用户名: 密码: 验证码:
VEGF、COX-2在HBV感染型和非HBV感染型肝细胞癌中的表达差异及意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
【目的】
     肝细胞肝癌(hepatocellular carcinoma,HCC)是世界范围内最常见的恶性肿瘤之一,居我国癌症死亡的第三位。大约80%的肝癌的发生与乙肝病毒HBV相关,流行病学研究表明HBsAg阳性患者肝癌的发生率比HBsAg阴性患者高100倍。肝细胞癌是一多血管肿瘤,新生血管在肝细胞肝癌的发生和侵袭中起关键的作用,有利于肝癌转移和复发。目前研究表明VEGF(vascular endothelial growth factor),COX-2(cyclooxygenase-2),在肝细胞癌中扮演关键角色,VEGF、COX-2的高表达与肝细胞癌的侵袭、预后相关,但VEGF、COX-2在HBV感染型肝癌和非HBV感染型肝癌中的表达是否存在差异尚不清楚。因此研究乙肝病毒HBV(hepatitis B virus)感染与肝癌组织中VEGF,COX-2的关系有助于我们进一步了解不同病因HCC的发生发展机制,为临床对HCC的早期诊断和防治提供实验依据。
     【方法】
     1.标本取自本院1996—2002年经手术切除并经病理学证实的石蜡包埋的原发性肝癌病理标本56例。根据血清学及免疫组化法HBsAg检查结果将其分为HBV感染组和非HBV感染组。
     2.将病理切片应用采用快速免疫组化MaxVisionTM法检测标本中VEGF、COX-2的蛋白表达,采用χ2检验及spearman秩相关进行统计学分析,探讨VEGF、COX-2在HCC中的表达及其与HBV感染的关系。
     3 .对HBV表达阴性的细胞株HepG2和稳定转染HBV基因并持续表达HBV的细胞株HepG2.215进行培养,用RT-PCR法检测VEGF、COX-2在各细胞株中的表达,进行比较。
     【结果】
     1、快速免疫组化法结果显示:(1) HBV感染组中VEGF、COX-2的阳性率分别为(78.9%)、(76.3%)高于非HBV感染组中的(50.0%)、(44.4%),差异有统计学意义(P < 0. 05)。(2)VEGF阳性的肿瘤组织COX-2也趋于阳性,相关性分析显示COX-2与VEGF的表达呈正相关(r=0.429,P<0.05)。
     2. RT—PCR产物电泳结果显示,HepG2.215细胞中VEGF、COX-2 mRNA的表达显著高于HepG2细胞(P<0.05)。
     【结论】
     1、本研究中HBV感染型肝癌VEGF、COX-2的表达较非感染型肝癌组织明显增高,这表明HBV感染可能上调VEGF、COX-2在肝癌组织中的表达,促进肿瘤组织中的血管形成,有利于肿瘤组织的增殖和生长,促使肿瘤细胞的侵袭和转移
     2、通过肝癌细胞株VEGF、COX-2表达的检测结果显示,在HepG2.215细胞中的mRNA表达明显高于HepG2细胞。这个结果与组织学研究的结果相一致,进一步证实了HBV感染与VEGF、COX-2表达存在相关性。有助于揭示HBV感染致HCC发生与发展的机制。
     3、VEGF、COX-2在HBV感染型和非HBV感染型肝细胞癌组织和肝癌细胞株中的表达差异,对探讨HBV感染型与非HBV感染型肝细胞癌的临床表现和转归及探索针对不同病因肝癌的防治策略和方法提供了启示和方向。
【objective】
     Hepatocellular carcinoma is one of the most common malignancies worldwide and the third leading cause of death in China. About 80% of the HCC is associated with HBV infection, and it has been shown that incidence of HCC in patients with HBsAg positive is 100 times higher than in those with HBsAg negative. HCC is a highly vascularized tumor and angiogenesis plays a critical role in the development and invasion, which is important for HCC metastasis and reoccurrence. VEGF (vascular endothelial growth factor) and COX-2 (cyclooxygenase-2) play critical role in the development and progression of HCC. It has been shown that overexpression of VEGF and COX-2 is correlated with HCC invasion and prognosis, but it’s not clear whether the expression of VEGF and COX-2 in HCC with HBV infection is different from those without HBV infection. Therefore, understanding the relationship between HBV infection and the expression level of VEGF and COX2 in HCC can further our understanding of the molecular mechanisms for HCC arising from different etiology and provide experimental evidences for the early diagnosis and treatment of HCC.
     【Methods】
     1. HCC tissue samples were obtained from the 56 surgical resected HCC confirmed by pathology in our hospital from year 1996-2002. The tissues samples were separated into two groups, with HBV infection or without HBV infection which was determine by the serology and immunohistochemistry analysis of HBsAg.
     2. VEGF and COX-2 expression was determined by immunohistological staining on the sections from the HCC tissue samples using the quick MaxVisionTM immunohistochemical method. The statistical analysis with theχ~2 test and Spearman Rank Order Correlation was used to determine the relationship of between VEGF and COX-2 overexpression and HBV infection.
     3. Two cell lines, HeG2 and HeG2.215 with stable HBV expression were cultured and total RNA was isolated from these cells. The expression of VEGF and COX-2 in these two cell lines was determined by RT-PCR.
     【Results】
     1. Rapid Immunohistochemical staining shows that (1) the positive rates in VEGF and COX-2 in the HBV infected group were 78.9% and 76.3% respectively, which were higher than the group without HBV infection (50.0% and 44.4% respectively). The difference between the two groups is statistically significant (P < 0. 05). (2)VEGF positive tumors were also positive with COX-2 and the correlation analysis shows that the expression of COX-2 and VEGF is positively correlated (r=0.429,P<0.05)
     2. Eletrophoresis of the RT-PCR products showed that VEGF and COX-2 expression in HepG2.215 cells was significantly higher than the HepG2 cells (P<0.05)
     【Conclusion】
     1. This study showed that the expression of VEGF and COX-2 in the HCC with HBV infection was significantly higher than those without HBV infection, suggesting that HBV infection upregulates the expression of VEGF and COX-2 in HCC. The overexpression of VEGF and COX-2 will promote angiogenesis in the tumors, thus enhance the proliferation and growth of the tumors, which will lead to tumor invasion and metastasis.
     2. The expression of VEGF and COX-2 in HepG2.215 cells is significantly higher than the HepG2 cell, which is consistent with the immunohistochemical analysis and highly suggests that HBV infection correlates with VEGF and COX-2 overexpression. This is important for understanding the mechanisms for the HCC development and progression after HBV infection.
     3. The differential expression of VEGF and COX-2 in HCC with or without HBV infection suggests a significant difference in clinical manifestation and outcome between the HCC with HBV infection and that without HBV infection and provides directions for the prevention and treatment of HCC of different etiology.
引文
1. Tung-Ping Poon R, Fan ST, Wong J. Risk factors, prevention, and management of post operative recurrence after resection of hepatocellular carcinoma. Ann Surg, 2000. 232: 10-24.
    2.冯英明,宋扬,张贺龙,姬统理,张惠中,闵婕,张伟. HBV阳性与HBV阴性的肝癌细胞株雌激素受体a与β的表达.现代肿瘤医学,2006. 174- 175.
    3. Shouval D, Tur-Kaspa ,Manny N et al. A study of HBsAg carriers in Israel. Israel J Med Sci, 1981, 17:407-412.
    4.杜静HBx与肝细胞肝癌的发病机制中国肿瘤临床2005年第32卷第1期:1000—8179(2005)01—0056—0.
    5. Ahn JY,Chung EY,Kwun nJ,et a1.Transcriptional repression of p21(wan)promoter by hepatitis B Virus X protein via a p53 indep endent pathway[J].Gene,2001,275(1):163~168.
    6. Lee SG,Rho HM .Tran scriptional repression of the human p53 gene by hepadds B viral x protein[]].Oncogene,2000,19(3):468~471.
    7. Ahn JY,JuIlg EY,Kwun HJ,et a1.Dual effects of hepatitis B virusX protein on the regu lation of cellyde control depending on the status of cellular p53[J].J Gen Virol,2002,83(Pt 11):2765—2772.
    8. Kim YC,Song KS,Yoon G,et a1 Activatedias oncogenecollab—orates with HBx gene of hepatitis B Virus to transform cells by suppressing HBx-mediated apoptosis[J].Oncogene,2001,2O(1):16~23.
    9. Kim KH.Seong BL.Pro-apoptofic funcdon of HBV X protein is mediated by interaction with c-FLIP and enhancement of death inducing signal[J]. EMBOJ,2003,22(9):2104~2116.
    10.李东华陈孝平张万广裘法祖.乙型肝炎病毒X蛋白促进裸鼠人肝癌模型的VEGF表达.中华普通外科杂志, 2006年2月,第21卷:142- 144.
    11. Alfred S-L Cheng, Henry L-Y Chan. Expression of HBx and COX-2 in chronic hepatitis B, cirrhosis and hepatocellular carcinoma: implication of HBx in up regulation of COX-2. Modern Pathology, (2004),17:1169–1179.
    12. Nouso K Urabe Y,Higashi et a1.Telomerase as a tool for the differential diagnosis of human hepatocellular carcinoma [J].Cancer,1996,78(2):233~236.
    13. Wick M ,Zubor D,Hagen G.Genomic organization and promoter characterization of the gene encoding the human telomerase re—verse transcriptase(TERT)[]].Gene,1999,232(1):97~106.
    14. Lee YI,Lee S,Lee Y,et a1.The human hepatitis B virus tran -sactivator X gene product regulates SP1 mediated transcnpdon of all insulin-like growth factorⅡpromoter 4[J].Oncogene,1998,16(18):2367—2380.
    15.王红阳,肝细胞性肝癌分子机制研究的几个热点问题。第二军医大学学报2002.Jan;23(1)
    16. Tabo r E. Hepatocellular carcinoma: global epidemiology.DigLiver Dis, 2001, 33 (2) : 1152117.
    17.汤钊猷.临床肝癌学.上海:上海科技教育出版社.2001,78-84.
    18.汤钊猷.现代肿瘤学第二版,2000. 94- 95.
    19. Domenico Ribatti. Angiogenesis and anti-angiogenesis in hepatocellular carcinoma. Cancer Treatment.2006.06.002.
    20. Suzuki H,Seto K. Paracrine upregulation of VEGF receptor mRNA in endothelial cells by hypoxia-exposed Hep G2 cell. Am JPhusiol, 1999,276:92-97.
    21. Mise M, Arii S, Higashituji H, et al. Clinical significance of vascular endothelial growth factor in normal liver and hepatocellular carcinoma: an immunohistochemical study. Hepatology 1996;23: 455–64.
    22. Guo RP, Zhong C, Shi M, et al. [Expression and clinical impact of vascularendothelial growth factor and matrix metalloproteinase-2 in hepatocellular carcinoma]. Zhonghua Zhong Liu Za Zhi, 2006,28: 285-8.
    23. Park YN ,kin YB. Increased expression of vascular endothelial growth factor and angiogenesis in the early stage of multistep hepatocarcinogenesis. Arch Pattol Lab Med,2000,124(7):1061-1065.
    24. Poon RT, Lau CP, Cheung ST, Yu WC, Fan ST. Quantitative correlation of serum levels and tumor expression of vascular endothelial growth factor in patients with hepatocellular carcinoma. Cancer Res 2003;63:3121–6.
    25. K. Suzuki, N. Hayashi, Y. Miyamoto, M. Yamamoto, K. Ohkawa, Y. Ito, et al, Expression of vascular permeability factor/vascular endothelial growth factor in human hepatocellular carcinoma, Cancer Res. 56 (1996) 3004–3009.
    26. S. Yasuda, S. Arii, A. Mori, N. Isobe, W. Yang, H. Oe, et al, Hexokinase II and VEGF expression in liver tumors: correlation with hypoxia-inducible factor 1 alpha and its significance, J. Hepatol. 40 (2004) 117–123.
    27. S.W. Lee, Y.M. Lee, S.K. Bae, S. Murakami, Y. Yun, K.W. Kim, et al., Human hepatitis B virus X protein is a possible mediator of hypoxia-induced angiogenesis in hepatocarcinogenesis, Biochem. Biophys. Res. Commun. 286 (2000)456–461.
    28. Y.G. Yoo, S.H. Oh, E.S. Park, H. Cho, N. Lee, H. Park, et al., Hepatitis B virus X protein enhances transcriptional activity of hypoxia-inducible factor-1alpha through activation of mitogen-activated protein kinase pathway, J. Biol. Chem. 278(2003) 39076–39084.
    29. T. Torimura, M. Sata, T. Ueno, M. Kin, R. Tsuji, K. Suzaku,et al., Increased expression of vascular endothelial growthfactor is associated with tumor progression in hepatocellular carcinoma, Hum. Pathol. 29 (1998) 986–991.
    30. N.H. Chow, P.I. Hsu, X.Z. Lin, H.B. Yang, S.H. Chan,K.S. Cheng, et al., Expression of vascular endothelial growth factor in normal liver and hepatocellular carcinoma: an immunohistochemical study, Hum. Pathol.28(1997) 698–703.
    31. Carmeliet, P. Mechanisms of angiogenesis and arteriogenesis. Nature Med. 6, 389–395 (2000).
    32. X.M. Li, Z.Y. Tang, G. Zhou, Y.K. Lui, S.L. Ye, Significance of vascular endothelial growth factor mRNA expression in invasion and metastasis of hepatocellular carcinoma, J. Exp .Clin. Cancer Res. 17 (1998) 13–17
    33. W.S. Moon, K.H. Rhyu, M.J. Kang, D.G. Lee, H.C. Yu,J.H. Yeum, et al., Overexpression of VEGF and angiopoietin 2: a key to high vascularity of hepatocellular carcinoma? Mod. Pathol. 16 (2003) 552–557.
    34. H. Yoshiji, S. Kuriyama, J. Yoshi, M. Yamazaki,M. Kikukawa, H.Tsujinoue, et al., Vascular endothelialgrowth factor tightly regulates in vitro development of murine hepatocellular carcinoma cells, Hepatology 28 (1998) 1489–1496.
    35. Hai Shi , Jian Ming Xu , Nai Zhong Hu , et al . Prognostic significance of expression of cyclooxygenase-2 and vascular endothelial growth factor in human gastric carcinoma [J ] . World J Gastronterol , 2003 ,9(7) :1 421
    36. Aizen J Marrogi , William D Travis , Judith A Welsh , et al .Nitric oxide synthase , cyclooxygenase-2 , and vascular endothelial growth factor in t he angiogenesis of non-small cell lung carcinoma [J ] . Clinical Cancer Research , 2000 ,6 :4 739
    37. A.S. Cheng, H.L. Chan, K.F. To, W.K. Leung, K.K. Chan,C.T. Liew, et al., Cyclooxygenase-2 pathway correlates withvascular endothelial growth factor expression and tumor angiogenesis in hepatitis B virus-associated hepatocellular carcinoma, Int. J. Oncol. 24 (2004) 853–860.
    38. Surette ME, Winkler JD, FontehAN, etal. Relationship between arachidonate—phospholipid remodeling and apoptosis. Biochemistry. 1996 Jul 16; 35 (28):9187-9196.
    39. Surette ME, Fonteh AN, Bernatchez C, et al. Perturbations in the control ofcellular arachidonic acid levels block cell growth and induce apoptosis in HL-60 cells.Carcinogenesis, 1999 May;20 (5):757-763.
    40. Tsujii M, Kawano S,Tsuji S,et al. Cyclooxygenase regulates angiogenesis induced by colon cancer cells. Cell. 1998 May 29;93 (5):705-716.
    41. Chaudry AA, Wahle KW, McClinton S,et al .Arachidonic acid metabolism in benign and malignant prostatic tissue in vitro: effects of fatty acids and cyclooxygenase inhibitors. Int J Cancer. 1994 Apr 15;57 (2):176-180.
    42. Gallo 0, Franchi A, Magnelli L, et al. Cyclooxygenase-2 pathway correlates with VEGF expression in head and neck cancer. Implications for tumor angiogenesis and metastasis .Neoplasia.2001Jan-Feb;3(1):53-61.
    43. Casibang M, Purdom S,Jakowlew S,et al .Prostaglandin E2 and vasoactive intestinal peptide increase vascular endothelial cell growth factor mRNAs in lung cancer cells. Lung Cancer. 2001 Feb-Mar:31(2-3): 203-212.
    44. Orlov SN, Thorin -Trescases N, Dulin N0, et al. Activation of cAMP signaling transiently inhibits apoptosis in vascular smooth muscle cells in a site upstream of caspase-3. Cell Death Differ. 1999 Jul;6 (7):661-72.
    45. Prescott SM, Fitzpatrick FA. Cyclooxygenase-2 and carcinogenesis. Biochim Biophys Acta. 2000 Mar 27;1470 (2):M69-78.
    46. Sheng H, Shao J, Morrow JD, et al. Modulation of apoptosis and Bcl-2 expression by prostaglandin E2 in human colon cancer cells. Cancer Res. 1998 Jan 15;58 (2):362-366.
    47. Daniel T0, Liu H, Morrow JD, et al. Thromboxane A2 is a mediator of cyclooxygenase-2-dependent endothelial migration and angiogenesis. Cancer Res. 1999 Sep 15;59(18):4574-4577.
    48.徐选福,国外医学消化系疾病分册,2000 ; 20 (4):239^-243.
    49. Lim JT, Piazza GA, Han EK, et al. Sulindac derivatives inhibit growth and induce apoptosis in human prostate cancer cell lines. Biochem Pharmacol. 1999 Oct 1;58 (7):1097-1107.
    50. Wechter WJ, Leipold DD, Murray ED Jr, et al. E-7869 (R-flurbiprofen)inhibits progression of prostate cancer in the TRAMP mouse. Cancer Re s. 2000 Apr 15;60 (8):2203-2208.
    51. Nelson WG, Wilding G. Prostate cancer prevention agent development: Criteria and pipeline for candidate chemoprevention agents. Urology. 2001 Apr; 57 (4 Suppl 1):56-63.
    52. T.C. Tang, R.T. Poon, C.P. Lau, D. Xie, S.T. Fan, Tumor cyclooxygenase-2 levels correlate with tumor invasiveness in human hepatocellular carcinoma, World J. Gastroenterol. 11 (2005) 1896–1902
    53.徐彬,李强.血管特异生长因子与肝癌血管生成和生物学行为的关系.国际外科学杂志2006年第33卷第1期:47-51.
    54. Tanaka S, Mori M, Sakamoto Y, Makuuchi M, Sugimachi K, Wands JR. Biologic significance of angiopoietin-2 expression in human hepatocellular carcinoma. J Clin Invest 1999;103:341–5.
    55. Zhang ZL, Liu ZS, Sun Q. Expression of angiopoietins, Tie2 and vascular endothelial growth factor in angiogenesis and progression of hepatocellular carcinoma. World J Gastroenterol, 2006,12:4241-5.
    56. Guo L,Kuroda N. Increased expression of platelet-derived endothelial cell growth factor in human hepatocelluar carcinomas correlated with high edmondson grades and portal vein tumor thrombosis. Oncol Rep, 2001,8(4):871-876.
    57. Jin-no K, Tanimizu. Circulating platelet-derived endothelial cell growth factor increases in hepatocelluar carcinoma patients. Cancer,1998,82(7):1260一1267.
    58. Poon RT, Ng IO, Lau C, et al. Correlation of serum basic fibroblast growth factor levels with clinicopathologic features and postoperative recurrence in hepatocellular carcinoma. Am J Surg (2001)182:298–300.
    59. Ogasawara S, Yano H, Iemura A, Hisaka T, Kojiro M (1996) Expressions ofbasic fibroblast growth factor and its receptors and their relationship to proliferation of human hepatocellular carcinoma cell lines. Hepatology 24:198–205.
    60. Motoo Y, Sawabu N, Yamaguchi Y, Terada T, Nakanuma Y Sinusoidal capillarization of human hepatocellular carcinoma: possible promotion by fibroblast growth factor. Oncology(1993) 50:270–274.
    61. Y. Ren, H.T. Tsui, R.T. Poon, I.O. Ng, Z. Li, Y. Chen, et al, Macrophage migration inhibitory factor: roles in regulating tumor cell migration and expression of angiogenic factors in hepatocellular carcinoma, Int. J. Cancer 107 (2003) 22–29.
    62. Domenico Ribatti. Angiogenesis and anti-angiogenesis in hepatocellular carcinoma. Cancer Treatment.2006.06.002.
    63. Peng SH, Deng H, Yang JF, et al. Significance and relationship between infiltrating inflammatory cell and tumor angiogenesis in hepatocellular carcinoma tissues. World J Gastroenterol 2005;11:6521–4.
    64. Semenza GL. Hypoxia-inducible factor 1: oxygen homeostasis and disease pathophysiology. Trends Mol Med 2001;7: 345–50.
    65. Yu FL, Liu HJ, Lee JW, et al. Hepatitis B virus X protein promotes cell migration by inducing matrix metalloproteinase-3. J Hepatol, 2005,42: 520-7.
    66. Zhong C, Guo RP, Shi M, et al. Expression and clinical significance of VEGF and MMP-9 in hepatocellular carcinoma. Ai Zheng, 2006,25: 599-603.
    67. Folkman J. Tumor angiogenesis: therapeutic implications. New Engl J Med 1971;285:1182–6.
    68. H. Hurwitz, L. Fehrenbache, W. Novotny, T. Cartwright,J. Hainsworth, W.Heim, et al., Bevacizumab plus irinotecan,fluorouracil, and leucovorin for metastatic colorectal cancer, N.Engl. J. Med. 350 (2004) 2335–2342.
    69. D.J. Hicklin, L.M. Ellis, Role of the vascular endothelialgrowth factor pathway in tumor growth and angiogenesis,J. Clin. Oncol. 23 (2005) 1011–1027.
    70. D.H. Johnson, L. Fehrenbacher, W.F. Novotny, R.S. Herbst,J.J. Nemunaitis, D.M. Jablons, et al., Randomized phase II trialcomparing bevacizumab plus carboplatin and paclitaxel withcarboplatin and paclitaxel alone in previously untreated locallyadvanced or metastatic non-small-cell lung cancer, J. Clin.Oncol. 22 (2004) 2184–2191.
    71. H.I. Hurwitz, L. Fehrenbacher, J.D. Hainsworth, W. Heim,J. Berlin, E. Holmgren, et al., Bevacizumab in combinationwith fluorouracil and leucovorin: an active regimen for firstlinemetastatic colorectal cancer, J. Clin. Oncol. 23 (2005)3502–3508
    72. Liu Y, Poon RT, Li Q, Kok TW, Lau C, Fan S. Both antiangiogenesis and angiogenesis-independent effects are responsible for hepatocellular carcinoma growth arrest by tyrosine kinase inhibitor PTK787/ZK22584. Cancer Res, 2005;65:3691–9.
    73. Zhou XD,Tang ZY,Yang BH,et a1.Experience of 1000 patients who underwent hepatectomy for small hepatocellular carcinoma.Cancer 200l,91(8):1479—86.
    74. Yang JM,Kan T,Chen H,et a1.Hepatectomy in the treatment of very big primary liver cancer:report of 86 cases.Hepatobiliary Pancreat Dis Int,2002,1(1):42~5.
    75. Livraghi T , Meloni F . Treatment of hepatocellalar carcinoma by pereutaneous interventional methods.Hepatogastroenterology,2002,49(43):62—71
    76. Livraghi T,Radiofrequeney ablation PEIT and TACE for hetocellular carcinoma,J Hepatobiliary Pancreat Surg ,2003,10(1):67—76
    77. Qian J,Feng GS,Vogl T.Combined interventional therapies of hepatocellular carcinoma.World J Gastroenterol ,2003,9(9):1885—91
    78. L.T. Chen, T.W. Liu, Y. Chao, H.S. Shiah, J.Y. Chang,S.H. Juang, et al., Alpha-fetoprotein response predicts survivalbenefits of thalidomide in advanced hepatocellular carcinoma,Aliment. Pharmacol. Ther. 22 (2005) 217–226.
    79. G. Gasparini, R. Longo, M. Fanelli, B.A. Teicher, Combinationof antiangiogenic therapy with other anticancer therapies:results, challenges, and open questions, J. Clin. Oncol. 23(2005) 1295–1311.
    80. K.K. Feng, H.Y. Zhao, H. Qiu, J.X. Liu, J. Chen, Combinedtherapy with flk1-based DNA vaccine and interleukin-12results in enhanced antiangiogenic and antitumor effects,Cancer Lett. 221 (2005) 41–47.
    81. R.T. Poon, S.T. Fan, F.H. Tsang, J. Wong, Loco regional therapies for hepatocellular carcinoma: a critical review from the surgeon’s perspective, Ann. Surg. 235 (2002) 466–486.
    82. Z.F. Yang, R.T. Poon, J. To, D.W. Ho, S.T. Fan, The potentialrole of hypoxia inducible factor 1alpha in tumor progression after hypoxia and chemotherapy in hepatocellular carcinoma,Cancer Res. 64 (2004) 5496–5503.
    83. H. Wu, G. Feng, H. Liang, C. Zheng, X. Li, Vascularendothelial growth factor antisense oligodeoxynucleotides with lipiodol in arterial embolization of liver cancer in rats, World J. Gastroenterol. 10 (2004) 813–818.
    84. Liu XH ,Kirschenbaum A ,Yao S ,et al. Inhibition of cyclooxygenase-2 suppresses angiogenesis and tumor growth of prostrate cancer in vivo. J Urol , 2000:164 :820-825.
    85. T sujii M , Kaw ano S, DuBo is RN. Cyclooxygenase-2 expression in humancolon cancer cells increases metastatic potential. P roc N at l A cad Sci, 1997:94(7) : 3336- 3340.
    86. Terence C. Tang, Ronnie T. Tumor cyclooxygenase-2 levels correlate with tumor invasiveness in human hepatocellular carcinoma. World J Gastroenterol, 2005,11;(13):1896-1902.
    87. Suzuki H, Seto K. Paracrine upregulation of VEGF receptor mRNA in endothelial cells by hypoxia-exposed HepG2 cell. Am J Phusiol, 1999,276: 92-97.
    88. Gallo O masini. Prognostic significance of cyclooxygenase-2 pathway and angigogenesis in head and neck squamous cell carcinoma. Hum Pathol, 2002,33:708-714.
    89. Fujiwaki Iida k. Cyclooxygenase-2 expression in endometrial cancer:correlation with microvessel count and expression of vascular endothelial growth factor and thymidine phosphorylase. Hum Pathol, 2002,33:213-219.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700