用户名: 密码: 验证码:
SC5b-9介导肺微血管内皮通透性障碍及其机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机体长时间吸入绝对压相对较低(60~200 kPa)的高压氧可引起肺损害,即肺型氧中毒。主要病理表现为:肺泡上皮细胞受损,肺微血管内皮通透性增加,蛋白质渗出,肺水肿、肺不张和肺出血,最终导致气体交换障碍而危及生命。高压氧的毒性使它在潜水作业领域和高压氧临床治疗当中的应用受到很大限制,如大深度饱和潜水过程中,为避免发生肺型氧中毒,必须采取措施严格控制氧分压,大大增加了潜水作业的难度;高压氧治疗时必须采用间歇吸氧法,使吸氧效率显著降低。关于肺型氧中毒的发病机制,目前普遍认为是氧化应激、高压氧的直接毒性作用和生物膜受损等,使肺毛细血管通透性增加,肺泡上皮细胞破坏,肺泡表面活性物质减少,肺表面张力增高,造成组织水肿和肺不张。但是,肺型氧中毒具有肺部炎症反应的典型特征,炎症反应在其发病过程中的作用不容忽视。研究表明,肺型氧中毒的发生不仅有氧化应激反应,内皮细胞和上皮细胞的破坏、细胞凋亡等变化,还有炎症细胞的聚集、凝血和纤溶机制的紊乱等诸多因素的参与,各种因素的消长决定了病理过程的发生、发展和转归。
     由于补体系统在炎症反应中发挥重要作用,补体可能参与肺型氧中毒的发生。有研究发现,补体复合物沉积于肺泡腔引起的补体活化会触发一系列反应导致非常严重的肺实质损害。血管内注射补体活化血清或C5活化产物均可直接引起急性肺损伤。急性呼吸窘迫综合征时补体活化,可溶性补体复合物SC5b-9与内皮细胞管腔面的αvβ3整合素结合,可能是导致肺微血管内皮屏障功能下降和肺水肿的机制之一。近来的研究表明,补体成分C3a和C5a可以分别通过结合C3aR和C5aR引起人脐静脉内皮通透性增加。离体肺血管研究也发现,SC5b-9特异性结合αvβ3可能激活酪氨酸磷酸化途径,进而导致内皮细胞骨架重组和血管通透性增高。含有RGD (Arg-Gly-Asp)序列的六肽GRGDSP可以竞争性抑制SC5b-9与αvβ3的结合,减轻微血管内皮屏障的破坏;αvβ3的单克隆抗体LM609也可以显著抑制SC5b-9引起的内皮通透性增加。由此可见,多种补体成分可以通过特异性受体介导的途径引起肺血管内皮损伤。
     为探索肺型氧中毒的发生机制,本课题首先采用高通量寡核苷酸芯片技术筛选肺型氧中毒小鼠肺组织基因表达谱,发现β3整合素基因显著上调,提示β3整合素在肺型氧中毒发生机制中可能发挥重要作用。
     我们推测,高压氧暴露可能激活补体系统,由可溶性补体复合物SC5b-9特异性结合αvβ3整合素,引起内皮细胞骨架重组,进而导致肺微血管内皮通透性增加。为证明上述推论,本课题进行了以下研究:
     1.肺型氧中毒的基因表达谱研究
     制备c57BL/6小鼠肺型氧中毒模型,采用寡核苷酸芯片技术获取200 kPa纯氧暴露5 h的c57BL/6小鼠肺组织基因表达谱,以GeneSpring软件分析表达谱数据。
     2.肺型氧中毒大鼠体内补体活化水平及肺血管通透性检测
     (1)CH50法检测肺型氧中毒大鼠体内总补体活性;
     (2)伊文思蓝染色法检测肺型氧中毒大鼠肺血管通透性。
     3.建立补体复合物SC5b-9造成大鼠肺微血管内皮屏障功能破坏的体外模型
     (1)大鼠血清补体复合物SC5b-9的提取、纯化及鉴定;
     (2)大鼠肺微血管内皮细胞的体外培养及鉴定;
     (3)伊文思蓝标记白蛋白法检测不同浓度(50μg/ml, 100μg/ml, 150μg/ml, 200μg/ml)SC5b-9对肺微血管内皮细胞单层通透性影响的变化特点。
     4.补体复合物SC5b-9对肺微血管内皮细胞应力纤维形成和分布的影响以不同浓度SC5b-9刺激肺微血管内皮细胞,观察应力纤维变化特点。
     5. Rho激酶抑制剂Y-27632对SC5b-9诱导肺微血管内皮细胞骨架重组的影响以Y-27632阻断Rho激酶,观察SC5b-9刺激肺微血管内皮细胞后应力纤维变化特点。
     主要研究结果如下:
     1.获得200 kPa纯氧暴露5 h的c57BL/6小鼠肺组织基因表达谱。表达谱数据经GeneSpring软件分析,共计获得表达上调3倍以上的基因69个,表达下调3倍以上的基因229个,在表达上调基因中,以β3整合素基因最为显著(上调7.49倍),这一结果提示β3整合素在肺型氧中毒发生机制中可能发挥重要作用。
     2. CH50检测表明高压氧暴露5 h大鼠体内补体活性显著增高,伊文思蓝染色法结果提示高压氧暴露大鼠肺血管通透性增加。
     3.建立了补体复合物SC5b-9造成大鼠肺微血管内皮屏障功能破坏的体外模型。SC5b-9对微血管内皮细胞单层通透性的影响具有显著的时间、浓度依赖性,50μg/ml SC5b-9刺激1 h即可引起通透性的改变,200μg/ml SC5b-9不仅可以引起内皮通透性的明显增加,而且可以观察到内皮细胞单层的明显破坏;令人感兴趣的是, Rho激酶抑制剂Y-27632不仅不能阻断SC5b-9对大鼠肺微血管内皮屏障功能的破坏,反而可以促进内皮通透性的增加。
     4. SC5b-9可以引起肺微血管内皮细胞骨架重组,Rho激酶阻断剂Y-27632不能阻止SC5b-9诱导的内皮通透性增加。
     本课题提示,高压氧暴露可以激活补体系统,产生的可溶性补体复合物SC5b-9通过结合αvβ3整合素引起内皮细胞骨架重构,形成应力纤维,应力纤维将导致内皮细胞收缩,使内皮通透性增加,即补体活化产物SC5b-9通过特异性受体途径介导的肺血管内皮通透性增加是高压氧暴露引起肺微血管内皮通透性障碍的原因之一。αvβ3整合素和补体系统的参与为寻找防治肺型氧中毒的有效手段提供了新的思路。
Continuous exposure of animals to oxygen at pressures ranging from more than 60~200 kPa causes progressive lung injury, that is pulmonary oxygen toxicity. The pathologic effects of pulmonary oxygen toxicity include destruction of both capillary endothelium and alveolar epithelium, alveolar cell hyperplasia, edema, hemorrhage, arteriolar thickening and hyalinization, fibrin formation, atelectasis, and consolidation with severe impairment of gas exchange, hypoxemia and death. Alternating hyperoxic and normoxic exposure periods to extension of pulmonary oxygen tolerance in man is applicated in hyerbaric oxygen therapy.
     Oxygen toxicity has been studied extensively for the past several decades. It is generally accepted that oxygen toxicity is caused by oxidative stress, direct oxidative effect of oxygen and free radical damage to membranes. Peroxidation of membrane unsaturated fatty acids, oxidation of structural proteins and inactivation of membrane-bound enzymes can increase membrane permeability and eliminate transmembrane ion gradients with the loss of secretory and other important membrane functions. While pulmonary oxygen toxicity also has typical inflammation changes, which suggests that inflammation plays vital role in the mechanisms of pulmonary oxygen toxicity.
     The hypothesis that inflammation contribute to the development of pulmonary oxygen toxicity is supported primarily by observations made in animals during multiday exposures to O2 at 101 kPa (1.0 ATA). In rats exposed for more than 2 days, neutrophils accumulate within the pulmonary vasculature, frequently adhering to capillary endothelial cells, and are also more numerous within the lung interstitium. The accumulation of neutrophils in the lungs was associated with rapid exacerbation of lung damage and, conversely, the pathologic effects of oxygen exposure were decreased by prior systemic depletion of neutrophils.Activated neutrophils can release into the surrounding medium a variety of reactive species including super-oxide, hydrogen peroxide, hydroxyl radical, hypochlorous acid, and peroxynitrite.
     In addition, as a key mediator of inflammation, complement also significantly contributes to tissue damage in various clinical disorders, including systemic inflammatory response syndrome (SIRS) and acute respiratory distress syndrome (ARDS), septic shock, trauma, burns, acid aspiration to the lungs. In principle, when inflammation is involved in the pathogenesis, complement has to be considered as a possible mediator in the disease process. Since blood levels of vitronectin-containing complement complexes SC5b-9 increase in ARDS, the ligation of the endothelial luminal vβ_3 integrin by these complexes increases lung endothelial liquid conductance, which is competitively bloked by RGD containing peptide GRGDSP or anti- vβ_3 monoclonal antibody LM609. Recently, it was reported that both C3a and C5a could increase vascular permeability by activating their specific receptors. These results suggest that multielements of complement system contribute to vascular permeability dysfunction by activating specific reptors.
     To investigate the mechanisms of pulmonary oxygen toxicity, gene expression studies were conducted to identify the gene exression patterns underlying hyperoxic lung injury. The gene expression ratio ofβ_3 integrin went up significantly with hyperoxic injury, which suggested thatβ_3 integrin may contribute to development of pulmonary oxygen toxicity.
     We postulated that hyperbaric oxygen exposure may activate complement system, leading to the formation of vitronectin-containing complement complex, SC5b-9. The ligation of the endothelial luminal vβ_3 integrin by these complexes induces cytoskeletal reorganization and further evokes an increae in vascular permeability. To prove our postulation, we performed the following experiments. 1. Microarray analysis of pulmonary oxygen toxicity
     To evaluate the molecular and cellular bases of pulmonary oxygen toxicity, changes in gene expression in the c57BL/6 mouse lung after polonged hyperbaric oxygen exposure were investigated. GeneSpring software was used to analysis the data aquired.
     2. Detection of complement level and pulmonary vascular permeability in oxygen toxicity rat
     (1) CH50 was used to measure the complement level in rat;
     (2) Evans Blue Assay was used to detect pulmonary vascular permeability.
     3. Establishment of SC5b-9-induced endothelial monolayer permeability dysfunction model
     (1) Purification and identification of SC5b-9;
     (2) Rat pulmonary microvascular endothelial cell culture and identification;
     (3) Detection of SC5b-9-induced endothelial monolayer permeability by Evans Blue albumin assay.
     4. Effects of varying concentrations of SC5b-9 on cytoskeletal changes in pulmonary microvascular endothelial cells.
     5. Effects of Rho-kinase inhibitor Y-27632 on SC5b-9-induced cytoskeletal changes in pulmonary microvascular endothelial cells.
     The main resuls are as fllow:
     1. Microarray analysis of 200 kPa hyperbaric oxygen exposure mice lung: We choose a relatively high threshold (a ratio of 3.0) to identify hyperoxia responsive genes . Using this criteria, 69 genes up-regulated, and 229 genes down-regulated. The highest up-regulated gene isβ_3 integrin, which suggest that it may play an important role in the mechanisms of pulmonary oxygen toxicity.
     2. CH50 tests showed that the complement levels in 5-hour hyperoxia exposed rats were significantly elevated (P<0.05). Hyperpermeability in hyperoxia exposed rat lungs were identified by Evans Blue Assay (P<0.01).
     3. We established a in vitro model of SC5b-9-induced endothelial monolayer permeability dyfunction. Endothelial permeability was significantly increased by SC5b-9 in a time- and concentration-dependent manner and was accompanied by changes in the F-actin cytoskeleton. Endothelial monolayer stimulated by 50μg/mL SC5b-9 for just 1 hour resulted in barrier changes. Endothelial monolayer stimulated by 200μg/mL SC5b-9 showed both permeability dysfunction and prominent structure damage. While, Y-27632 showed permeability promoting effect instead of brrier protecting effect.
     4. SC5b-9 could induce significant cytoskeletal changes. Y-27632 did not show inhibiting effect on permeability dysfunction.
     Our results showed that hyperbaric oxygen exposure could activate complement system, leading to the formation of vitronectin-containing complement complex, SC5b-9. The ligation of the endothelial luminal vβ_3 integrin by these complexes induces cytoskeletal reorganization and further evokes an increae in vascular permeability. The involvement of vβ_3 integrin and complement activation provides a new area for finding therapeutic measure for pulmonary oxygen toxicity.
引文
1. Rupp PA, Little CD. Integrins in vascular development. Circ Res. 89(7):566-72,2001.
    2. Kim HJ, Henke CA, Savik SK, et al. Integrin mediation of alveolar epithelial cell migration on fibronectin and type I collagen. Am J Physiol. 273(1 Pt 1):L134-41, 1997.
    3. Odrljin TM, Haidaris CG, Lerner NB, et al. Integrin alphavbeta3-mediated endocytosis of immobilized fibrinogen by A549 lung alveolar epithelial cells. Am J Respir Cell Mol Biol. 24(1):12-21,2001.
    4. Preissner KT. Structure and biological role of vitronectin. Annu Rev Cell Biol. 7:275-311, 1991.
    5. Preissner KT, Podack ER, Muller-Eberhard HJ. SC5b-7, SC5b-8 and SC5b-9 complexes of complement: ultrastructure and localization of the S-protein (vitronectin) within the macromolecules. Eur J Immunol. 19:69-75,1989.
    6. Hiroshi Tsukada, Xiaoyou Ying, Chenzhong Fu, Shigemi Ishikawa, Paula McKeown-Longo, Steven Albelda, Sunita Bhattacharya, Bonnie Anderson Bray, Jahar Bhattacharya. Ligation of endothelial alpha v beta 3 integrin increases capillary hydraulic conductivity of rat lung. Circ Res. 77(4):651-9,1995.
    7. Langlois PF, Gawryl MS. Accentuated formation of the terminal C5b-9 complement complex in patient plasma precedes development of the adult respiratory distress syndrome. Am Rev Respir Dis. 138:368-375,1988.
    8. Carbajal, J.M., Schaeffer Jr., R.C.. RhoA inactivation enhances endothelial barrier function. Am. J. Physiol. 277, C955–C964,1999.
    9. Hirase, T., Kawashima, S., Wong, E.Y., Ueyama, T., Rikitake, Y., Tsukita, S., Yokoyama, M., Staddon, J.M.. Regulation of tight junction permeability and occludin phosphorylation by Rhoap160ROCK- dependent and -independent mechanisms. J. Biol. Chem. 276, 10423–10431, 2001.
    10. Wojciak-Stothard, B., Entwistle, A., Garg, R., Ridley, A.J.. Regulation of TNF-alpha-induced reorganization of the actin cytoskeleton and cell– celljunctions by Rho, Rac, and Cdc42 in human endothelial cells. J. Cell. Physiol. 176, 150– 165,1998.
    11. Zhao, D., Kuhnt-Moore, S., Zeng, H., Pan, A., Wu, J.S., Simeonidis, S., Moyer, M.P., Pothoulakis, C.. Substance P-stimulated interleukin-B. Biochem. J. 368, 665–672, 2002.
    12. Aepfelbacher, M., Essler, M.2001. Disturbance of endothelial barrier function by bacterial toxins and atherogenic mediators: a role for Rho/Rho kinase. Cell. Microbiol. 3, 649– 658, 2001.
    13. Bogatcheva, N.V., Garcia, J.G., Verin, A.D.. Molecular mechanisms of thrombin-induced endothelial cell permeability. Biochemistry (Moscow) 67, 75– 84, 2002.
    14. Dudek, S.M., Garcia, J.G.. Cytoskeletal regulation of pulmonary vascular permeability. J. Appl. Physiol. 91, 1487– 1500, 2001.
    15. Lum, H., Malik, A.B.. Mechanisms of increased endothelial permeability. Can. J. Physiol. Pharmacol. 74, 787– 800, 1996.
    16. Amano, M., Ito, M., Kimura, K., Fukata, Y., Chihara, K., Nakano, T., Matsuura, Y., Kaibuchi, K.. Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase). J. Biol. Chem. 271, 20246– 20249, 1996.
    17. Mantell, L. L.; Horowitz, S.; Davis, J. M.; Kazzaz, J. A. Hyperoxia-induced cell death in the lung–the correlation of apoptosis, necrosis, and inflammation. Ann. N. Y. Acad. Sci. 887:171– 180, 1999.
    18. Asikainen, T. M.; Huang, T. T.; Taskinen, E.; Levonen, A. L.; Carlson, E.; Lapatto, R.; Epstein, C. J.; Raivio, K. O. Increased sensitivity of homozygous Sod2 mutant mice to oxygen toxicity. Free Radic. Biol. Med. 32:175– 186, 2002.
    19. Gonder, J. C.; Proctor, R. A.; Will, J. A. Genetic differences in oxygen toxicity are correlated with cytochrome P-450 inducibility. Proc. Natl. Acad. Sci. USA 82:6315– 6319, 1985.
    20. Johnston, C. J.; Stripp, B. R.; Piedbeouf, B.; Wright, T. W.; Mango, G. W.; Reed, C. K.; Finkelstein, J. N. Inflammatory and epithelial responses in mouse strains that differ in sensitivity to hyperoxic injury. Exp. Lung Res. 24:189–202, 1998. 68
    21. E. Matthew, L. Kutcher, and J. Dedman. Protection of lungs from hyperoxic injury: gene expression analysis of cyclosporin A therapy. Physiol Genomics 14: 129–138, 2003.
    22. Fisher, A. B.; Forman, H. J.; Glass, M. Mechanisms of pulmonary oxygen toxicity. Lung 162:255– 259, 1984.
    23. Freeman, B. A.; Crapo, J. D. Hyperoxia increases oxygen radical production in rat lungs and lung mitochondria. J. Biol. Chem. 256:10986–10992, 1981.
    24. Kazzaz, J. A., J. Xu, T. A. Palaia, L. Mantell, A. M. Fein, and S. Horowitz.. Cellular oxygen toxicity. J. Biol. Chem. 271:15182–15186, 1996
    25. Simon, A. R., B. H. Cochran, and B. L. Fanburg.. Oxidative stress and cell proliferation. In Lung Biology in Health and Disease: Oxygen, Gene Expression, and Cellular Function. L. B. Clerch and D. J. Massaro, editors. Vol. 105. Marcel Dekker, New York. 123–138,1997
    26. Kermorgant S, Walker F, Hormi K, Dessirier V, Lewin MJ, Lehy T. Developmental expression and functionality of hepatocyte growth factor and c-Met in human fetal digestive tissues. Gastroenterology. 112(5):1635-47, 1997.
    27. Liu XL, Sato S, Dai W, Yamanaka N. The protective effect of hepatocyte growth-promoting factor (pHGF) against hydrogen peroxide-induced acute lung injury in rats. Med Electron Microsc. 34(2):92-102, 2001
    28. Johnson KJ, Ward PA. Acute immunologic pulmonary alveolitis. J Clin Invest. 54(2):349-57, 1974.
    29. Hohn DC, Meyers AJ, Gherini ST, Beckmann A, Markison RE, Churg AM. Production of acute pulmonary injury by leukocytes and activated complement. Surgery. 88(1):48-58, 1980.
    30. Hosea S, Brown E, Hammer C, Frank M. Role of complement activation in a model of adult respiratory distress syndrome. J Clin Invest. 66(2):375-82, 1980.
    31. Gerd 0. Till, Kent J. Johonson Robin Kunkel, and Peter A. Ward, Intravascular Activation of Complement and Acute Lung Injury. J. Clin. Invest. 69 :1126-1135, 1982.
    32. Ingrid U. Schraufstatter Khanh Trieu, Lyudmila Sikora, P. Sriramarao andRichard DiScipio. Complement C3a and C5a Induce Different Signal Transduction Cascades in Endothelial Cells. J Immun. 169: 2102-2110, 2002.
    33. Kierzinikowicz B, Ulewicz K. Influence of oxygen hyperbaria on the activity of complement in human's sera. Acta Physiol Pol. 27(4):409-11, 1976.
    34. Thomas JA, Lambre C, Delarbre C. Action of hyperoxia on hemolytic activity of the complement system. C R Acad Sci Hebd Seances Acad Sci D. 284(2):131-6,1977.
    35. Garcia, JGN, and Schaphorst KL. Regulation of endothelial cell gap formation and paracellular permeability. J Investig Med. 43: 117-126, 1995.
    36. Zhao Kesen, Huang Qiaobing. The basic mechanism of increased microvascular permeability. Chin J Phathophy. 19:549-553, 2003.
    37. Uehata M, Ishizaki T, Satoh H, Ono T, Kawahara T, Morishita T, Tamakawa H, Yamagami K, Inui J, Maekawa M, and Narumiya S. Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertention. Nature 389: 990–994, 1997.
    38. Itoh K, Yoshioka K, Akedo H, Uehata M, Ishizaki T, and Narumiya S. An essential part for Rho-associated kinase in the transcelular invasion of tumor cells. Nat Med 5: 221–225, 1999.
    39. Shimizu Y, Dobashi K, Iizuka K, Horie T, Suzuki K, Tukagoshi H, Nakazawa T, Nakazato Y, and Mori M. Contribution of small GTPase Rho and its target protein ROCK in a murine model of lung fibrosis. Am J Respir Crit Care Med 163: 210–217, 2001.
    40. Makoto Sawafuji,1 Akitoshi Ishizaka,2 Mitsutomo Kohno,1 Hidefumi Koh,2 Sadatomo Tasaka,2 Yoshiki Ishii,3 and Koichi Kobayashi1。Role of Rho-kinase in reexpansion pulmonary edema in rabbits Am J Physiol Lung Cell Mol Physiol 289: L946–L953, 2005.
    41. Adamson, R.H., Curry, F.E., Adamson, G., Liu, B., Jiang, Y., Aktories, K., Barth, H., Daigeler, A., Golenhofen, N., Ness, W., Drenckhahn, D., 2002. Rho and rho kinase modulation of barrier properties: cultured endothelial cells and intact microvessels of rats and mice. J. Physiol. 539, 295– 308.
    42. Adamson, R.H., Zeng, M., Adamson, G.N., Lenz, J.F., Curry, F.E.. PAF- and bradykinin-induced hyperpermeability of rat venules is independent of actin–myosin contraction. Am. J. Physiol.: Heart Circ. Physiol. 285, H406– H417, 2003.
    43. Tokuyama, K., Nishimura, H., Iizuka, K., Kato, M., Arakawa, H., Saga, R., Mochizuki, H., Morikawa, A.. Effects of Y-27632, a Rho/Rho kinase inhibitor, on leukotriene D(4)- and histamine-induced airflow obstruction and airway microvascular leakage in guinea pigs in vivo. Pharmacology. 64, 189– 195, 2002.
    44. Petrache, I., Verin, A.D., Crow, M.T., Birukova, A., Liu, F., Garcia, J.G.. Differential effect of MLC kinase in TNF-alpha-induced endothelial cell apoptosis and barrier dysfunction. Am. J. Physiol.: Lung Cell Mol. Physiol. 280, L1168–L1178, 2001.
    45. Toshimasa Ishizaki, Masayoshi Uehata, Ichiro Tamechika, Jeongsin Keel, Kimiko Nonomura, Midori Maekawa, and Shuh Narumiya. Pharmacological Properties of Y-27632, a Specific Inhibitor of Rho-Associated Kinases. Mol Pharmacol. 57,976-983, 2000.
    46. van Nieuw Amerongen, G.P., van Delft, S., Vermeer, M.A., Collard, J.G. and van Hinsbergh, V.W.. Activation of RhoA by thrombin in endothelial hyperpermeability: role of Rho kinase and protein tyrosine kinases. Circ. Res. 87, pp. 335–340, 2000a.
    47. Wojciak-Stothard, B., Potempa, S., Eichholtz, T. and Ridley, A.J.. Rho and Rac but not Cdc42 regulate endothelial cell permeability. J. Cell. Sci. 114, pp. 1343–1355, 2001.
    48. Totsukawa G, Yamakita Y, Yamashiro S, Hartshorne DJ, Sasaki Y, and Matsumura F. Distinct roles of ROCK (Rhokinase) and MLCK in spatial regulation of MLC phosphorylation for assembly of stress fibers and focal adhesions in 3T3 fibroblasts. J Cell Biol 150: 797–806, 2000.
    1. Aberle, H, Schwartz H, and Kemler R. Cadherin-catenin complex: protein interactions and their implications for cadherin function. J Cell Biochem 61: 514-523, 1996.
    2. Amano, M, Chihara K, Kimura K, Fukata Y, Nakamura N, Matsura Y, and Kaibuchi K. Formation of actin stress fibers and focal adhesions enhanced by Rho kinase. Science 275: 1308-1311, 1997.
    3. ARDS Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342: 1301-1308, 2000.
    4. Arora, PD, Janmey PA, and McCulloch CAG A role for gelsolin in stress fiber dependent cell contraction. Exp Cell Res 250: 155-167, 1999.
    5. Barbee, KA, Mundel T, Lal R, and Davies PF. Subcellular distribution of shear stress at the surface of flow-aligned and nonaligned endothelial monolayers. Am J Physiol Heart Circ Physiol 268: H1765-H1772, 1995 .
    6. Bellanger, JM, Astier C, Sardet C, Ohta Y, Stossel TP, and Debant A. The Rac1- and RhoG-specific GEF domain of Trio targets filamin to remodel cytoskeletal actin. Nat Cell Biol 2: 888-892, 2000 .
    7. Benndorf, R, Hayess K, Ryazantsev S, Wieske M, Behlke J, and Lutsch G. Phosphorylation and supramolecular organization of murine small heat shock protein HSP25 abolish its actin polymerization-inhibiting activity. J Biol Chem 269: 20780-20784, 1994 .
    8. Bernard, GR, Vincent JL, Laterre PF, LaRosa SP, Dhainaut JF, Lopez-Rodriguez A, Steingrub JS, Garber GE, Helterbrand JD, Ely EW, and Fisher CJ. Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med 344: 699-709, 2001.
    9. Bershadsky, A, Chausovsky A, Becker E, Lyubimova A, and Geiger B. Involvement of microtubules in the control of adhesion-dependent signal transduction. Curr Biol 6: 1279-1289, 1996 .
    10. Bhattacharya, S, Fu C, Bhattacharya J, and Greenberg S. Soluble ligands of the v 3 integrin mediate enhanced tyrosine phosphorylation of multiple proteins in adherent bovine pulmonary artery endothelial cells. J Biol Chem 270: 16781-16787, 1995 .
    11. Bhattacharya, S, Ying X, Fu C, Patel R, Kuebler W, Greenberg S, and Bhattacharya J. v 3 Integrin induces tyrosine phosphorylation-dependent Ca2+ influx in pulmonary endothelial cells. Circ Res 86: 456-462, 2000 .
    12. Birukov, KG, Csortos C, Marzilli L, Dudek S, Ma SF, Bresnick AR, Verin AD, Cotter RJ, and Garcia JG. Differential regulation of alternatively spliced endothelial cell myosin light chain kinase isoforms by p60Src. J Biol Chem 276: 8567-8573, 2001 .
    13. Blum, MS, Toninelli E, Anderson JM, Balda MS, Zhou J, O'Donnell L, Pardi R, and Bender JR. Cytoskeletal rearrangement mediates human microvascularendothelial tight junction modulation by cytokines. Am J Physiol Heart Circ Physiol 273: H286-H294, 1997.
    14. Borbiev, T, Verin AD, Shi S, Liu F, and Garcia JG. Regulation of endothelial cell barrier function by calcium/calmodulin-dependent protein kinase II. Am J Physiol Lung Cell Mol Physiol 280: L983-L990, 2001 .
    15. Burns, AR, Bowden RA, MacDonell SD, Walker DC, Odebunmi TO, Donnachie EM, Simon SI, Entman ML, and Smith CW. Analysis of tight junctions during transendothelial migration. J Cell Sci 113: 45-57, 2000 .
    16. Carbajal, JM, Gratrix ML, Yu C, and Schaeffer RC, Jr. ROCK mediates thrombin's endothelial barrier dysfunction. Am J Physiol Cell Physiol 279: C195-C204, 2000 .
    17. Carbajal, JM, and Schaeffer RC, Jr. H2O2 and genistein differentially modulate protein tyrosine phosphorylation, endothelial morphology, and monolayer barrier function. Biochem Biophys Res Commun 249: 461-466, 1998 .
    18. Carbajal, JM, and Schaeffer RC, Jr. RhoA inactivation enhances endothelial barrier function. Am J Physiol Cell Physiol 277: C955-C964, 1999 .
    19. Chang, YS, Munn LL, Hillsley MC, Dull RO, Yuan J, Lakshminarayanan S, Gardner TW, Jain RK, and Tarbell JM. Effect of vascular endothelial growth factor on cultured endothelial cell monolayer transport properties. Microvasc Res 59: 265-277, 2000.
    20. Chen, KD, Li YS, Kim M, Li S, Yuan S, Chien S, and Shyy JYJ Mechanotransduction in response to shear stress. J Biol Chem 274: 18393-18400, 1999 .
    21. Chetham, PM, Babal P, Bridges JP, Moore TM, and Stevens T. Segmental regulation of pulmonary vascular permeability by store-operated Ca2+ entry. Am J Physiol Lung Cell Mol Physiol 276: L41-L50, 1999 .
    22. Chien, S, Li S, and Shyy YJ. Effects of mechanical forces on signal transduction and gene expression in endothelial cells. Hypertension 31: 162-169, 1998 .
    23. Chou, YH, Skalli O, and Goldman RD. Intermediate filaments and cytoplasmicnetworking: new connections and more functions. Curr Opin Cell Biol 9: 49-53, 1997 .
    24. Colucci-Guyton, E, Portier MM, Dunia I, Paulin D, Pournin S, and Babinet C. Mice lacking vimentin develop and reproduce without an obvious phenotype. Cell 79: 679-694, 1994 .
    25. Corada, M, Mariotti M, Thurston G, Smith K, Kunkel R, Brockhaus M, Lampugnani MG, Martin-Padura I, Stoppacciaro A, Ruco L, McDonald DM, Ward PA, and Dejana E. Vascular endothelial-cadherin is an important determinant of microvascular integrity in vivo. Proc Natl Acad Sci USA 96: 9815-9820, 1999 .
    26. Correia, I, Chu D, Chou YH, Goldman RD, and Matsudaira P. Integrating the actin and vimentin cytoskeletons: adhesion-dependent formation of fimbrin-vimentin complexes in macrophages. J Cell Biol 146: 831-842, 1999 .
    27. Couchman, JR, and Woods A. Syndecan-4 and integrin: combinatorial signaling in cell adhesion. J Cell Sci 112: 3415-3420, 1999 .
    28. Danowski, BA. Fibroblast contractility and actin organization are stimulated by microtubule inhibitors. J Cell Sci 93: 255-266, 1989 .
    29. Dejana, E, Bazzoni G, and Lampugnani MG. Vascular endothelial (VE)-cadherin: only an intercellular glue? Exp Cell Res 252: 13-19, 1999 .
    30. Del Maschio, A, Zanetti A, Corada M, Rival Y, Ruco L, Lampugnani MG, and Dejana E. Polymorphonuclear leukocyte adhesion triggers the disorganization of endothelial cell-to-cell adherens junctions. J Cell Biol 135: 497-510, 1996 .
    31. Dimmeler, S, Haendeler J, Rippmann V, Nehls M, and Zeiher AM. Shear stress inhibits apoptosis of human endothelial cells. FEBS Lett 399: 71-74, 1996 .
    32. Dos Santos, CC, and Slutsky AS. Mechanisms of ventilator-induced lung injury: a perspective. J Appl Physiol 89: 1645-1655, 2000 .
    33. Dreyfuss, D, and Saumon G. Ventilator-induced lung injury. Am J Respir Crit Care Med 157: 294-323, 1998.
    34. Duggan, DJ, Bittner M, Chen Y, Meltzer P, and Trent JM. Expression profiling using cDNA microarrays. Nat Genet 21: S10-S14, 1999.
    35. Echtermeyer, F, Baciu PC, Caoncella S, and Goetinck PF. Syndecan-4 core protein is sufficient for the assembly of focal adhesions and actin stress fibers. J CellSci 112: 3433-3441, 1999 .
    36. Edlund, M, Lotano MA, and Otey CA. Dynamics of alpha-actinin in focal adhesions and stress fibers visualized with alpha-actinin-green fluorescent protein. Cell Motil Cytoskeleton 48: 190-200, 2001 .
    37. English, D, Kovala AT, Welch Z, Harvey KA, Siddiqui RA, Brindley DN, and Garcia JGN Induction of endothelial cell chemotaxis by sphingosine 1-phosphate and stabilization of endothelial monolayer barrier function by lysophosphatidic acid, potential mediators of hematopoietic angiogenesis. J Hematother 8: 627-634, 1999 .
    38. Essler, M, Amano M, Kruse H, Kaibuchi K, Weber PC, and Aepfelbacher M. Thrombin inactivates myosin light chain phosphatase via Rho and its target Rho kinase in human endothelial cells. J Biol Chem 273: 21867-21874, 1998 .
    39. Evans, RM. Vimentin: the conundrum of the intermediate filament gene family. Bioessays 20: 79-86, 1998 .
    40. Fanning, AS, Jameson BJ, Jesaitis LA, and Anderson JM. The tight junction protein ZO-1 establishes a link between the transmembrane protein occludin and the actin cytoskeleton. J Biol Chem 273: 29745-29753, 1998 .
    41. Farooki, AZ, Epstein DL, and O'Brien ET. Tyrphostins disrupt stress fibers and cellular attachments in endothelial monolayers. Exp Cell Res 243: 185-198, 1998 .
    42. Felsenfeld, DP, Choquet D, and Sheetz MP. Ligand binding regulates the directed movement of 1 integrins on fibroblasts. Nature 383: 438-440, 1996 .
    43. Fincham, VJ, and Frame MC. The catalytic activity of Src is dispensable for translocation to focal adhesions but controls the turnover of these structures during cell motility. EMBO J 17: 81-92, 1998 .
    44. Fincham, VJ, James M, Frame MC, and Winder SJ. Active ERK/MAP kinase is targeted to newly forming cell-matrix adhesions by integrin engagement and v-Src. EMBO J 19: 2911-2923, 2000 .
    45. Freshney, NW, Rawlinson L, Guesdon F, Jones E, Cowley S, Hsuan J, and Saklatvala J. Interleukin-1 activates a novel protein kinase cascade that results in the phosphorylation of Hsp27. Cell 78: 1039-1049, 1994 .
    46. Fuchs, E, and Cleveland DW. A structural scaffolding of intermediate filamentsin health and disease. Science 279: 514-519, 1998 .
    47. Galbraith, CG, Skalak R, and Chien S. Shear stress induces spatial reorganization of the endothelial cytoskeleton. Cell Motil Cytoskeleton 40: 317-330, 1998 .
    48. Gamble, JR, Drew J, Trezise L, Underwood A, Parsons M, Kasminkas L, Rudge J, Yancopoulos G, and Vadas MA. Angiopoietin-1 is an antipermeability and anti-inflammatory agent in vitro and targets cell junctions. Circ Res 87: 603-607, 2000 .
    49. Garcia, JGN, Birnboim AS, Bizio R, Del Vecchio PJ, Fenton JW, and Malik AB. Thrombin-induced increases in albumin clearance across cultured endothelial monolayers. J Cell Physiol 75: 11-18, 1986.
    50. Garcia, JGN, Davis HW, and Patterson CE. Regulation of endothelial cell gap formation and barrier dysfunction: role of myosin light chain phosphorylation. J Cell Physiol 163: 510-522, 1995.
    51. Garcia, JGN, Lazar V, Gilbert-McClain LI, Gallagher PJ, and Verin AD. Myosin light chain kinase in endothelium: molecular cloning and regulation. Am J Respir Cell Mol Biol 16: 489-494, 1997 .
    53. Garcia, JGN, and Schaphorst KL. Regulation of endothelial cell gap formation and paracellular permeability. J Investig Med 43: 117-126, 1995 .
    54. Garcia, JGN, Schaphorst KL, Verin AD, Vepa S, Patterson CE, and Natarajan V. Diperoxovanadate alters endothelial cell focal contacts and barrier function: role of tyrosine phosphorylation. J Appl Physiol 89: 2333-2343, 2000 .
    55. Garcia, JGN, Verin AD, Herenyiova M, and English D. Adherent neutrophils activate endothelial myosin light chain kinase: role in transendothelial migration. J Appl Physiol 84: 1817-1821, 1998 .
    56. Garcia, JGN, Verin AD, Schaphorst KL, Siddiqui R, Patterson CE, Csortos C, and Natarajan V. Regulation of endothelial cell myosin light chain kinase by Rho, cortactin, and p60src. Am J Physiol Lung Cell Mol Physiol 276: L989-L998, 1999.
    57. Gibbs, LS, Lai L, and Malik AB. Tumor necrosis factor enhances the neutrophil dependent increase in endothelial permeability. J Cell Physiol 145: 496-500, 1990 .in health and disease. Science 279: 514-519, 1998 .
    47. Galbraith, CG, Skalak R, and Chien S. Shear stress induces spatial reorganization of the endothelial cytoskeleton. Cell Motil Cytoskeleton 40: 317-330, 1998 .
    48. Gamble, JR, Drew J, Trezise L, Underwood A, Parsons M, Kasminkas L, Rudge J, Yancopoulos G, and Vadas MA. Angiopoietin-1 is an antipermeability and anti-inflammatory agent in vitro and targets cell junctions. Circ Res 87: 603-607, 2000 .
    49. Garcia, JGN, Birnboim AS, Bizio R, Del Vecchio PJ, Fenton JW, and Malik AB. Thrombin-induced increases in albumin clearance across cultured endothelial monolayers. J Cell Physiol 75: 11-18, 1986.
    50. Garcia, JGN, Davis HW, and Patterson CE. Regulation of endothelial cell gap formation and barrier dysfunction: role of myosin light chain phosphorylation. J Cell Physiol 163: 510-522, 1995.
    51. Garcia, JGN, Lazar V, Gilbert-McClain LI, Gallagher PJ, and Verin AD. Myosin light chain kinase in endothelium: molecular cloning and regulation. Am J Respir Cell Mol Biol 16: 489-494, 1997 .
    53. Garcia, JGN, and Schaphorst KL. Regulation of endothelial cell gap formation and paracellular permeability. J Investig Med 43: 117-126, 1995 .
    54. Garcia, JGN, Schaphorst KL, Verin AD, Vepa S, Patterson CE, and Natarajan V. Diperoxovanadate alters endothelial cell focal contacts and barrier function: role of tyrosine phosphorylation. J Appl Physiol 89: 2333-2343, 2000 .
    55. Garcia, JGN, Verin AD, Herenyiova M, and English D. Adherent neutrophils activate endothelial myosin light chain kinase: role in transendothelial migration. J Appl Physiol 84: 1817-1821, 1998 .
    56. Garcia, JGN, Verin AD, Schaphorst KL, Siddiqui R, Patterson CE, Csortos C, and Natarajan V. Regulation of endothelial cell myosin light chain kinase by Rho, cortactin, and p60src. Am J Physiol Lung Cell Mol Physiol 276: L989-L998, 1999.
    57. Gibbs, LS, Lai L, and Malik AB. Tumor necrosis factor enhances the neutrophil dependent increase in endothelial permeability. J Cell Physiol 145: 496-500, 1990 .
    69. Hirata, A, Baluk P, Fujiwara T, and McDonald DM. Location of focal silver staining at endothelial gaps in inflamed venules examined by scanning electron microscopy. Am J Physiol Lung Cell Mol Physiol 269: L403-L418, 1995 .
    70. Hixenbaugh, EA, Goeckeler ZM, Papaiya NN, Wysolmerski RB, Silverstein SC, and Huang AJ. Stimulated neutrophils induce myosin light chain phosphorylation and isometric tension in endothelial cells. Am J Physiol Heart Circ Physiol 273: H981-H988, 1997 .
    71. Horgan, MJ, Fenton JW, and Malik AB. -Thrombin-induced pulmonary vasoconstriction. J Appl Physiol 63: 1993-2000, 1987 .
    72. Horkijk, PL, Anthony E, Mul FPJ, Rientsma R, Oomen LCJM, and Roos D. Vascular-endothelial-cadherin modulates endothelial monolayer permeability. J Cell Sci 112: 1915-1923, 1999 .
    73. Huang, AJ, Manning JE, Bandak TM, Ratau MC, Hanser KR, and Silverstein SC. Endothelial cell cytosolic free calcium regulates neutrophil migration across monolayers of endothelial cells. J Cell Biol 120: 1371-1380, 1993 .
    74. Huang, C, Ni Y, Wang T, Gao Y, Haudenschild C, and Zhan X. Down-regulation of the filamentous actin cross-linking activity of cortactin by src-mediated tyrosine phosphorylation. J Biol Chem 272: 13911-13915, 1997 .
    75. Hurst, V, Goldberg PL, Minnear FL, Heimark RL, and Vincent PA. Rearrangement of adherens junctions by transforming growth factor- 1: role of contraction. Am J Physiol Lung Cell Mol Physiol 276: L582-L595, 1999 .
    76. Huttelmaier, S, Harbeck B, Steffens O, Messerschmiodt T, Illenberger S, and Jockusch BM. Characterization of the actin binding properties of the vasodilator-stimulated phosphoprotein VASP. FEBS Lett 541: 68-74, 1999.
    77. Ishida, M, Peterson TE, Kovach NL, and Berk BC. MAP kinase activation by flow in endothelial cells: role of integrins and tyrosine kinases. Circ Res 79: 310-316, 1996 .
    78. Jockusch, BM, Bubeck P, Giehl K, Kroemker M, Moschner J, Rothkegel M, Rudiger M, Schluter K, Stanke G, and Winkler J. The molecular architecture of focal adhesions. Annu Rev Cell Dev Biol 11: 379-416, 1995 .
    79. Kano, Y, Katoh K, and Fujiwara K. Lateral zone of cell-cell adhesion as the major fluid shear stress-related signal transduction site. Circ Res 86: 425-433, 2000 .
    80. Kelly, JJ, Moore TM, Babal P, Diwan AH, Stevens T, and Thompson WJ. Pulmonary microvascular and macrovascular endothelial cells: differential regulation of Ca2+ and permeability. Am J Physiol Lung Cell Mol Physiol 274: L810-L819, 1998 .
    81. Kemler, R. Classical cadherins. Semin Cell Biol 3: 149-155, 1992 .
    82. Kevil, CG, Oshima T, Alexander B, Coe LL, and Alexander JS. H2O2-mediated permeability: role of MAPK and occludin. Am J Physiol Cell Physiol 279: C21-C30, 2000 .
    83. Kevil, CG, Payne DK, Mire E, and Alexander JS. Vascular permeability factor/vascular endothelial cell growth factor-mediated permeability occurs through disorganization of endothelial junctional proteins. J Biol Chem 273: 15099-15103, 1998 .
    84. Khimenko, PL, Moore TM, Wilson PS, and Taylor AE. Role of calmodulin and myosin light chain kinase in lung ischemia-reperfusion injury. Am J Physiol Lung Cell Mol Physiol 271: L121-L125, 1996 .
    85. Kielbassa, K, Schmitz C, and Gerke V. Disruption of endothelial microfilaments selectively reduces the transendothelial migration of monocytes. Exp Cell Res 243: 129-141, 1998 .
    86. Kimura, K, Ito M, Amano M, Chihara K, Fukata Y, Nakafuku M, Yamamori B, Feng J, Nakano T, Okawa K, Iwamatsu A, and Kaibuchi K. Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science 273: 245-248, 1996 .
    87. Klymkowsky, MW. Weaving a tangled web: the interconnected cytoskeleton. Nat Cell Biol 1: E121-E123, 1999 .
    88. Kolodney, MS, and Elson EL. Contraction due to microtubule disruption is associated with increased phosphorylation of myosin regulatory light chain. Proc Natl Acad Sci USA 92: 10252-10256, 1995 .
    89. Kolodney, M, and Wysolmerski R. Isometric contraction by fibroblasts andendothelial cells in tissue culture: a quantitative study. J Cell Biol 117: 73-82, 1992 .
    90. Komalavilas, P, Shah PK, Jo H, and Lincoln TM. Activation of mitogen-activated protein kinase pathways by cyclic GMP and cyclic GMP-dependent protein kinase in contractile vascular smooth muscle cells. J Biol Chem 274: 34301-34309, 1999 .
    91. Lamm, WJ, Luchtel D, and Albert RK. Sites of leakage in three models of acute lung injury. J Appl Physiol 64: 1079-1083, 1988 .
    92. Lampugnani, MG, Resnati M, Dejana E, and Marchisio PC. The role of integrins in the maintenance of endothelial monolayer integrity. J Cell Biol 112: 479-490, 1991 .
    93. Lash, JA, Sellers JR, and Hathaway DR. The effects of caldesmon on smooth muscle heavy actomeromyosin ATPase activity and binding of heavy meromyosin to actin. J Biol Chem 261: 16155-16160, 1986 .
    94. Lazar, V, and Garcia JGN A single human myosin light chain kinase gene (MLCK; MYLK) transcribes multiple nonmuscle isoforms. Genomics 57: 256-267, 1999 .
    95. Li, S, Chen BPC, Azuma N, Hu YL, Wu SZ, Sumpio BE, Shyy JYJ, and Chien S. Distinct roles for the small GTPases Cdc42 and Rho in endothelial responses to shear stress. J Clin Invest 103: 1141-1150, 1999 .
    96. Lin, W, Jacobs E, Schapira RM, Presberg K, and Effros RM. Stop-flow studies of the distribution of filtration in rat lungs. J Appl Physiol 84: 47-52, 1998 .
    97. Liu, F, Verin AD, Wang P, Day R, Wersto RP, Chrest FJ, English DK, and Garcia JGN Differential regulation of sphingosine-1-phosphate- and VEGF-induced endothelial cell chemotaxis: involvement of Gi 2-linked Rho kinase activity. Am J Respir Cell Mol Biol 24: 711-719, 2001 .
    98. Lo, SK, Garcia-Szabo RR, and Malik AB. Leukocyte repletion reverses protective effect of neutropenia in thrombin-induced increase in lung vascular permeability. Am J Physiol Heart Circ Physiol 259: H149-H155, 1990 .
    99. Lo, SK, Perlman MB, Niehaus GD, and Malik AB. Thrombin-induced alterations in lung fluid balance in awake sheep. J Appl Physiol 58: 1421-1427, 1985 .
    100. Machesky, LM, and Gould KL. The Arp2/3 complex: a multifunctional actin organizer. Curr Opin Cell Biol 11: 117-121, 1999 .
    101. Maekawa, M, Ishizaki T, Boku S, Watanabe N, Fujita A, Iwamatsu A, Obinata T, Ohashi K, Mizuno K, and Narumiya S. Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science 285: 895-898, 1999 .
    102. Majno, G, and Palade G. Studies on inflammation. 1. Effect of histamine and serotonin on vascular permeability: an electron microscopic study. J Biophys Biochem Cytol 11: 571-605, 1961 .
    103. Minshall, RD, Tiruppathi C, Vogel SM, Niles WD, Gilchrist A, Hamm HE, and Malik AB. Endothelial cell-surface gp60 activates vesicle formation and trafficking via Gi-coupled Src kinase signaling pathway. J Cell Biol 150: 1057-1069, 2000 .
    104. Mitic, LL, and Anderson JM. Molecular architecture of tight junctions. Annu Rev Physiol 60: 121-142, 1998 .
    105. Moldovan, NI, Milliken EE, Irani K, Chen J, Sohn RH, Finkel T, and Goldschmidt-Clermont PJ. Regulation of endothelial cell adhesion by profilin. Curr Biol 7: 24-30, 1997 .
    106. Ohta, Y, Suzuki N, Nakamura S, Hartwig JH, and Stossel TP. The small GTPase RalA targets filamin to induce filopodia. Proc Natl Acad Sci USA 96: 2122-2128, 1999 .
    107. Ozawa, M, and Kemler R. Altered cell adhesion activity by pervanadate due to the dissociation of -catenin from the E-cadherin-catenin complex. J Biol Chem 273: 6166-6170, 1998 .
    108. Parker, JC. Inhibitors of myosin light chain kinase and phosphodiesterase reduce ventilator-induced lung injury. J Appl Physiol 89: 2241-2248, 2000 .
    109. Parker, JC, Hernandez LA, and Peevy KJ. Mechanisms of ventilator-induced lung injury. Crit Care Med 21: 131-143, 1993.
    110. Parker, JC, and Ivey CL. Isoproterenol attenuates high vascular pressure-induced permeability increases in isolated rat lungs. J Appl Physiol 83:1962-1967, 1997.
    111. Parker, JC, Ivey CL, and Tucker JA. Gadolinium prevents high airway pressure-induced permeability increases in isolated rat lung. J Appl Physiol 84: 1113-1118, 1998.
    112. Parker, JC, Ivey CL, and Tucker JA. Phosphotyrosine phosphatase and tyrosine kinase inhibition modulate airway pressure-induced lung injury. J Appl Physiol 85: 1753-1761, 1998 .
    113. Partridge, CA, Horvath CJ, Del Vecchio PJ, Phillips PG, and Malik AB. Influence of extracellular matrix in tumor necrosis factor-induced increase in endothelial permeability. Am J Physiol Lung Cell Mol Physiol 263: L627-L633, 1992 .
    114. Pavalko, FM, and Burridge K. Disruption of the actin cytoskeleton after microinjection of proteolytic fragments of -actinin. J Cell Biol 114: 481-491, 1991 .
    115. Petrache, I, Verin AD, Crow MT, Birukova A, Liu F, and Garcia JGN Differential effect of MLC kinase in TNF- -induced endothelial cell apoptosis and barrier dysfunction. Am J Physiol Lung Cell Mol Physiol 280: L1168-L1178, 2001 .
    116. Phelps, JE, and DePaola N. Spatial variations in endothelial barrier function in disturbed flows in vitro. Am J Physiol Heart Circ Physiol 278: H469-H476, 2000 .
    117. Phillips, PG, Lum H, Malik AB, and Tsan M. Phallacidin prevents thrombin-induced increases in endothelial permeability to albumin. Am J Physiol Cell Physiol 257: C562-C567, 1989 .
    118. Qiao, RL, and Bhattacharya J. Segmental barrier properties of the pulmonary microvascular bed. J Appl Physiol 71: 2152-2159, 1991 .
    119. Ridley, AJ, and Hall A. The small GTP-binding protein rho regulates assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70: 389-399, 1992 .
    120. Rosengren, S, Olofsson AM, von Andrian UH, Lundgren-Akerlund E, and Arfors KE. Leukotriene B4-induced neutrophil-mediated endothelial leakage in vitro and in vivo. J Appl Physiol 71: 1322-1330, 1991 .
    121. Rousseau, S, Houle F, Landry J, and Huot J. p38 MAP kinase activation by vascular endothelial growth factor mediates actin reorganization and cell migration inhuman endothelial cells. Oncogene 15: 2169-2177, 1997 .
    122. Saito, H, Minamiya Y, Kitamura M, Saito S, Enomoto K, Terada K, and Ogawa J. Endothelial myosin light chain kinase regulates neutrophil migration across human umbilical vein endothelial cell monolayer. J Immunol 161: 1533-1540, 1998 .
    123. Sanders, LC, Matsumura F, Bokock GM, and de Lanerolle P. Inhibition of myosin light chain kinase by p21-activated kinase. Science 283: 2083-2085, 1999.
    124. Schaphorst KL, Patterson CE, and Garcia JGN. Agonist-mediated disassembly of cytoskeletal-adherens junction linkages: role in endothelial cell barrier regulation. J Cell Biochem In press.
    125. Schaphorst, KL, Pavalko FM, Patterson CE, and Garcia JGN Thrombin-induced focal adhesion plaque reorganization in endothelium: role of protein phosphorylation. Am J Respir Cell Mol Biol 17: 443-455, 1997 .
    126. Schneider, GB, Hamano H, and Cooper LF. In vivo evaluation of hsp27 as an inhibitor of actin polymerization: hsp27 limits actin stress fiber and focal adhesion formation after heat shock. J Cell Physiol 177: 575-584, 1998 .
    127. Schnitzer, JE. gp60 Is an albumin-binding glycoprotein expressed by continuous endothelium involved in albumin transcytosis. Am J Physiol Heart Circ Physiol 262: H246-H254, 1992 .
    128. Schoenwaelder, SM, and Burridge K. Bidirectional signaling between the cytoskeleton and integrins. Curr Opin Cell Biol 11: 274-286, 1999 .
    129. Shasby, DM, Shasby SS, Sullivan JM, and Peach MJ. Role of endothelial cell cytoskeleton in control of endothelial permeability. Circ Res 51: 657-661, 1982 .
    130. Shen, J, Luscinskas FW, Connolly A, Dewey CFJ, and Gimbrone MAJ Fluid shear stress modulates cytosolic free calcium in vascular endothelial cells. Am J Physiol Cell Physiol 262: C384-C390, 1992 .
    131. Shi, S, Garcia JGN, Roy S, Parinandi NL, and Natarajan V. Involvement of c-Src in diperoxovanadate-induced endothelial cell barrier dysfunction. Am J Physiol Lung Cell Mol Physiol 279: L441-L451, 2000 .
    132. Siegel, G, Malmsten M, Klussendorf D, Walter A, Schnalke F, and Kauschmann A. Blood-flow sensing by anionic biopolymers. J Auton Nerv Syst 57:207-213, 1996 .
    133. Siegel, G, Walter A, Kauschmann A, Malmsten M, and Buddecke E. Anionic biopolymers as blood flow sensors. Biosens Bioelectron 11: 281-294, 1996 .
    134. Stasek, JE, Jr, Patterson CE, and Garcia JG. Protein kinase C phosphorylates caldesmon77 and vimentin and enhances albumin permeability across cultured bovine pulmonary artery endothelial cell monolayers. J Cell Physiol 153: 62-75, 1992 .
    135. Stevens, T, Creighton J, and Thompson WJ. Control of cAMP in lung endothelial cell phenotypes. Implications for control of barrier function. Am J Physiol Lung Cell Mol Physiol 277: L119-L126, 1999 .
    136. Takeda, T, Go WY, Orlando RA, and Farquhar MG. Expression of podocalyxin inhibits cell-cell adhesion and modifies junctional properties in Madin-Darby canine kidney cells. Mol Biol Cell 11: 3219-3232, 2000 .
    137. Tapon, N, and Hall A. Rho, Rac, and Cdc42 GTPases regulate the organization of the actin cytoskeleton. Curr Opin Cell Biol 9: 86-92, 1997 .
    138. Thomas, GH. Spectrin: the ghost in the machine. Bioessays 23: 152-160, 2001 .
    139. Thurston, G, Rudge JS, Ioffe E, Zhou H, Ross L, Croll SD, Glazer N, Holash J, McDonald DM, and Yancopoulos GD. Angiopoietin-1 protects the adult vasculature against plasma leakage. Nat Med 6: 460-463, 2000 .
    140. Thurston, G, Sur C, Smith K, McClain J, Sato N, Yancopoulos GD, and McDonald DM. Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1. Science 286: 2511-2514, 1999 .
    141. Tinsley, JH, de Lanerolle P, Wilson E, Ma W, and Yuan SY. Myosin light chain kinase transference induces myosin light chain activation and endothelial hyperpermeability. Am J Physiol Cell Physiol 279: C1285-C1289, 2000 .
    142. Tinsley, JH, Wu MH, Ma W, Taulman AC, and Yuan SY. Activated neutrophils induce hyperpermeability and phosphorylation of adherens junction proteins in coronary venular endothelial cells. J Biol Chem 274: 24930-24934, 1999.
    143. Tiruppathi, C, Song W, Bergenfeldt M, Sass P, and Malik AB. Gp60 activation mediates albumin transcytosis in endothelial cells by tyrosine kinase-dependentpathway. J Biol Chem 272: 25968-25975, 1997 .
    144. Totsukawa, G, Yamakita Y, Yamashiro S, Hartshorne DJ, Sasaki Y, and Matsumura F. Distinct roles of ROCK (Rho-kinase) and MLCK in spatial regulation of MLC phosphorylation for assembly of stress fibers and focal adhesions in 3T3 fibroblasts. J Cell Biol 150: 797-806, 2000 .
    145. Ukropec, JA, Hollinger MK, Salva SM, and Woolkalis MJ. SHP2 association with VE-cadherin complexes in human endothelial cells is regulated by thrombin. J Biol Chem 275: 5983-5986, 2000 .
    146. Urbich, C, Walter DH, Zeiher AM, and Dimmeler S. Laminar shear stress upregulates integrin expression. Role in endothelial cell adhesion and apoptosis. Circ Res 87: 683-689, 2000 .
    147. Uruno, T, Liu J, Zhang P, Fan Y, Egile C, Li R, Mueller SC, and Zhan X. Activation of Arp2/3 complex-mediated actin polymerization by cortactin. Nat Cell Biol 3: 259-266, 2001 .
    148. Van Nieuw Amerongen, GP, Draijer R, Vermeer MA, and van Hinsbergh VWM Transient and prolonged increase in endothelial permeability induced by histamine and thrombin. Circ Res 83: 1115-1123, 1998 .
    149. Verin, AD, Birukova A, Wang P, Birukov K, and Garcia JGN Microtubule disassembly increases endothelial cell barrier dysfunction: role of microfilament crosstalk and myosin light chain phosphorylation. Am J Physiol Lung Cell Mol Physiol 281: L565-L574, 2001.
    150. Verin, AD, Gilbert-McClain LI, Patterson CE, and Garcia JGN Biochemical regulation of the nonmuscle myosin light chain kinase isoform in bovine endothelium. Am J Respir Cell Mol Biol 19: 767-776, 1998 .
    151. Verin, AD, Lazar V, Torry RJ, Labarrere CA, Patterson CE, and Garcia JGN Expression of a novel high molecular-weight myosin light chain kinase in endothelium. Am J Respir Cell Mol Biol 19: 758-766, 1998 .
    152. Vestweber, D. Molecular mechanisms that control endothelial cell contacts. J Pathol 190: 281-91, 2000 .
    153. Wade, RH, and Hyman AA. Microtubule structure and dynamics. Curr OpinCell Biol 9: 12-17, 1997 .
    154. Wagner, JG, and Roth RA. Neutrophil migration mechanisms, with an emphasis on the pulmonary vasculature. Pharmacol Rev 52: 349-374, 2000 .
    155. Watts, ME, Woodcock M, Arnold S, and Chaplin DJ. Effects of novel and conventional anti-cancer agents on human endothelial permeability: influence of tumour secreted factors. Anticancer Res 17: 71-75, 1997 .
    156. Weiss, EE, Kroemker M, Rudiger AH, Jockusch BM, and Rudiger M. Vinculin is part of the cadherin-catenin junctional complex: complex formation between -catenin and vinculin. J Cell Biol 141: 755-764, 1998 .
    157. West, JB. Pulmonary capillary stress failure. J Appl Physiol 89: 2483-2489, 2000 .
    158. Wheatley, EM, Vincent PA, McKeown-Longo PJ, and Saba TM. Effect of fibronectin on permeability of normal and TNF-treated lung endothelial cell monolayers. Am J Physiol Regulatory Integrative Comp Physiol 264: R60-R66, 1993.
    159. Wong, MK, and Gottlieb AI. Endothelial monolayer integrity. Perturbation of F actin filaments and the dense peripheral band-vinculin network. Arteriosclerosis 10: 76-84, 1990 .
    160. Wysolmerski, R, and Lagunoff D. The effect of ethchlorvynol on cultured endothelial cells. A model for the study of the mechanism of increased vascular permeability. Am J Pathol 119: 505-512, 1985 .
    161. Wysolmerski, RB, and Lagunoff D. Regulation of permeabilized endothelial cell retraction by myosin phosphorylation. Am J Physiol Cell Physiol 261: C32-C40, 1991 .
    162. Yamboliev, IA, Hedges JC, Mutnick JL, Adam LP, and Gerthoffer WT. Evidence for modulation of smooth muscle force by the p38 MAP kinase/HSP27 pathway. Am J Physiol Heart Circ Physiol 278: H1899-H1907, 2000 .
    163. Zeng, Q, Lagunoff D, Masaracchia R, Goeckeler Z, Cote G, and Wysolmerski R. Endothelial cell retraction is induced by PAK2 monophosphorylation of myosin II. J Cell Sci 113: 471-482, 2000 .
    164. Zhao, Y, and Davis HW. Endotoxin causes phosphorylation of MARCKS inpulmonary vascular endothelial cells. J Cell Biochem 79: 496-505, 2000 .

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700