, L, and fractional anisotropy [J]. AJNR Am J Neuroradiol, 2009, 30(1):203-208.
    
    [18] Kim S, Pickup S, Hsu O, et al. Diffusion tensor MRI in rat models of invasive and well-demarcated brain tumors [J]. NMR Biomed, 2008,21(3):208-216.
    
    [19] Summers P, Staempfli P, Jaermann T, et al. A preliminary study of the effects of trigger timing on diffusion tensor imaging of the human spinal cord [J]. AJNR Am J Neuroradiol, 2006, 27(9):1952-1961.
    
    [20] Holodny AI, Gor DM, Watts R, et al. Diffusion-tensor MR tractography of somatotopic organization of corticospinal tracts in the internal capsule: initial anatomic results in contradistinction to prior reports [J]. Radiology, 2005, 234(3):649-653.
    
    [21] Gurses B, Kabakci N, Kovanlikaya A,et al. Diffusion tensor imaging of the normal prostate at 3 Tesla [J]. Eur Radiol, 2008,18(4):716-721.
    
    [22] Takayama Y, Kishimoto R, Hanaoka S, et al. ADC value and diffusion tensor imaging of prostate cancer: changes in carbon-ion radiotherapy [J]. J Magn Reson Imaging, 2008, 27(6):1331-1335.
    
    [23] Verstraete KL, de Deene Y, Roels H, et al. Benign and malignant musculoskeletal lesions: dynamic contrast-enhanced MR imaging-parametric "first-pass" imaging depict tissue vascularization and perfusion [J]. Radiology, 1994,192(3):835-843.
    [24]张皓,沈天真,陈星荣.胶质瘤动态增强磁化率MR灌注成像研究[J].中国医学计算机成像杂志,2003,9(1):1-7.
    [25]Howe FA,Robinson SP,McIntyre DJ,et al.Issues in flow and oxygenation dependent contrast(FLOOD) imaging of tumours[J].NMR Biomed,2001,14(7-8):497-506.
    [26]Grau C,Horsman MR,Overgaard J,et al.Improving the radiation response in a C3H mouse mammary carcinoma by normobaric oxygen or carbogen breathing[J].Int J Radiat Oncol Biol Phys,1992,22(3):415-419.
    [27]Diergarten T,Martirosian P,Kottke R,et al.Functional characterization of prostate cancer by integrated magnetic resonance imaging and oxygenation changes during carbogen breathing[J].Invest Radiol,2005,40(2):102-109.
    [28]McNeal JE,Leav I,Alroy J,et al.Differential lectin staining of central and peripheral zones of the prostate and alterations in dysplasia[J].Am J Clin Pathol,1988,89(1):41-48.
    [29]Mc Neal JE.Architecture of the glandular prostate.In:Stuernberg SS;ed.Histology for pathologists[M].New York:Raven Press,1992,753-756.
    [30]Hoskin PJ,Carnell DM,Taylor NJ,et al.Hypoxia in prostate cancer:correlation of BOLD-MRI with pimonidazole immunohistochemistry-initial observations[J].Int J Radiat Oncol Biol Phys.2007,68(4):1065-1071.
    [1] Chen JG, Zhu J, Parkin DM, Zhang YH, Lu JH, Zhu YR, Chen TY. Trends in the incidence of cancer in Qidong, China, 1978-2002 [J]. Int J Cancer. 2006, 119(6): 1447-1454.
    
    [2] Gu F. Epidemiological survey of benign prostatic hyperplasia and prostatic cancer in China [J].Chin Med J (Engl). 2000, 113(4):299-302.
    
    [3] Blute ML, Bergstralh EJ, Iocca A, et al. Use of Gleason score, prostate specific antigen, seminal vesicle and margin status to predict biochemical failure after radical prostatectomy [J]. J Urol. 2001, 165(1): 119-125.
    
    [4] Han M, Partin AW, Zahurak M, et al. Biochemical (prostate specific antigen) recurrence probability following radical prostatectomy for clinically localized prostate cancer [J]. J Urol. 2003,169(2):517-523.
    
    [5] Engelbrecht MR, Jager GJ, Laheij RJ, et al. Local staging of prostate cancer using magnetic resonance imaging: a meta-analysis. Eur Radiol. 2002, 12(9): 2294-2302.
    
    [6] Nakashima J, Tanimoto A, Imai Y, et al. Endorectal MRI for prediction of tumor site, tumor size, and local extension of prostate cancer. Urology. 2004, 64(1): 101-105.
    
    [7] Comet-Batlle J, Vilanova-Busquets JC, SaladieRoig JM, et al. The value of endorectal MRI in the early diagnosis of prostate cancer. Eur Urol. 2003, 44(2):201-207.
    
    [8] DiBiase SJ, Hosseinzadeh K, Gullapalli RP, et al. Magnetic resonance spectroscopic imaging-guided brachytherapy for localized prostate cancer [J]. Int J Radiat Oncol Biol Phys. 2002, 52(2):429-438.
    
    [9] Swanson MG, Vigneron DB, Tran TK, et al. Magnetic resonance imaging and spectroscopic imaging of prostate cancer [J]. Cancer Invest. 2001, 19(5): 510-523.
    
    [10] Amsellem-Ouazana D, Younes P, Conquy S, et al. Negative prostatic biopsies in patients with a high risk of prostate cancer. Is the combination of endorectal MRI and magnetic resonance spectroscopy imaging (MRSI) a useful tool? A preliminary study [J]. Eur Urol. 2005,47(5):582-526.
    [11] Wang L, Hricak H, Kattan MW, et al. Prediction of organ-confined prostate cancer: incremental value of MR imaging and MR spectroscopic imaging to staging nomograms [J].Radiology. 2006,238(2):597-603.
    
    [12] Mueller-Lisse UG, Swanson MG, Vigneron DB, et al. Time-dependent effects of hormone-deprivation therapy on prostate metabolism as detected by combined magnetic resonance imaging and 3D magnetic resonance spectroscopic imaging [J]. Magn Reson Med. 2001,46(1): 49-57.
    
    [13] Kurki P, Van der Laan M, Dolbeare F, Gray J, Tan EM. Expression of proliferating cell nuclear antigen (PCNA)/cyclin during the cell cycle [J]. Exp Cell Res 1986; 166(1): 209-219.
    
    [14] Taftachi R, Ayhan A, Ekici S, et al. Proliferating-cell nuclear antigen (PCNA) as an independent prognostic marker in patients after prostatectomy: a comparison of PCNA and Ki-67 [J]. BJU Int, 2005, 95(4): 650-654.
    
    [15] Sulik M, Guzinska-Ustymowicz K. Expression of Ki-67 and PCNA as proliferating markers in prostate cancer [J]. Rocz Akad Med Bialymst, 2002, 47:262-269.
    
    [16] Scheidler J, Hricak H, Vigneron DB, et al. Prostate Cancer: Localization with Three-dimensional Proton MR Spectroscopic Imaging: Clinicopathology Study [J].Radiology, 1999,213(2):473-480.
    
    [17] Swanson MG, Vigneron DB, Tabatabai ZL, et al. Proton HR-MAS spectroscopy and quantitative pathologic analysis of MRI/3D-MRSI-targeted postsurgical prostate tissues [J]. Magn Reson Med, 2003,50(5):944-954.
    
    [18] Shukla-Dave A, Hricak H, Kattan MW, Pucar D, Kuroiwa K, Chen HN, Spector J, Koutcher JA, Zakian KL, Scardino PT. The utility of magnetic resonance imaging and spectroscopy for predicting insignificant prostate cancer: an initial analysis[J]. BJU Int. 2007, 99(4):786-793.
    
    [19] McBride DQ, Miller BL, Nikas DL, Buchthal S, Chang L, Chiang F, Booth RA.Analysis of brain tumors using 1H magnetic resonance spectroscopy[J]. Surg Neurol. 1995,44(2): 137-144.
    
    [20] Sijens PE, Knopp MV, Brunetti A, Wicklow K, Alfano B, Bachert P, Sanders JA, Stillman AE, Kett H, Sauter R, et al. 1H MR spectroscopy in patients with metastatic brain tumors: a multicenter study[J]. Magn Reson Med. 1995, 33(6):818-826.
    [21] Rutter A, Hugenholtz H, Saunders JK, Smith IC. One-dimensional phosphorus-31 chemical shift imaging of human brain tumors[J]. Invest Radiol. 1995, 30(6):359-366.
    
    [22] Ackerstaff E, Glunde K, Bhujwalla ZM. Choline phospholipid metabolism: a target in cancer cells[J]? J Cell Biochem. 2003, 90(3):525-533.
    
    [23] Costouros NG, Coakley FV, Westphalen AC, Qayyum A, Yeh BM, Joe BN, Kurhanewicz J.Diagnosis of prostate cancer in patients with an elevated prostate-specific antigen level: role of endorectal MRI and MR spectroscopic imaging[J]. AJR Am J Roentgenol. 2007,188(3):812-816.
    
    [24] Garcita-segura J M, Chapado MS, Iharburen C, et al. In vivo proton magnetic resonance spectroscopy of diseased prostate: spectroscopic features of malignant versue benign pathology [J] Magnetic Resonance Imaging, 1999, 17(5):755-765.;
    
    [25] Zakian KL, Sircar K, Hricak H, Chen HN, Shukla-Dave A, Eberhardt S, Muruganandham M, Ebora L, Kattan MW, Reuter VE, Scardino PT, Koutcher JA. Correlation of proton MR spectroscopic imaging with gleason score based on step-section pathologic analysis after radical prostatectomy[J]. Radiology. 2005, 234(3):804-814.
    
    [26] Tanimoto A, Nakashima J, Kohno H, et al. Prostate cancer screening: the clinical value of diffusion-weighted imaging and dynamic MR imaging in combination with T2-weighted imaging [J]. J Magn Reson Imaging. 2007, 25(1):146-152.
    
    [27] Harper ME, Glynne-Jones E, Goddard L et al. Relationship of proliferating cell nuclear antigen (PCNA) in prostatic carcinomas to various clinical parameters [J]. Prostate, 1992, 20(3): 243-253.
    (1) Blute ML, Bergstralh EJ, Iocca A, Scherer B, Zincke H. Use of Gleason score, prostate specific antigen, seminal vesicle and margin status to predict biochemical failure after radical prostatectomy. J Urol 2001; 165:119-125.
    
    (2) Han M, Partin AW, Zahurak M, Piantadosi S, Epstein JI, Walsh PC. Biochemical (prostate specific antigen) recurrence probability following radical prostatectomy for clinically localized prostate cancer. J Urol 2003; 169:517-523.
    
    (3) Engelbrecht MR, Jager GJ, Laheij RJ, Verbeek AL, van Lier HJ, Barentsz JO. Local staging of prostate cancer using magnetic resonance imaging: a meta-analysis. Eur Radiol 2002; 12:2294-2302.
    
    (4) Nakashima J, Tanimoto A, Imai Y, et al. Endorectal MRI for prediction of tumor site, tumor size, and local extension of prostate cancer. Urology 2004; 64:101-105.
    
    (5) Comet-Batlle J, Vilanova-Busquets JC, Saladie-Roig JM, Gelabert-Mas A, Barcelo-Vidal C. The value of endorectal MRI in the early diagnosis of prostate cancer. Eur Urol 2003; 44: 201-207.
    
    (6) Moseley ME, Cohen T, Kucharcay KJ. Diffusion weighted MR imaging of anisotropic water diffusion in cat Central nervous system. Radiology 1990; 176:439-445.
    
    (7) Issa B. In vivo measurement of the apparent diffusion coefficient in normal and malignant prostatic tissues using echo-planar imaging. J Magn Reson Imaging 2002; 16:196-200.
    
    (8) Hosseinzadeh K, Schwarz SD. Endorectal diffusion-weighted imaging in prostate cancer to differentiate malignant and benign peripheral zone tissue. J Magn Reson Imaging 2004; 20:654-661.
    
    (9) Gibbs P, Pickles MD, Turnbull LW. Diffusion imaging of the prostate at 3.0 tesla. Invest Radiol 2006; 41:185-188.
    
    (10) Kurki P, Van der Laan M, Dolbeare F, Gray J, Tan EM. Expression of proliferating cell nuclear antigen (PCNA)/cyclin during the cell cycle. Exp Cell Res 1986; 166:209-219.
    
    (11) Taftachi R, Ayhan A, Ekici S, Ergen A, Ozen H. Proliferating-cell nuclear antigen (PCNA) as an independent prognostic marker in patients after prostatectomy: a comparison of PCNA and Ki-67. BJU Int 2005; 95:650-654.
    
    (12) Sulik M, Guzinska-Ustymowicz K. Expression of Ki-67 and PCNA as proliferating markers in prostate cancer. Rocz Akad Med Bialymst 2002; 47: 262-269.
    
    (13) Sugahara T, Korogi Y, Kochi M, et al. Usefulness of diffusion-weighted MRI with echo-planar technique in the evaluation of cellularity in gliomas. J Magn Reson Imaging 1999; 9:53-60.
    
    (14) Gibbs P, Tozer DJ, Liney GP, Turnbull LW. Comparison of quantitative T2 mapping and diffusion weighted imaging in the normal and pathologic prostate. Magn Reson Med 2001; 46:1054-1058.
    
    (15) Deering RE, Bigler SA, King J. Choongkittaworn M, Aramburu E, Brawer MK. Morphometric quantitation of stroma in human benign prostatic hyperplasia. Urology 1994; 44(1): 64-70.
    
    (16) Sato C, Naganawa S, Nakamura T, et al. Differentiation of noncancerous tissue and cancer lesions by apparent diffusion coefficient values in transition and peripheral zones of the prostate. J Magn Reson Imaging 2005; 21:258-262.
    
    (17) Haider MA, van der Kwast TH, Tanguay J, et al. Combined T2-weighted and diffusion-weighted MRI for localization of prostate cancer. AJR Am J Roentgenol 2007; 189:323-328.
    
    (18) Manenti G, Squillaci E, Di Roma M, Carlani M, Mancino S, Simonetti G. In vivo measurement of the apparent diffusion coefficient in normal and malignant prostatic tissue using thin-slice echo-planar imaging. Radiol Med (Torino) 2006; 111:1124-1133.
    
    (19) Tanimoto A, Nakashima J, Kohno H, Shinmoto H, Kuribayashi S. Prostate cancer screening: the clinical value of diffusion-weighted imaging and dynamic MR imaging in combination with T2-weighted imaging. J Magn Reson Imaging 2007; 25:146-152.
    
    (20) Harper ME, Glynne-Jones E, Goddard L, et al. Relationship of proliferating cell nuclear antigen (PCNA) in prostatic carcinomas to various clinical parameters. Prostate 1992; 20: 243-253.
    
    (21) Kallakury B, Sheehan C, Rhee S, et al. The prognostic significance of proliferation-associated nuclear protein p120 expression in prostate adenocarcinoma: a comparison with cyclins A and Bl, Ki-67, proliferating cell nuclear antigen and p34cdc2. Cancer 1999, 85:1569-1576.
    
    (22) Hayashida Y, Hirai T, Morishita S, et al. Diffusion-weighted imaging of metastatic brain tumors: comparison with histologic type and tumor cellularity. AJNR Am J Neuroradiol 2006; 27:1419-1425.
    
    (23) Guo AC, Cummings TJ, Dash RC, Provenzale JM. Lymphomas and high-grade astrocytomas: Comparison of water diffusibility and histologic characteristics. Radiology 2002; 224:177-183.
    
    (24) Gauvain KM, McKinstry RC, Mukherjee P, et al. Evaluating pediatric brain tumor cellularity with diffusion-tensor imaging. AJR Am J Roentgenol 2001;177:449-454.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700