用户名: 密码: 验证码:
小檗碱降糖调脂作用与PPARs/P-TEFb信号转导通路的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2型糖尿病是由胰岛素抵抗和胰岛素分泌障碍导致的糖代谢紊乱疾病,常伴有高脂血症。过氧化物酶体增殖物激活受体(Peroxisome proliferators-activated receptors, PPARs)是依赖配体激活的核受体超家族成员之一,与配体结合后转录活性发生变化,导致PPARs靶基因表达的改变,从而引起脂肪细胞分化、脂质代谢等一系列生理活动。由周期素依赖性蛋白激酶9 (Cyclin-dependent kinase 9, CDK9)和细胞周期调节蛋白T1 (cyclin T1)组成的正性转录延伸因子b (Positive transcription elongation factor b, P-TEFb)可被一些转录因子招募以激活特异启动子的转录延伸,参与多种细胞的分化过程。PPARs在机体的糖脂代谢中起着重要作用,与糖尿病和高脂血症等的发生发展密切关系,临床上常用的胰岛素增敏型抗糖尿病药物罗格列酮就属于PPARγ激动剂,其中常用的降脂药物非诺贝特即为PPARα激动剂。单一的PPARγ激动剂药物存在体重增加、水肿和可能增加心血管事件等副作用,且无法改善脂代谢紊乱症状。中药单体成分小檗碱(Berberine)已有用于治疗糖尿病和高脂血症的实验和临床报道,但其确切机制尚未阐明。
     目的
     观察小檗碱对2型糖尿病大鼠血糖血脂和肝脏、骨骼肌中糖脂代谢,以及脂肪组织中PPARs和P-TEFb的mRNA和蛋白表达的影响。筛选最佳小干扰RNA (Small interference RNA, siRNA)序列,在最佳干扰浓度和时间下沉默CDK9 mRNA表达,3T3-L1细胞中PPARα、PPARδ、PPARγ、CDK9、cyclin T1 mRNA和蛋白的改变及小檗碱的干预作用。旨在探讨小檗碱对2型糖尿病的治疗作用及其改善糖脂代谢作用与PPARs/P-TEFb表达的关系,阐明小檗碱治疗糖尿病的作用机制。
     方法
     1. 2型糖尿病大鼠模型的建立:大鼠禁食12 h后用于建立2型糖尿病模型,根据文献及预实验确定链脲菌素(Streptozotocin, STZ)剂量为35 mg/kg,正常对照组大鼠腹腔注射等体积的柠檬酸缓冲液。标准饲料喂养2周,挑选空腹血糖值≥16.7 mmol/L的糖尿病大鼠改用高糖高脂饲料喂养14周以诱导高脂血症,正常对照组大鼠一直用标准饲料喂养。
     2.实验分组及给药:于16周将空腹血糖值≥16.7 mmol/L的糖尿病大鼠按血糖值随机分为糖尿病模型组、小檗碱低、中、高剂量组(75、150、300 mg/kg)、非诺贝特组(100 mg/kg)和罗格列酮组(4 mg/kg) 6组,非诺贝特和罗格列酮作为阳性对照药。实验共分7组,其中正常对照组由同批次正常大鼠组成,每组10只动物。大鼠单笼饲养,每天拌食给药1次,连续给药16周,每4周测1次空腹血糖,每2周称1次体重,并根据体重调整给药剂量。
     3. 2型糖尿病大鼠血糖、血脂、血清胰岛素等血液指标的检测:处死大鼠前禁食12 h,麻醉后心脏取血,每组5只大鼠用4%多聚甲醛灌注固定后取组织称重再固定,进行后续处理;另5只大鼠直接快速取组织称重后液氮冻存或固定后石蜡包埋。按相应方法进行血中血糖、甘油三酯(Triglyceride, TG)、总胆固醇(Total cholesterol, TC)、高密度脂蛋白胆固醇(High density lipoprotein cholesterol, HDL-C)、低密度脂蛋白胆固醇(Low density lipoprotein cholesterol, LDL-C)、载脂蛋白(Apolipoprotein, Apo)AI、ApoB、游离脂肪酸(Free fatty acid, FFA)、血清胰岛素、糖化血红蛋白(Hemoglobin A1c, HbA1c)、总脂酶、肿瘤坏死因子α(Tumor necrosis factor alpha, TNF-α)和脂联素等指标的检测。
     4.观察胰岛普通、超微病理结构和胰岛素的表达:HE染色法观察胰岛的普通病理结构改变,运用透射电镜技术观察胰岛的超微病理结构变化。采用免疫组化技术检测胰岛内胰岛素的表达,使用相应试剂盒检测胰腺中的超氧化物歧化酶(Superoxide dismutase, SOD)活性和丙二醛(Malonaldehyde, MDA)含量。
     5.肝脏和骨骼肌中糖脂代谢的检测:油红O染色法观察肝脏冰冻切片中脂质分布情况,过碘酸-希夫(氏)(PAS)染色法观察肝脏中糖原的分布情况。用糖原、FFA、TG检测试剂盒分别测定肝脏和骨骼肌中糖原、FFA、TG含量。
     6.脂肪组织中PPARs、P-TEFb mRNA和蛋白表达等的测定:分别采用real time PCR和western blotting检测脂肪组织中PPARα、PPARδ、PPARγ、CDK9、cyclin T1 mRNA和蛋白的表达。按相应方法检测脂肪组织中的TNF-α、脂联素、FFA、总脂酶、SOD和MDA等指标。采用HE染色观察脂肪组织细胞的大小和数量。
     7. 3T3-L1脂肪细胞的增殖、分化和脂质集聚:培养3T3-L1脂肪细胞,运用MTT法和油红O染色法观察小檗碱对3T3-L1细胞增殖、脂肪细胞分化情况及采用western blotting检测脂肪细胞分化标记物aP2蛋白的表达。
     8. 3T3-L1脂肪细胞中PPARs、P-TEFb表达的检测:3T3-L1脂肪细胞中PPARα、PPARδ、PPARγ、CDK9、cyclin T1 mRNA、蛋白表达、TNF-α、脂联素含量、细胞分化和细胞内脂质集聚的测定,以及在小檗碱、非诺贝特和罗格列酮作用下上述指标的变化。
     9.最佳RNA干扰(RNAi)条件的确定:采用荧光标记的FAM-siRNA优化转染条件,运用real time PCR技术筛选最佳CDK9的siRNA序列,确定最有效siRNA沉默基因的最佳干扰浓度和时间,并观察siRNA转染后CDK9蛋白表达随时间的变化。
     10. RNAi下3T3-L1脂肪细胞中PPARs、P-TEFb表达的检测:应用最有效siRNA序列的最佳干扰浓度转染,在沉默CDK9基因情况下,PPARα、PPARδ、PPARγ、CDK9、cyclin T1表达、TNF-α、脂联素含量、细胞分化和细胞内脂质集聚的改变,以及在小檗碱、非诺贝特和罗格列酮作用下这些指标的变化。
     结果
     1. 2型糖尿病大鼠的空腹血糖、HbA1c较正常对照大鼠升高,TG、TC、LDL-C、ApoB和FFA与正常对照大鼠比较明显增高,HDL-C、ApoAI则降低,血清胰岛素较正常对照大鼠升高,表明成功建立了2型糖尿病大鼠模型。
     2.小檗碱能明显降低2型糖尿病大鼠血糖和HbA1c水平,降低TG、TC、LDL-C、ApoB、FFA含量和增加HDL-C、ApoAI含量。小檗碱还可增加糖尿病大鼠肝脏和骨骼肌中糖原含量并降低FFA、TG含量。
     3.小檗碱明显降低糖尿病大鼠血清胰岛素含量,提高胰岛素敏感指数和增加β细胞内胰岛素含量;增加胰腺重体重比值,HE染色显示小檗碱增加胰岛面积和β细胞数量,透射电镜结果表明小檗碱使胰岛β细胞中分泌颗粒数量上升,改善病变的超微结构;小檗碱增强胰腺中SOD活性和降低MDA含量。
     4.小檗碱明显降低糖尿病大鼠血清和脂肪组织中FFA、MDA、TNF-α含量,增加脂联素含量,增强总脂酶和SOD活性,具有促进脂质代谢、抗氧化和调节脂肪因子分泌的功能。
     5.小檗碱明显增强糖尿病大鼠脂肪组织中PPARα、PPARδ、PPARγ、CDK9和cyclin T1 mRNA、蛋白的表达,降低内脏脂肪重比重比值和脂肪细胞大小,增加脂肪细胞数量。
     6.小檗碱在低浓度时促进3T3-L1细胞增殖和在高浓度时抑制其增殖,能浓度依赖性地促进脂肪细胞分化和降低脂质积聚。小檗碱可促进3T3-L1脂肪细胞中PPARα、PPARδ、PPARγ、CDK9和cyclin T1 mRNA、蛋白的表达,抑制TNF-α分泌而增加脂联素分泌。
     7. siRNAa为最佳沉默CDK9基因表达序列,最佳干扰浓度和时间分别为50 nmol/L和48 h。转染后48 h CDK9蛋白表达明显减弱,96 h恢复至正常水平。
     8.在最有效siRNA序列最佳干扰浓度和时间条件下沉默CDK9基因表达,3T3-L1脂肪细胞中PPARα、PPARδ、PPARγ、CDK9和cyclin T1 mRNA、蛋白表达均受到抑制,TNF-α分泌增加而脂联素分泌受到抑制。小檗碱对干扰效应具有翻转作用,能促进PPARs和P-TEFb表达,降低TNF-α分泌和促进脂联素分泌,促进细胞分化和降低脂质集聚。
     结论
     本研究一次性腹腔注射小剂量链脲菌素,造成部分胰岛β细胞破坏,使其发生糖尿病,接着采用高糖高脂饲料喂饲以诱发糖尿病大鼠的高脂血症。该模型不仅表现胰岛素抵抗,而且部分胰岛β细胞功能受损,糖脂代谢紊乱明显,与人类2型糖尿病病理机制相似,因此用来评价降糖调脂药物的疗效,结果可信。小檗碱对2型糖尿病大鼠具有明显的降糖调脂作用,除降低血糖、HbA1c水平和改善血脂代谢异常,还增加骨骼肌和肝糖原含量和降低脂质在肝脏、骨骼肌组织中的堆积。小檗碱能促进胰岛β细胞再生和增加β细胞内胰岛素含量。小檗碱通过调节糖脂代谢的平衡和恢复胰岛β细胞功能来改善胰岛素抵抗,引起血清胰岛素水平的降低。小檗碱通过使糖尿病大鼠脂肪组织中降低了的PPARα、PPARδ、PPARγ、CDK9、cyclin T1表达恢复至接近正常大鼠水平,从而改善糖尿病大鼠的糖脂代谢。小檗碱能促进3T3-L1细胞分化和降低脂质积聚,其作用与通过促进3T3-L1脂肪细胞中PPARα、PPARδ、PPARγ、CDK9、cyclin T1表达相关,与糖尿病大鼠实验结果相一致。RNAi下沉默CDK9基因,3T3-L1细胞中PPARα、PPARδ、PPARγ、CDK9、cyclin T1表达受到抑制,小檗碱具有翻转并促进表达的作用。因此CDK9参与PPARs的表达调控,在PPARs与P-TEFb共同参与脂肪细胞分化和脂质集聚中有着重要作用,小檗碱可部分地通过影响CDK9参与脂肪细胞的分化功能,进而影响PPARs活性,使组织中糖脂代谢活动及相关酶、脂肪因子等恢复至接近常态,最终使2型糖尿病大鼠的糖脂代谢紊乱症状得以改善。因此,小檗碱的降糖调脂作用与其通过调控PPARs/P-TEFb信号转导通路相关,即小檗碱通过调控PPARs/P-TEFb信号转导通路是其降糖调脂作用的机制之一。
Type 2 diabetes mellitus is a metabolic disorder due to insulin resistance and insulin-secretion deficiency accompanying hyperlipidemia. Peroxisome proliferators-activated receptors (PPARs) are ligand dependent transcription factors that regulate expression of target genes related to lipid and glucose metabolism. The PPARs play critical roles in the regulation of the adipocyte differentiation and lipid metabolism. Cyclin-dependent kinase 9 (CDK9) and cyclin T1 are the two components of the positive transcription elongation factor b (P-TEFb). P-TEFb is required not only as a basic transcription elongation factor, but it is also recruited by some transcription factors to activate transcriptional elongation from specific promoters. P-TEFb involves in several specific differentiation processes of cells. Both PPARγagonists (rosiglitazone) and PPARαagonists (fenofibrate) have actions with distinct benefits for type 2 diabetes. Currently available pharmacological antidiabetic agents such as rosiglitazone, however, have various adverse effects and high rates of secondary failure. Experimental and clinical trials showed that berberine was a potential hypoglycemic drug to treat type 2 diabetic patients with dyslipidemia, but the mechanism still needs to investigate.
     Objective
     To investigate the effects of berberine on blood glucose, blood lipid, glucolipid metabolism in liver and skeletal muscle, and PPARs and P-TEFb mRNA and protein expression in adipose tissue of type 2 diabetic rats. To select optimal sequence of small interference RNA (siRNA) of CDK9 mRNA and the best interference concentration and action time of optimal siRNA, then to determine PPARα, PPARδ, PPARγ, CDK9, cyclin T1 mRNA and protein expression in 3T3-L1 cells and effect of berberine on them under this condition. To probe into beneficial effect of berberine on diabetic rats, relationship between hypoglycemic, hypolipidemic effects of berberine and PPARs/P-TEFb expression, and to illuminate the mechanism of antidiabetic effect of berberine.
     Methods
     1. To induce type 2 diabetic rats: Fasted rats were injected 35 mg/kg streptozotocin to induce diabetic rats according to literature and control rats were injected with the same volume citrate-phosphate buffer. After 2 weeks, the diabetic rats with fasting blood glucose level of above 16.7 mmol/L were given a high-carbohydrate/high-fat diet instead of a standard diet to induce hyperlipidemia and control rats were still given the standard diet.
     2. Experimental group and drug treatment: The rats were divided into 7 groups, 10 animals in each group: age-matched control rats and diabetic rats without any drug treatment; diabetic rats treated with berberine at a dose of 75, 150 or 300 mg/kg every day, respectively; diabetic rats treated with fenofibrate at a dose of 100 mg/kg or rosiglitazone at a dose of 4 mg/kg every day, both served as positive control. The standard diet or the high-carbohydrate/high-fat diet was given only after drug, mixed with the standard diet, was completely ingested by the rats for 16 weeks. Animal weight was measured every 2 weeks throughout the experiment and the drug dose was accordingly adjusted. Fasting blood glucose levels were also detected at the end of week 20, 24, 28 (during treatment) and 32 (before sacrificed).
     3. Measurement of blood index: Blood samples were collected from the heart after fasted rats were anaesthetized with an overdose of sodium pentobarbital at the end of week 32. Half of each group rats were perfused with 4% paraformaldehyde. Liver, pancreas and adipose tissue were excised and weighted, and fragments of the tissues were postfixed in 4% paraformaldehyde. Tissues of the other half animals were rapidly excised and weighed after blood collection. Part of tissues were cut into slices and frozen in liquid nitrogen for other studies. Another part of tissues was postfixed in 4% paraformaldehyde overnight for paraffin embedding. Total cholesterol (TC), triglyceride (TG), low density lipoprotein-cholesterol (LDL-C), high density lipoprotein-cholesterol (HDL-C), apolipoprotein (Apo) A?, ApoB, free fatty acid (FFA), serum insulin, hemoglobin A1c (HbA1c), total lipidase, tumor necrosis factor alpha (TNF-α) and adiponectin levels in blood were measured by commercial kit.
     4. Investigation on histopathology, ultrastructure and insulin expression in pancreas: Hematoxylin-eosin (HE) staining and transmission electron microscope were used to observe pancreatic histopathology and ultrastructure ofβcells, respectively. Insulin expression in pancreas was measured by immunohistochemistry. Superoxide dismutase (SOD) activity and malonaldehyde (MDA) level in pancreas were measured by commercial kit.
     5. Measurement of glucolipid metabolism in liver and skeletal muscle: Oil red O staining and periodic acid-schiff (PAS) staining were used to observe lipid and glycogen distribution in liver, respectively. Glycogen, FFA and TG contents in liver and skeletal muscle were detected by commercial kit.
     6. Determination of PPARs, P-TEFb mRNA and protein expression in adipose tissue: PPARα, PPARδ, PPARγ, CDK9, cyclin T1 mRNA and protein were determined by real time PCR and western blotting. TNF-α, adiponectin, FFA, total lipidase, SOD and MDA in adipose tissue were measured by commercial kit. Hematoxylin-eosin staining was used to observe the size and number of adipocyte.
     7. Proliferation, differentiation and lipid accumulation of 3T3-L1 cells: MTT assay and oil red O staining were used to detect proliferation and differentiation of 3T3-L1 cells, respectively. As a differentiation marker of adipocyte, aP2 protein was measured by western blotting.
     8. Determination of PPARs and P-TEFb expression in 3T3-L1 adipocytes: Effects of berberine, fenofibrate and rosiglitazone on PPARα, PPARδ, PPARγ, CDK9, and cyclin T1 mRNA and protein expression, TNF-αand adiponectin contents were measured in 3T3-L1 adipocytes.
     9. Selection of optimal RNA interference (RNAi) condition: Fluorescently-labeled FAM-siRNA was used to optimize transfection condition; optimal siRNA sequence of CDK9, and the best interference concentration and action time of optimal siRNA were determined by real time PCR. CDK9 protein expression was analyzed at different time after optimal siRNA transfection.
     10. Determination of PPARs and P-TEFb expression in 3T3-L1 adipocytes by RNAi: PPARα, PPARδ, PPARγ, CDK9, cyclin T1 mRNA and protein expression, TNF-αand adiponectin contents were measured in 3T3-L1 adipocytes by RNAi. Effects of berberine, fenofibrate and rosiglitazone on them were observed.
     Results
     1. Fasting blood glucose, HbA1c, TG, TC, LDL-C, ApoB, FFA and serum insulin levels in diabetic rats were all significantly higher than that of the control ones, while HDL-C and ApoAI levels were significantly lower. These results indicated that type 2 diabetic rats with hyperlipidemia were successfully induced.
     2. Berberine markedly decreased blood glucose, HbA1c, TG, TC, LDL-C, ApoB and FFA contents of type 2 diabetic rats, while increased HDL-C and ApoAI levels. Berberine increased the declined glycogen content in liver and skeletal muscle of diabetic rats, while decreased the augmented FFA and TG levels in diabetic tissues.
     3. Berberine significantly decreased serum insulin content and insulin expression in pancreas of diabetic rats, increased insulin sensitivity index. Berberine augmented pancreas to body weight ratio, pancreatic islets area andβcells number. Berberine increased secretory granules, and improved the swollen mitochondrial and endoplasmic reticulum ofβcells in diabetic rats. Berberine increased SOD activity and decreased MDA content.
     4. Berberine significantly declined FFA, MDA and TNF-αcontents in serum and adipose tissue of diabetic rats, while increased adiponectin level and total lipidase, SOD activities.
     5. Berberine markedly up-regulated PPARα, PPARδ, PPARγ, CDK9, cyclin T1 mRNA and protein expression in adipose tissue of diabetic rats. Berberine decreased adipose tissue to body weight ratio and adipocyte size, and increased adipocyte number.
     6. Berberine promoted 3T3-L1 cells proliferation at low concentration, but inhibited proliferation at high concentration. Berberine enhanced 3T3-L1 cells differentiation and degraded lipid accumulation in dose-dependent manner. Berberine up-regulated PPARα, PPARδ, PPARγ, CDK9, cyclin T1 mRNA and protein expression in 3T3-L1 adipocytes. Berberine inhibited TNF-αsecretion and increased adiponectin secretion.
     7. siRNAa is the optimal siRNA sequence of CDK9, the best interference concentration and action time were 50 nmol/L and 48 h. CDK9 protein expression was significantly attenuated 48 h after transfection and restored to normal level 96 h after transfection.
     8. PPARα, PPARδ, PPARγ, CDK9, cyclin T1 mRNA and protein expression were all inhibited by RNAi in 3T3-L1 adipocytes, while TNF-αsecretion was augmented and adiponectin secretion was suppressed. Berberine turnovered the decreased PPARα, PPARδ, PPARγ, CDK9, cyclin T1 expression. Berberine inhibited TNF-αsecretion and increased adiponectin secretion.
     Conclusions
     Diabetic rats were developed by injection low dose streptozotocin due to parts ofβcells injury, and then hyperlipidemia was induced with the high-carbohydrate/high-fat diet. The diabetic rats showed insulin resistance and glucolipid metabolic disorder similar to those found in diabetic patients. It was confidently used to screen drugs with hypoglycemic and hypolipidemic effects. Berberine had significant hypoglycemic and hypolipidemic effects on diabetic rats, improved glucolipid metabolism in liver and skeletal muscle. Berberine promotedβcells regeneration and increased insulin content inβcells to preserveβcells function. Berberine decreased serum insulin due to improved metabolism and recoveredβcells function. Berberine restored the decreased PPARα, PPARδ, PPARγ, CDK9, and cyclin T1 mRNA and protein expression in adipose tissue of diabetic rats to the control levels, which attributed to improved glucolipid metabolism. Berberine enhanced 3T3-L1 cells differentiation and decreased lipid accumulation, which may due to up-regulated PPARα, PPARδ, PPARγ, CDK9, and cyclin T1 expression. When CDK9 mRNA expression was inhibited by RNAi, PPARα, PPARδ, PPARγ, CDK9, and cyclin T1 expression were downregulated, which was turnovered and promoted by berberine. Berberine improved glucolipid metabolism both in blood and tissues of diabetic rats, promoted 3T3-L1 cells differentiation and inhibited lipid accumulation via modulating metabolic related PPARs expression and differentiation related P-TEFb expression, so regulation of PPARs/P-TEFb signal transduction pathway is one of the mechanisms of hypoglycemic, hypolipidemic effects of berberine.
引文
1. King H, Aubert RE, Herman WH. Global burden of diabetes, 1995-2025: prevalence, numerical estimates, and projections[J]. Diabetes Care, 1998, 21(9): 1414-1431.
    2.杨泽.中国中老年人糖尿病和糖耐量异常的流行病学研究[J].中华流行病学杂志, 2003, 24(5): 410-412.
    3.李秀钧.胰岛素抵抗及胰岛素抵抗综合征研究展望[J].中华内分泌代谢杂志, 2000, 16(5): 274-276.
    4. Tomkin GH. Targets for intervention in dyslipidemia in diabetes[J]. Diabetes Care, 2008, 31 Suppl 2: S241-248.
    5. Kashyap SR, Defronzo RA. The insulin resistance syndrome: physiological considerations[J]. Diab Vasc Dis Res, 2007, 4(1): 13-19.
    6. DeFronzo RA, Tobin JD, Andres R. Glucose clamp technique: a method for quantifying insulin secretion and resistance[J]. Am J Physiol, 1979, 237(3): E214-223.
    7.李光伟,潘孝仁, Stephen Lillioja,等.检测人群胰岛素敏感性的一项新指数[J].中华内科杂志, 1993, 32(10): 656-660.
    8. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group.[J]. N Engl J Med, 1993, 329(14): 977-986.
    9. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group.[J]. Lancet, 1998, 352(9131): 837-853.
    10. Bolen S, Feldman L, Vassy J, et al. Systematic review: comparative effectiveness and safety of oral medications for type 2 diabetes mellitus[J]. Ann Intern Med, 2007, 147(6): 386-399.
    11.濮社班,许翔鸿,张宇和,等.黄连生长状况及生物碱含量的个体差异[J].中草药, 1999, 30(5): 375-377.
    12.崔学军.小檗碱的药理学研究进展及临床新用途[J].时珍国医国药, 2006, 17(7): 1311-1312.
    13. Zhang Y, Li X, Zou D, et al. Treatment of type 2 diabetes and dyslipidemia with the natural plant alkaloid berberine[J]. J Clin Endocrinol Metab, 2008 (in press)
    14. Yin J, Xing H, Ye J. Efficacy of berberine in patients with type 2 diabetes mellitus[J]. Metabolism, 2008, 57(5): 712-717.
    15. Cicero AF, Rovati LC, Setnikar I. Eulipidemic effects of berberine administered alone or in combination with other natural cholesterol-lowering agents. A single-blind clinical investigation[J]. Arzneimittelforschung, 2007, 57(1): 26-30.
    16.赵美眯,李智,滕赞,等.藻酸双酯钠改善模型大鼠的胰岛素抵抗和血脂异常[J].药学学报, 2007, 42(5): 488-491.
    17. Leng SH, Lu FE, Xu LJ. Therapeutic effects of berberine in impaired glucose tolerance rats and its influence on insulin secretion[J]. Acta Pharmacol Sin, 2004, 25(4): 496-502.
    18.梁海霞,原海燕,李焕德,等.高脂喂养联合低剂量链脲佐菌素诱导的2型糖尿病大鼠模型稳定性观察[J].中国药理学通报, 2008, 24(4): 551-555.
    19. Mordes JP, Ms W. In fluence of age and sex on inseptibity to STZ diabetes[J]. Diabetes, 1980, 29(Suppl 2): 132-136.
    20. Srinivasan K, Viswanad B, Asrat L, et al. Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: a model for type 2 diabetes and pharmacological screening[J]. Pharmacol Res, 2005, 52(4): 313-320.
    21. Arias-Diaz J, Balibrea J. Animal models in glucose intolerance and type-2 diabetes[J]. Nutr Hosp, 2007, 22(2): 160-168.
    22. Chen Y, Cheng G, Mahato RI. RNAi for treating hepatitis B viral infection[J]. Pharm Res, 2008, 25(1): 72-86.
    23. Bernstein E, Caudy AA, Hammond SM, et al. Role for a bidentate ribonuclease in the initiation step of RNA interference[J]. Nature, 2001, 409(6818): 363-366.
    24. Hammond SM, Bernstein E, Beach D, et al. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells[J]. Nature, 2000, 404(6775): 293-296.
    25.王俊,宋尔卫.实用RNA技术[M].北京:人民卫生出版社, 2006.
    26. Shuldiner AR, Yang R, Gong DW. Resistin, obesity and insulin resistance--the emerging role of the adipocyte as an endocrine organ[J]. N Engl J Med, 2001, 345(18): 1345-1346.
    27. Kershaw EE, Flier JS. Adipose tissue as an endocrine organ[J]. J Clin Endocrinol Metab, 2004, 89(6): 2548-2556.
    28. Issemann I, Green S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators[J]. Nature, 1990, 347(6294): 645-650.
    29. Dreyer C, Krey G, Keller H, et al. Control of the peroxisomal beta-oxidation pathway by a novel family of nuclear hormone receptors[J]. Cell, 1992, 68(5): 879-887.
    30. Kliewer SA, Forman BM, Blumberg B, et al. Differential expression and activation of a family of murine peroxisome proliferator-activated receptors[J]. Proc Natl Acad Sci U S A, 1994, 91(15): 7355-7359.
    31. Ahmed W, Ziouzenkova O, Brown J, et al. PPARs and their metabolic modulation: new mechanisms for transcriptional regulation?[J]. J Intern Med, 2007, 262(2): 184-198.
    32. Braissant O, Foufelle F, Scotto C, et al. Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-alpha, -beta, and -gamma in the adult rat[J]. Endocrinology, 1996, 137(1): 354-366.
    33. Auboeuf D, Rieusset J, Fajas L, et al. Tissue distribution and quantification of the expression of mRNAs of peroxisome proliferator-activated receptors and liver X receptor-alpha in humans: no alteration in adipose tissue of obese and NIDDM patients[J]. Diabetes, 1997, 46(8): 1319-1327.
    34. Duval C, Muller M, Kersten S. PPARalpha and dyslipidemia[J]. Biochim Biophys Acta, 2007, 1771(8): 961-971.
    35. Fruchart JC, Duriez P, Staels B. Peroxisome proliferator-activated receptor-alpha activators regulate genes governing lipoprotein metabolism, vascular inflammation and atherosclerosis[J]. Curr Opin Lipidol, 1999, 10(3): 245-257.
    36. Israelian-Konaraki Z, Reaven PD. Peroxisome proliferator-activated receptor-alpha and atherosclerosis: from basic mechanisms to clinical implications[J]. Cardiol Rev, 2005, 13(5): 240-246.
    37. Linton MF, Fazio S. Re-emergence of fibrates in the management of dyslipidemia and cardiovascular risk[J]. Curr Atheroscler Rep, 2000, 2(1): 29-35.
    38. Rubins HB, Robins SJ. Conclusions from the VA-HIT study[J]. Am J Cardiol, 2000, 86(5): 543-544.
    39. Zandbergen F, Plutzky J. PPARalpha in atherosclerosis and inflammation[J]. Biochim Biophys Acta, 2007, 1771(8): 972-982.
    40. Higashiyama H, Billin AN, Okamoto Y, et al. Expression profiling of peroxisomeproliferator-activated receptor-delta (PPAR-delta) in mouse tissues using tissue microarray[J]. Histochem Cell Biol, 2007, 127(5): 485-494.
    41. Wang YX, Lee CH, Tiep S, et al. Peroxisome-proliferator-activated receptor delta activates fat metabolism to prevent obesity[J]. Cell, 2003, 113(2): 159-170.
    42. Sprecher DL. Lipids, lipoproteins, and peroxisome proliferator activated receptor-delta[J]. Am J Cardiol, 2007, 100(11 A): n20-24.
    43. Fredenrich A, Grimaldi PA. PPAR delta: an uncompletely known nuclear receptor[J]. Diabetes Metab, 2005, 31(1): 23-27.
    44. Berger J, Leibowitz MD, Doebber TW, et al. Novel peroxisome proliferator-activated receptor (PPAR) gamma and PPARdelta ligands produce distinct biological effects[J]. J Biol Chem, 1999, 274(10): 6718-6725.
    45. Leibowitz MD, Fievet C, Hennuyer N, et al. Activation of PPARdelta alters lipid metabolism in db/db mice[J]. FEBS Lett, 2000, 473(3): 333-336.
    46. Oliver WR, Jr., Shenk JL, Snaith MR, et al. A selective peroxisome proliferator-activated receptor delta agonist promotes reverse cholesterol transport[J]. Proc Natl Acad Sci U S A, 2001, 98(9): 5306-5311.
    47. Berger JP, Akiyama TE, Meinke PT. PPARs: therapeutic targets for metabolic disease[J]. Trends Pharmacol Sci, 2005, 26(5): 244-251.
    48. Lee CH, Olson P, Hevener A, et al. PPARdelta regulates glucose metabolism and insulin sensitivity[J]. Proc Natl Acad Sci U S A, 2006, 103(9): 3444-3449.
    49. Takahashi S, Tanaka T, Kodama T, et al. Peroxisome proliferator-activated receptor delta (PPARdelta), a novel target site for drug discovery in metabolic syndrome[J]. Pharmacol Res, 2006, 53(6): 501-507.
    50. Zhang H, Pi R, Li R, et al. PPARbeta/delta activation inhibits angiotensin II-induced collagen type I expression in rat cardiac fibroblasts[J]. Arch Biochem Biophys, 2007, 460(1): 25-32.
    51. Reilly SM, Lee CH. PPAR delta as a therapeutic target in metabolic disease[J]. FEBS Lett, 2008, 582(1): 26-31.
    52. Luquet S, Gaudel C, Holst D, et al. Roles of PPAR delta in lipid absorption and metabolism: a new target for the treatment of type 2 diabetes[J]. Biochim Biophys Acta, 2005, 1740(2): 313-317.
    53. Tontonoz P, Hu E, Graves RA, et al. mPPAR gamma 2: tissue-specific regulator of anadipocyte enhancer[J]. Genes Dev, 1994, 8(10): 1224-1234.
    54. Gurnell M. Peroxisome proliferator-activated receptor gamma and the regulation of adipocyte function: lessons from human genetic studies[J]. Best Pract Res Clin Endocrinol Metab, 2005, 19(4): 501-523.
    55. Sharma AM, Staels B. Review: Peroxisome proliferator-activated receptor gamma and adipose tissue--understanding obesity-related changes in regulation of lipid and glucose metabolism[J]. J Clin Endocrinol Metab, 2007, 92(2): 386-395.
    56. Kepez A, Oto A, Dagdelen S. Peroxisome proliferator-activated receptor-gamma: novel therapeutic target linking adiposity, insulin resistance, and atherosclerosis[J]. BioDrugs, 2006, 20(2): 121-135.
    57. Mueller E, Drori S, Aiyer A, et al. Genetic analysis of adipogenesis through peroxisome proliferator-activated receptor gamma isoforms[J]. J Biol Chem, 2002, 277(44): 41925-41930.
    58. Chui PC, Guan HP, Lehrke M, et al. PPARgamma regulates adipocyte cholesterol metabolism via oxidized LDL receptor 1[J]. J Clin Invest, 2005, 115(8): 2244-2256.
    59. Tordjman J, Chauvet G, Quette J, et al. Thiazolidinediones block fatty acid release by inducing glyceroneogenesis in fat cells[J]. J Biol Chem, 2003, 278(21): 18785-18790.
    60. He W, Barak Y, Hevener A, et al. Adipose-specific peroxisome proliferator-activated receptor gamma knockout causes insulin resistance in fat and liver but not in muscle[J]. Proc Natl Acad Sci U S A, 2003, 100(26): 15712-15717.
    61. Hermansen K, Mortensen LS. Body weight changes associated with antihyperglycaemic agents in type 2 diabetes mellitus[J]. Drug Saf, 2007, 30(12): 1127-1142.
    62. Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes[J]. N Engl J Med, 2007, 356(24): 2457-2471.
    63. Rosiglitazone: seeking a balanced perspective[J]. Lancet, 2007, 369(9576): 1834.
    64. Kim YY, Kang HJ, Ko SK, et al. Sopungsungi-won (SP) prevents the onset of hyperglycemia and hyperlipidemia in Zucker diabetic fatty rats[J]. Arch Pharm Res, 2002, 25(6): 923-931.
    65. Dynlacht B. Regulation of transcription by proteins that control the cell cycle[J]. Nature, 1997, 389(6647): 149-152.
    66. Maiese K, Chong ZZ, Shang YC. Mechanistic insights into diabetes mellitus andoxidative stress[J]. Curr Med Chem, 2007, 14(16): 1729-1738.
    67. Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance[J]. Science, 1993, 259(5091): 87-91.
    68. Hotamisligil GS, Murray DL, Choy LN, et al. Tumor necrosis factor alpha inhibits signaling from the insulin receptor[J]. Proc Natl Acad Sci U S A, 1994, 91(11): 4854-4858.
    69. Greenwood MR. The relationship of enzyme activity to feeding behavior in rats: lipoprotein lipase as the metabolic gatekeeper[J]. Int J Obes, 1985, 9 Suppl 1: 67-70.
    70. Scanu A. Serum high-density lipoprotein: effect of change in structure on activity of chicken adipose tissue lipase[J]. Science, 1966, 153(736): 640-641.
    71. Wilding JP. The importance of free fatty acids in the development of Type 2 diabetes[J]. Diabet Med, 2007, 24(9): 934-945.
    72. Eurich DT, McAlister FA, Blackburn DF, et al. Benefits and harms of antidiabetic agents in patients with diabetes and heart failure: systematic review[J]. BMJ, 2007, 335(7618): 497.
    73. Xie W, Xing D, Sun H, et al. The effects of Ananas comosus L. leaves on diabetic-dyslipidemic rats induced by alloxan and a high-fat/high-cholesterol diet[J]. Am J Chin Med, 2005, 33(1): 95-105.
    74. Masiello P, De Paoli A, Bergamini E. Age-dependent changes in the sensitivity of the rat to a diabetogenic agent (streptozotocin)[J]. Endocrinology, 1975, 96(3): 787-789.
    75.于德民,吴锐,尹潍,等.实验性链脲佐菌素糖尿病动物模型的研究[J].中国糖尿病杂志, 1995, 3(2): 105-109.
    76.王宏才,田德全.渴痹康对糖尿病大鼠神经及血浆中一氧化氮的调节作用[J].中药新药与临床药理, 2000, 11(4): 223-224.
    77. Banz WJ, Davis J, Steinle JJ, et al. (+)-Z-Bisdehydrodoisynolic acid ameliorates obesity and the metabolic syndrome in female ZDF rats[J]. Obes Res, 2005, 13(11): 1915-1924.
    78. Shi GQ, Dropinski JF, McKeever BM, et al. Design and synthesis of alpha-aryloxyphenylacetic acid derivatives: a novel class of PPARalpha/gamma dual agonists with potent antihyperglycemic and lipid modulating activity[J]. J Med Chem, 2005, 48(13): 4457-4468.
    79. Karalliedde J, Buckingham RE. Thiazolidinediones and their fluid-related adverse effects: facts, fiction and putative management strategies[J]. Drug Saf, 2007, 30(9): 741-753.
    80. Straczkowski M, Kowalska I, Gorski J, et al. The effect of a single bout of exhaustive exercise on muscle carbohydrate and lipid metabolism in a rat model of type 2 diabetes mellitus[J]. Acta Diabetol, 2000, 37(1): 47-53.
    81. Sharma SB, Nasir A, Prabhu KM, et al. Hypoglycaemic and hypolipidemic effect of ethanolic extract of seeds of Eugenia jambolana in alloxan-induced diabetic rabbits[J]. J Ethnopharmacol, 2003, 85(2-3): 201-206.
    82. Schoonjans K, Staels B, Auwerx J. Role of the peroxisome proliferator-activated receptor (PPAR) in mediating the effects of fibrates and fatty acids on gene expression[J]. J Lipid Res, 1996, 37(5): 907-925.
    83. Schoonjans K, Peinado-Onsurbe J, Lefebvre AM, et al. PPARalpha and PPARgamma activators direct a distinct tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene[J]. EMBO J, 1996, 15(19): 5336-5348.
    84. Staels B, Vu-Dac N, Kosykh VA, et al. Fibrates downregulate apolipoprotein C-III expression independent of induction of peroxisomal acyl coenzyme A oxidase. A potential mechanism for the hypolipidemic action of fibrates[J]. J Clin Invest, 1995, 95(2): 705-712.
    85. Tan GD, Fielding BA, Currie JM, et al. The effects of rosiglitazone on fatty acid and triglyceride metabolism in type 2 diabetes[J]. Diabetologia, 2005, 48(1): 83-95.
    86. Molitch ME. Management of dyslipidemias in patients with diabetes and chronic kidney disease[J]. Clin J Am Soc Nephrol, 2006, 1(5): 1090-1099.
    87. Elisaf MS, Bairaktari HT, Tziallas CS, et al. Atherogenic lipid and lipoprotein parameters in hemodialysis patients[J]. Dialysis & transplantation, 1995, 24(11): 642-650.
    88. Taskinen MR. Diabetic dyslipidemia[J]. Atheroscler Suppl, 2002, 3(1): 47-51.
    89. Greiwe JS, Holloszy JO, Semenkovich CF. Exercise induces lipoprotein lipase and GLUT-4 protein in muscle independent of adrenergic-receptor signaling[J]. J Appl Physiol, 2000, 89(1): 176-181.
    90. Ferreira LD, Pulawa LK, Jensen DR, et al. Overexpressing human lipoprotein lipase in mouse skeletal muscle is associated with insulin resistance[J]. Diabetes, 2001, 50(5):1064-1068.
    91. Kakkar P, Das B, Viswanathan PN. A modified spectrophotometric assay of superoxide dismutase[J]. Indian J Biochem Biophys, 1984, 21(2): 130-132.
    92. Draper HH, Hadley M. Malondialdehyde determination as index of lipid peroxidation[J]. Methods in Enzymology, 1990, 186: 421-431.
    93. Rakieten N, Rakieten ML, Nadkarni MR. Studies on the diabetogenic action of streptozotocin (NSC-37917)[J]. Cancer Chemother Rep, 1963, 29: 91-98.
    94. Bolaffi JL, Nagamatsu S, Harris J, et al. Protection by thymidine, an inhibitor of polyadenosine diphosphate ribosylation, of streptozotocin inhibition of insulin secretion[J]. Endocrinology, 1987, 120(5): 2117-2122.
    95. Nukatsuka M, Yoshimura Y, Nishida M, et al. Importance of the concentration of ATP in rat pancreatic beta cells in the mechanism of streptozotocin-induced cytotoxicity[J]. J Endocrinol, 1990, 127(1): 161-165.
    96. Takasu N, Komiya I, Asawa T, et al. Streptozocin- and alloxan-induced H2O2 generation and DNA fragmentation in pancreatic islets. H2O2 as mediator for DNA fragmentation[J]. Diabetes, 1991, 40(9): 1141-1145.
    97. Papaccio G, Frascatore S, Esposito V, et al. Early macrophage infiltration in mice treated with low-dose streptozocin decreases islet superoxide dismutase levels: prevention by silica pretreatment[J]. Acta Anat (Basel), 1991, 142(2): 141-146.
    98. Grover JK, Vats V, Rathi SS. Anti-hyperglycemic effect of Eugenia jambolana and Tinospora cordifolia in experimental diabetes and their effects on key metabolic enzymes involved in carbohydrate metabolism[J]. J Ethnopharmacol, 2000, 73(3): 461-470.
    99. Ko BS, Choi SB, Park SK, et al. Insulin sensitizing and insulinotropic action of berberine from Cortidis rhizoma[J]. Biol Pharm Bull, 2005, 28(8): 1431-1437.
    100. Ravi K, Ramachandran B, Subramanian S. Effect of Eugenia Jambolana seed kernel on antioxidant defense system in streptozotocin-induced diabetes in rats[J]. Life Sci, 2004, 75(22): 2717-2731.
    101. Sathishsekar D, Subramanian S. Beneficial effects of Momordica charantia seeds in the treatment of STZ-induced diabetes in experimental rats[J]. Biol Pharm Bull, 2005, 28(6): 978-983.
    102. Pick A, Clark J, Kubstrup C, et al. Role of apoptosis in failure of beta-cell masscompensation for insulin resistance and beta-cell defects in the male Zucker diabetic fatty rat[J]. Diabetes, 1998, 47(3): 358-364.
    103. Campbell PJ, Carlson MG, Nurjhan N. Fat metabolism in human obesity[J]. Am J Physiol, 1994, 266(4 Pt 1): E600-605.
    104. Shimabukuro M, Zhou YT, Levi M, et al. Fatty acid-induced beta cell apoptosis: a link between obesity and diabetes[J]. Proc Natl Acad Sci U S A, 1998, 95(5): 2498-2502.
    105. Arulselvan P, Subramanian SP. Beneficial effects of Murraya koenigii leaves on antioxidant defense system and ultra structural changes of pancreatic beta-cells in experimental diabetes in rats[J]. Chem Biol Interact, 2007, 165(2): 155-164.
    106. Degirmenci I, Ustuner MC, Kalender Y, et al. The effects of acarbose and Rumex patientia L. on ultrastructural and biochemical changes of pancreatic B cells in streptozotocin-induced diabetic rats[J]. J Ethnopharmacol, 2005, 97(3): 555-559.
    107. Bolkent S, Yanardag R, Tabakoglu-Oguz A, et al. Effects of chard (Beta vulgaris L. var. Cicla) extract on pancreatic B cells in streptozotocin-diabetic rats: a morphological and biochemical study[J]. J Ethnopharmacol, 2000, 73(1-2): 251-259.
    108. McCord JM, Keele BB, Jr., Fridovich I. An enzyme-based theory of obligate anaerobiosis: the physiological function of superoxide dismutase[J]. Proc Natl Acad Sci U S A, 1971, 68(5): 1024-1027.
    109. Coskun O, Kanter M, Korkmaz A, et al. Quercetin, a flavonoid antioxidant, prevents and protects streptozotocin-induced oxidative stress and beta-cell damage in rat pancreas[J]. Pharmacol Res, 2005, 51(2): 117-123.
    110. Yazdanparast R, Ardestani A, Jamshidi S. Experimental diabetes treated with Achillea santolina: effect on pancreatic oxidative parameters[J]. J Ethnopharmacol, 2007, 112(1): 13-18.
    111. Kanter M, Coskun O, Korkmaz A, et al. Effects of Nigella sativa on oxidative stress and beta-cell damage in streptozotocin-induced diabetic rats[J]. Anat Rec A Discov Mol Cell Evol Biol, 2004, 279(1): 685-691.
    112. Milburn JL, Jr., Hirose H, Lee YH, et al. Pancreatic beta-cells in obesity. Evidence for induction of functional, morphologic, and metabolic abnormalities by increased long chain fatty acids[J]. J Biol Chem, 1995, 270(3): 1295-1299.
    113. Hirose H, Lee YH, Inman LR, et al. Defective fatty acid-mediated beta-cell compensation in Zucker diabetic fatty rats. Pathogenic implications forobesity-dependent diabetes[J]. J Biol Chem, 1996, 271(10): 5633-5637.
    114. Ilhan N, Halifeoglu I, Ozercan HI. Tissue malondialdehyde and adenosine triphosphatase level after experimental liver ischaemia-reperfusion damage[J]. Cell Biochem Funct, 2001, 19(3): 207-212.
    115. Cossel L, Schneider E, Kuttler B, et al. Low dose streptozotocin induced diabetes in mice. Metabolic, light microscopical, histochemical, immunofluorescence microscopical, electron microscopical and morphometrical findings[J]. Exp Clin Endocrinol, 1985, 85(1): 7-26.
    116. Asplund-Carlson A. Effects of gemfibrozil therapy on glucose tolerance, insulin sensitivity and plasma plasminogen activator inhibitor activity in hypertriglyceridaemia[J]. J Cardiovasc Risk, 1996, 3(4): 385-390.
    117. Sane T, Knudsen P, Vuorinen-Markkola H, et al. Decreasing triglyceride by gemfibrozil therapy does not affect the glucoregulatory or antilipolytic effect of insulin in nondiabetic subjects with mild hypertriglyceridemia[J]. Metabolism, 1995, 44(5): 589-596.
    118. Tang LQ, Wei W, Chen LM, et al. Effects of berberine on diabetes induced by alloxan and a high-fat/high-cholesterol diet in rats[J]. J Ethnopharmacol, 2006, 108(1): 109-115.
    119. Hwang JM, Wang CJ, Chou FP, et al. Inhibitory effect of berberine on tert-butyl hydroperoxide-induced oxidative damage in rat liver[J]. Arch Toxicol, 2002, 76(11): 664-670.
    120. Simsolo RB, Ong JM, Saffari B, et al. Effect of improved diabetes control on the expression of lipoprotein lipase in human adipose tissue[J]. J Lipid Res, 1992, 33(1): 89-95.
    121. Tan GD, Olivecrona G, Vidal H, et al. Insulin sensitisation affects lipoprotein lipase transport in type 2 diabetes: role of adipose tissue and skeletal muscle in response to rosiglitazone[J]. Diabetologia, 2006, 49(10): 2412-2418.
    122. Boden G, Chen X, Ruiz J, et al. Mechanisms of fatty acid-induced inhibition of glucose uptake[J]. J Clin Invest, 1994, 93(6): 2438-2446.
    123. Boden G, Chen X. Effects of fat on glucose uptake and utilization in patients with non-insulin-dependent diabetes[J]. J Clin Invest, 1995, 96(3): 1261-1268.
    124. Grimaldi PA. Peroxisome proliferator-activated receptors as sensors of fatty acids andderivatives[J]. Cell Mol Life Sci, 2007, 64(19-20): 2459-2464.
    125. Lehmann JM, Moore LB, Smith-Oliver TA, et al. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma)[J]. J Biol Chem, 1995, 270(22): 12953-12956.
    126. Miyazaki Y, Glass L, Triplitt C, et al. Effect of rosiglitazone on glucose and non-esterified fatty acid metabolism in Type II diabetic patients[J]. Diabetologia, 2001, 44(12): 2210-2219.
    127. Mayerson AB, Hundal RS, Dufour S, et al. The effects of rosiglitazone on insulin sensitivity, lipolysis, and hepatic and skeletal muscle triglyceride content in patients with type 2 diabetes[J]. Diabetes, 2002, 51(3): 797-802.
    128. Gavrilova O, Haluzik M, Matsusue K, et al. Liver peroxisome proliferator-activated receptor gamma contributes to hepatic steatosis, triglyceride clearance, and regulation of body fat mass[J]. J Biol Chem, 2003, 278(36): 34268-34276.
    129. Weinstock PH, Levak-Frank S, Hudgins LC, et al. Lipoprotein lipase controls fatty acid entry into adipose tissue, but fat mass is preserved by endogenous synthesis in mice deficient in adipose tissue lipoprotein lipase[J]. Proc Natl Acad Sci U S A, 1997, 94(19): 10261-10266.
    130. Levak-Frank S, Hofmann W, Weinstock PH, et al. Induced mutant mouse lines that express lipoprotein lipase in cardiac muscle, but not in skeletal muscle and adipose tissue, have normal plasma triglyceride and high-density lipoprotein-cholesterol levels[J]. Proc Natl Acad Sci U S A, 1999, 96(6): 3165-3170.
    131. Jensen DR, Schlaepfer IR, Morin CL, et al. Prevention of diet-induced obesity in transgenic mice overexpressing skeletal muscle lipoprotein lipase[J]. Am J Physiol, 1997, 273(2 Pt 2): R683-689.
    132. Semenkovich CF, Wims M, Noe L, et al. Insulin regulation of lipoprotein lipase activity in 3T3-L1 adipocytes is mediated at posttranscriptional and posttranslational levels[J]. J Biol Chem, 1989, 264(15): 9030-9038.
    133. Kraemer FB, Takeda D, Natu V, et al. Insulin regulates lipoprotein lipase activity in rat adipose cells via wortmannin- and rapamycin-sensitive pathways[J]. Metabolism, 1998, 47(5): 555-559.
    134. Mishima Y, Kuyama A, Tada A, et al. Relationship between serum tumor necrosis factor-alpha and insulin resistance in obese men with Type 2 diabetes mellitus[J].Diabetes Res Clin Pract, 2001, 52(2): 119-123.
    135. Moller DE. Potential role of TNF-alpha in the pathogenesis of insulin resistance and type 2 diabetes[J]. Trends Endocrinol Metab, 2000, 11(6): 212-217.
    136. Hotamisligil GS. The role of TNFalpha and TNF receptors in obesity and insulin resistance[J]. J Intern Med, 1999, 245(6): 621-625.
    137. Clarke SD, Baillie R, Jump DB, et al. Fatty acid regulation of gene expression. Its role in fuel partitioning and insulin resistance[J]. Ann N Y Acad Sci, 1997, 827: 178-187.
    138. Shulman GI, Rothman DL, Jue T, et al. Quantitation of muscle glycogen synthesis in normal subjects and subjects with non-insulin-dependent diabetes by 13C nuclear magnetic resonance spectroscopy[J]. N Engl J Med, 1990, 322(4): 223-228.
    139. Lechleitner M, Herold M, Dzien-Bischinger C, et al. Tumour necrosis factor-alpha plasma levels in elderly patients with Type 2 diabetes mellitus-observations over 2 years[J]. Diabet Med, 2002, 19(11): 949-953.
    140. Hofmann C, Lorenz K, Braithwaite SS, et al. Altered gene expression for tumor necrosis factor-alpha and its receptors during drug and dietary modulation of insulin resistance[J]. Endocrinology, 1994, 134(1): 264-270.
    141. Das UN. GLUT-4, tumor necrosis factor, essential fatty acids and daf-genes and their role in insulin resistance and non-insulin dependent diabetes mellitus[J]. Prostaglandins Leukot Essent Fatty Acids, 1999, 60(1): 13-20.
    142. Prins JB, Niesler CU, Winterford CM, et al. Tumor necrosis factor-alpha induces apoptosis of human adipose cells[J]. Diabetes, 1997, 46(12): 1939-1944.
    143. Kern PA, Saghizadeh M, Ong JM, et al. The expression of tumor necrosis factor in human adipose tissue. Regulation by obesity, weight loss, and relationship to lipoprotein lipase[J]. J Clin Invest, 1995, 95(5): 2111-2119.
    144. Feingold KR, Grunfeld C. Role of cytokines in inducing hyperlipidemia[J]. Diabetes, 1992, 41 Suppl 2: 97-101.
    145. Roden M, Price TB, Perseghin G, et al. Mechanism of free fatty acid-induced insulin resistance in humans[J]. J Clin Invest, 1996, 97(12): 2859-2865.
    146. Reaven GM. Banting lecture 1988. Role of insulin resistance in human disease[J]. Diabetes, 1988, 37(12): 1595-1607.
    147. Schmitz-Peiffer C. Signalling aspects of insulin resistance in skeletal muscle: mechanisms induced by lipid oversupply[J]. Cell Signal, 2000, 12(9-10): 583-594.
    148. Kraegen EW, Cooney GJ, Ye JM, et al. The role of lipids in the pathogenesis of muscle insulin resistance and beta cell failure in type II diabetes and obesity[J]. Exp Clin Endocrinol Diabetes, 2001, 109 Suppl 2: S189-201.
    149. Chen NG, Reaven GM. Fatty acid inhibition of glucose-stimulated insulin secretion is enhanced in pancreatic islets from insulin-resistant rats[J]. Metabolism, 1999, 48(10): 1314-1317.
    150. Claudel T, Leibowitz MD, Fievet C, et al. Reduction of atherosclerosis in apolipoprotein E knockout mice by activation of the retinoid X receptor[J]. Proc Natl Acad Sci U S A, 2001, 98(5): 2610-2615.
    151. Chung BH, Li C, Sun BK, et al. Rosiglitazone protects against cyclosporine-induced pancreatic and renal injury in rats[J]. Am J Transplant, 2005, 5(8): 1856-1867.
    152. Reginato MJ, Lazar MA. Mechanisms by which Thiazolidinediones Enhance Insulin Action[J]. Trends Endocrinol Metab, 1999, 10(1): 9-13.
    153. Maeda N, Takahashi M, Funahashi T, et al. PPARgamma ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein[J]. Diabetes, 2001, 50(9): 2094-2099.
    154. Yilmaz MI, Sonmez A, Caglar K, et al. Peroxisome proliferator-activated receptor gamma (PPAR-gamma) agonist increases plasma adiponectin levels in type 2 diabetic patients with proteinuria[J]. Endocrine, 2004, 25(3): 207-214.
    155. Hiuge A, Tenenbaum A, Maeda N, et al. Effects of peroxisome proliferator-activated receptor ligands, bezafibrate and fenofibrate, on adiponectin level[J]. Arterioscler Thromb Vasc Biol, 2007, 27(3): 635-641.
    156. Choi KC, Ryu OH, Lee KW, et al. Effect of PPAR-alpha and -gamma agonist on the expression of visfatin, adiponectin, and TNF-alpha in visceral fat of OLETF rats[J]. Biochem Biophys Res Commun, 2005, 336(3): 747-753.
    157. Fasshauer M, Klein J, Neumann S, et al. Hormonal regulation of adiponectin gene expression in 3T3-L1 adipocytes[J]. Biochem Biophys Res Commun, 2002, 290(3): 1084-1089.
    158. Choi KM, Lee J, Lee KW, et al. Comparison of serum concentrations of C-reactive protein, TNF-alpha, and interleukin 6 between elderly Korean women with normal and impaired glucose tolerance[J]. Diabetes Res Clin Pract, 2004, 64(2): 99-106.
    159. Carey AL, Bruce CR, Sacchetti M, et al. Interleukin-6 and tumor necrosis factor-alphaare not increased in patients with Type 2 diabetes: evidence that plasma interleukin-6 is related to fat mass and not insulin responsiveness[J]. Diabetologia, 2004, 47(6): 1029-1037.
    160. Febbraio MA, Steensberg A, Starkie RL, et al. Skeletal muscle interleukin-6 and tumor necrosis factor-alpha release in healthy subjects and patients with type 2 diabetes at rest and during exercise[J]. Metabolism, 2003, 52(7): 939-944.
    161. Nakano Y, Tobe T, Choi-Miura NH, et al. Isolation and characterization of GBP28, a novel gelatin-binding protein purified from human plasma[J]. J Biochem, 1996, 120(4): 803-812.
    162. Scherer PE, Williams S, Fogliano M, et al. A novel serum protein similar to C1q, produced exclusively in adipocytes[J]. J Biol Chem, 1995, 270(45): 26746-26749.
    163. Yamamoto Y, Hirose H, Saito I, et al. Correlation of the adipocyte-derived protein adiponectin with insulin resistance index and serum high-density lipoprotein-cholesterol, independent of body mass index, in the Japanese population[J]. Clin Sci (Lond), 2002, 103(2): 137-142.
    164. Rothenbacher D, Brenner H, Marz W, et al. Adiponectin, risk of coronary heart disease and correlations with cardiovascular risk markers[J]. Eur Heart J, 2005, 26(16): 1640-1646.
    165. Miyazaki Y, Mahankali A, Wajcberg E, et al. Effect of pioglitazone on circulating adipocytokine levels and insulin sensitivity in type 2 diabetic patients[J]. J Clin Endocrinol Metab, 2004, 89(9): 4312-4319.
    166. Hotta K, Funahashi T, Arita Y, et al. Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients[J]. Arterioscler Thromb Vasc Biol, 2000, 20(6): 1595-1599.
    167. Hotta K, Funahashi T, Bodkin NL, et al. Circulating concentrations of the adipocyte protein adiponectin are decreased in parallel with reduced insulin sensitivity during the progression to type 2 diabetes in rhesus monkeys[J]. Diabetes, 2001, 50(5): 1126-1133.
    168. Ruige JB, Ballaux DP, Funahashi T, et al. Resting metabolic rate is an important predictor of serum adiponectin concentrations: potential implications for obesity-related disorders[J]. Am J Clin Nutr, 2005, 82(1): 21-25.
    169. Pilz S, Horejsi R, Moller R, et al. Early atherosclerosis in obese juveniles is associatedwith low serum levels of adiponectin[J]. J Clin Endocrinol Metab, 2005, 90(8): 4792-4796.
    170. Satoh N, Naruse M, Usui T, et al. Leptin-to-adiponectin ratio as a potential atherogenic index in obese type 2 diabetic patients[J]. Diabetes Care, 2004, 27(10): 2488-2490.
    171. Pajvani UB, Hawkins M, Combs TP, et al. Complex distribution, not absolute amount of adiponectin, correlates with thiazolidinedione-mediated improvement in insulin sensitivity[J]. J Biol Chem, 2004, 279(13): 12152-12162.
    172. Houseknecht KL, Cole BM, Steele PJ. Peroxisome proliferator-activated receptor gamma (PPARgamma) and its ligands: a review[J]. Domest Anim Endocrinol, 2002, 22(1): 1-23.
    173. Tenenbaum A, Motro M, Fisman EZ. Dual and pan-peroxisome proliferator-activated receptors (PPAR) co-agonism: the bezafibrate lessons[J]. Cardiovasc Diabetol, 2005, 4: 14.
    174. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method[J]. Methods, 2001, 25(4): 402-408.
    175. Beeson M, Sajan MP, Dizon M, et al. Activation of protein kinase C-zeta by insulin and phosphatidylinositol-3,4,5-(PO4)3 is defective in muscle in type 2 diabetes and impaired glucose tolerance: amelioration by rosiglitazone and exercise[J]. Diabetes, 2003, 52(8): 1926-1934.
    176. Patsouris D, Reddy JK, Muller M, et al. Peroxisome proliferator-activated receptor alpha mediates the effects of high-fat diet on hepatic gene expression[J]. Endocrinology, 2006, 147(3): 1508-1516.
    177. Duez H, Lefebvre B, Poulain P, et al. Regulation of human apoA-I by gemfibrozil and fenofibrate through selective peroxisome proliferator-activated receptor alpha modulation[J]. Arterioscler Thromb Vasc Biol, 2005, 25(3): 585-591.
    178. Schultze AE, Alborn WE, Newton RK, et al. Administration of a PPARalpha agonist increases serum apolipoprotein A-V levels and the apolipoprotein A-V/apolipoprotein C-III ratio[J]. J Lipid Res, 2005, 46(8): 1591-1595.
    179. Finck BN, Bernal-Mizrachi C, Han DH, et al. A potential link between muscle peroxisome proliferator- activated receptor-alpha signaling and obesity-relateddiabetes[J]. Cell Metab, 2005, 1(2): 133-144.
    180. Akiyama TE, Nicol CJ, Fievet C, et al. Peroxisome proliferator-activated receptor-alpha regulates lipid homeostasis, but is not associated with obesity: studies with congenic mouse lines[J]. J Biol Chem, 2001, 276(42): 39088-39093.
    181. Fischer M, You M, Matsumoto M, et al. Peroxisome proliferator-activated receptor alpha (PPARalpha) agonist treatment reverses PPARalpha dysfunction and abnormalities in hepatic lipid metabolism in ethanol-fed mice[J]. J Biol Chem, 2003, 278(30): 27997-28004.
    182. Lalloyer F, Vandewalle B, Percevault F, et al. Peroxisome proliferator-activated receptor alpha improves pancreatic adaptation to insulin resistance in obese mice and reduces lipotoxicity in human islets[J]. Diabetes, 2006, 55(6): 1605-1613.
    183. Ravnskjaer K, Boergesen M, Rubi B, et al. Peroxisome proliferator-activated receptor alpha (PPARalpha) potentiates, whereas PPARgamma attenuates, glucose-stimulated insulin secretion in pancreatic beta-cells[J]. Endocrinology, 2005, 146(8): 3266-3276.
    184. Holst D, Luquet S, Nogueira V, et al. Nutritional regulation and role of peroxisome proliferator-activated receptor delta in fatty acid catabolism in skeletal muscle[J]. Biochim Biophys Acta, 2003, 1633(1): 43-50.
    185. Akiyama TE, Lambert G, Nicol CJ, et al. Peroxisome proliferator-activated receptor beta/delta regulates very low density lipoprotein production and catabolism in mice on a Western diet[J]. J Biol Chem, 2004, 279(20): 20874-20881.
    186. Sprecher DL, Massien C, Pearce G, et al. Triglyceride:high-density lipoprotein cholesterol effects in healthy subjects administered a peroxisome proliferator activated receptor delta agonist[J]. Arterioscler Thromb Vasc Biol, 2007, 27(2): 359-365.
    187. Kramer DK, Al-Khalili L, Guigas B, et al. Role of AMP kinase and PPARdelta in the regulation of lipid and glucose metabolism in human skeletal muscle[J]. J Biol Chem, 2007, 282(27): 19313-19320.
    188. Choi KC, Lee SY, Yoo HJ, et al. Effect of PPAR-delta agonist on the expression of visfatin, adiponectin, and resistin in rat adipose tissue and 3T3-L1 adipocytes[J]. Biochem Biophys Res Commun, 2007, 357(1): 62-67.
    189. Bastie C, Holst D, Gaillard D, et al. Expression of peroxisome proliferator-activated receptor PPARdelta promotes induction of PPARgamma and adipocyte differentiation in 3T3C2 fibroblasts[J]. J Biol Chem, 1999, 274(31): 21920-21925.
    190. Bastie C, Luquet S, Holst D, et al. Alterations of peroxisome proliferator-activated receptor delta activity affect fatty acid-controlled adipose differentiation[J]. J Biol Chem, 2000, 275(49): 38768-38773.
    191. Rodriguez-Esparragon FJ, Rodriguez-Perez JC, Macias-Reyes A, et al. Peroxisome proliferator-activated receptor-gamma2-Pro12Ala and endothelial nitric oxide synthase-4a/bgene polymorphisms are associated with essential hypertension[J]. J Hypertens, 2003, 21(9): 1649-1655.
    192. Forman BM, Tontonoz P, Chen J, et al. 15-Deoxy-delta 12, 14-prostaglandin J2 is a ligand for the adipocyte determination factor PPAR gamma[J]. Cell, 1995, 83(5): 803-812.
    193. Hegele RA. Monogenic forms of insulin resistance: apertures that expose the common metabolic syndrome[J]. Trends Endocrinol Metab, 2003, 14(8): 371-377.
    194. Hansen PA, Han DH, Nolte LA, et al. DHEA protects against visceral obesity and muscle insulin resistance in rats fed a high-fat diet[J]. Am J Physiol, 1997, 273(5 Pt 2): R1704-1708.
    195. Markovic TP, Jenkins AB, Campbell LV, et al. The determinants of glycemic responses to diet restriction and weight loss in obesity and NIDDM[J]. Diabetes Care, 1998, 21(5): 687-694.
    196. Kersten S. Peroxisome proliferator activated receptors and obesity[J]. Eur J Pharmacol, 2002, 440(2-3): 223-234.
    197. Garg A. Dyslipoproteinemia and diabetes[J]. Endocrinol Metab Clin North Am, 1998, 27(3): 613-625, ix-x.
    198. Okuno A, Tamemoto H, Tobe K, et al. Troglitazone increases the number of small adipocytes without the change of white adipose tissue mass in obese Zucker rats[J]. J Clin Invest, 1998, 101(6): 1354-1361.
    199. de Souza CJ, Eckhardt M, Gagen K, et al. Effects of pioglitazone on adipose tissue remodeling within the setting of obesity and insulin resistance[J]. Diabetes, 2001, 50(8): 1863-1871.
    200. Miyazaki Y, Mahankali A, Matsuda M, et al. Effect of pioglitazone on abdominal fat distribution and insulin sensitivity in type 2 diabetic patients[J]. J Clin Endocrinol Metab, 2002, 87(6): 2784-2791.
    201. Larsen PJ, Jensen PB, Sorensen RV, et al. Differential influences of peroxisomeproliferator-activated receptors gamma and -alpha on food intake and energy homeostasis[J]. Diabetes, 2003, 52(9): 2249-2259.
    202. Ye JM, Doyle PJ, Iglesias MA, et al. Peroxisome proliferator-activated receptor (PPAR)-alpha activation lowers muscle lipids and improves insulin sensitivity in high fat-fed rats: comparison with PPAR-gamma activation[J]. Diabetes, 2001, 50(2): 411-417.
    203. Spiegelman BM. PPAR-gamma: adipogenic regulator and thiazolidinedione receptor[J]. Diabetes, 1998, 47(4): 507-514.
    204. Kersten S, Desvergne B, Wahli W. Roles of PPARs in health and disease[J]. Nature, 2000, 405(6785): 421-424.
    205. Friedman J. Fat in all the wrong places[J]. Nature, 2002, 415(6869): 268-269.
    206. Unger RH. Lipotoxic diseases[J]. Annu Rev Med, 2002, 53: 319-336.
    207. Unger RH, Zhou YT, Orci L. Regulation of fatty acid homeostasis in cells: novel role of leptin[J]. Proc Natl Acad Sci U S A, 1999, 96(5): 2327-2332.
    208. Yki-Jarvinen H. Thiazolidinediones[J]. N Engl J Med, 2004, 351(11): 1106-1118.
    209. Spiegelman BM, Flier JS. Adipogenesis and obesity: rounding out the big picture[J]. Cell, 1996, 87(3): 377-389.
    210.司徒镇强,吴军正.细胞培养[M].北京:世界图书出版西安公司, 2006: 77-80.
    211. Zhang C, Teng L, Shi Y, et al. Effect of emodin on proliferation and differentiation of
    3T3-L1 preadipocyte and FAS activity[J]. Chin Med J (Engl), 2002, 115(7): 1035-1038.
    212. Park SK, Oh SY, Lee MY, et al. CCAAT/enhancer binding protein and nuclear factor-Y regulate adiponectin gene expression in adipose tissue[J]. Diabetes, 2004, 53(11): 2757-2766.
    213. Suryawan A, Hu CY. Effect of serum on differentiation of porcine adipose stromal-vascular cells in primary culture[J]. Comparative Biochemistry and Physiology Part A: Physiology, 1993, 105(3): 485-492.
    214. Ramirez-Zacarias JL, Castro-Munozledo F, Kuri-Harcuch W. Quantitation of adipose conversion and triglycerides by staining intracytoplasmic lipids with oil red O[J]. Histochemistry and Cell Biology, 1992, 97(6): 493-497.
    215. Ochi T, Kaise T, Oya-Ohta Y. Glutathione plays different roles in the induction of the cytotoxic effects of inorganic and organic arsenic compounds in cultured BALB/c 3T3cells[J]. Cellular and Molecular Life Sciences (CMLS), 1994, V50(2): 115-120.
    216. Jantova S, Cipak L, Cernakova M, et al. Effect of berberine on proliferation, cell cycle and apoptosis in HeLa and L1210 cells[J]. J Pharm Pharmacol, 2003, 55(8): 1143-1149.
    217. Letasiova S, Jantova S, Muckova M, et al. Antiproliferative activity of berberine in vitro and in vivo[J]. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub, 2005, 149(2): 461-463.
    218. Fang XK, Gao J, Zhu DN. Kaempferol and quercetin isolated from Euonymus alatus improve glucose uptake of 3T3-L1 cells without adipogenesis activity[J]. Life Sci, 2008, 82(11-12): 615-622.
    219. Liu Y, Wang WJ, Chen WH, et al. Effects of Astragalus polysaccharides on proliferation and differentiation of 3T3-L1 preadipocytes[J]. Zhong Xi Yi Jie He Xue Bao, 2007, 5(4): 421-426.
    220. Nakano S, Inada Y, Masuzaki H, et al. Bezafibrate regulates the expression and enzyme activity of 11beta-hydroxysteroid dehydrogenase type 1 in murine adipose tissue and 3T3-L1 adipocytes[J]. Am J Physiol Endocrinol Metab, 2007, 292(4): E1213-1222.
    221. Mersmann HJ, Goodman JR, Brown LJ. Development of swine adipose tissue: morphology and chemical composition[J]. The Journal of Lipid Research, 1975, 16(4): 269-279.
    222. McNeel RL, Mersmann HJ. Distribution and quantification of beta1-, beta2-, and beta3-adrenergic receptor subtype transcripts in porcine tissues[J]. J Anim Sci, 1999, 77(3): 611-621.
    223.郭海霞,薛红漫,夏焱,等. siRNA对VEGFR2的表达抑制及对HL60细胞和人内皮细胞的影响[J].中山大学学报:医学科学版, 2006, 27(3): 276-280.
    224. Check E. RNA interference: hitting the on switch[J]. Nature, 2007, 448(7156): 855-858.
    225. Hannon GJ. RNA interference[J]. Nature, 2002, 418(6894): 244-251.
    226. Elbashir SM, Lendeckel W, Tuschl T. RNA interference is mediated by 21- and
    22-nucleotide RNAs[J]. Genes Dev, 2001, 15(2): 188-200.
    227. Zamore PD. RNA interference: big applause for silencing in Stockholm[J]. Cell, 2006, 127(6): 1083-1086.
    228. Wang XH, Aliyari R, Li WX, et al. RNA interference directs innate immunity against viruses in adult Drosophila[J]. Science, 2006, 312(5772): 452-454.
    229.宋尔卫. RNA干扰的生物学原理与应用[M].北京:高等教育出版社, 2005: 184.
    230. Stein P, Svoboda P, Anger M, et al. RNAi: mammalian oocytes do it without RNA-dependent RNA polymerase[J]. RNA, 2003, 9(2): 187-192.
    231. Alisky JM, Davidson BL. Towards therapy using RNA interference[J]. Am J Pharmacogenomics, 2004, 4(1): 45-51.
    232. Choung S, Kim YJ, Kim S, et al. Chemical modification of siRNAs to improve serum stability without loss of efficacy[J]. Biochem Biophys Res Commun, 2006, 342(3): 919-927.
    233. Gordon SP, Berezhna S, Scherfeld D, et al. Characterization of interaction between cationic lipid-oligonucleotide complexes and cellular membrane lipids using confocal imaging and fluorescence correlation spectroscopy[J]. Biophys J, 2005, 88(1): 305-316.
    234. Dalby B, Cates S, Harris A, et al. Advanced transfection with Lipofectamine 2000 reagent: primary neurons, siRNA, and high-throughput applications[J]. Methods, 2004, 33(2): 95-103.
    235. Ji X. The mechanism of RNase III action: how dicer dices[J]. Curr Top Microbiol Immunol, 2008, 320: 99-116.
    236. Zamore PD, Tuschl T, Sharp PA, et al. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals[J]. Cell, 2000, 101(1): 25-33.
    237. Hammond SM, Caudy AA, Hannon GJ. Post-transcriptional gene silencing by double-stranded RNA[J]. Nat Rev Genet, 2001, 2(2): 110-119.
    238. Trujillo ME, Scherer PE. Adiponectin--journey from an adipocyte secretory protein to biomarker of the metabolic syndrome[J]. J Intern Med, 2005, 257(2): 167-175.
    239. Rangwala SM, Lazar MA. Peroxisome proliferator-activated receptor gamma in diabetes and metabolism[J]. Trends Pharmacol Sci, 2004, 25(6): 331-336.
    240. van der Veen JN, Kruit JK, Havinga R, et al. Reduced cholesterol absorption upon PPARdelta activation coincides with decreased intestinal expression of NPC1L1[J]. J Lipid Res, 2005, 46(3): 526-534.
    241. Tanaka T, Yamamoto J, Iwasaki S, et al. Activation of peroxisome proliferator-activated receptor delta induces fatty acid beta-oxidation in skeletal muscle and attenuates metabolic syndrome[J]. Proc Natl Acad Sci U S A, 2003, 100(26): 15924-15929.
    242. Wang YX, Zhang CL, Yu RT, et al. Regulation of muscle fiber type and running endurance by PPARdelta[J]. PLoS Biol, 2004, 2(10): e294.
    243. Abbot EL, McCormack JG, Reynet C, et al. Diverging regulation of pyruvate dehydrogenase kinase isoform gene expression in cultured human muscle cells[J]. FEBS J, 2005, 272(12): 3004-3014.
    244. Cheng L, Ding G, Qin Q, et al. Peroxisome proliferator-activated receptor delta activates fatty acid oxidation in cultured neonatal and adult cardiomyocytes[J]. Biochem Biophys Res Commun, 2004, 313(2): 277-286.
    245. Rosen ED, Sarraf P, Troy AE, et al. PPAR gamma is required for the differentiation of adipose tissue in vivo and in vitro[J]. Mol Cell, 1999, 4(4): 611-617.
    246. Hibuse T, Maeda N, Funahashi T, et al. Aquaporin 7 deficiency is associated with development of obesity through activation of adipose glycerol kinase[J]. Proc Natl Acad Sci U S A, 2005, 102(31): 10993-10998.
    247. Wilson-Fritch L, Nicoloro S, Chouinard M, et al. Mitochondrial remodeling in adipose tissue associated with obesity and treatment with rosiglitazone[J]. J Clin Invest, 2004, 114(9): 1281-1289.
    248. Norris AW, Chen L, Fisher SJ, et al. Muscle-specific PPARgamma-deficient mice develop increased adiposity and insulin resistance but respond to thiazolidinediones[J]. J Clin Invest, 2003, 112(4): 608-618.
    249. Huang C, Zhang Y, Gong Z, et al. Berberine inhibits 3T3-L1 adipocyte differentiation through the PPARgamma pathway[J]. Biochemical and Biophysical Research Communications, 2006, 348(2): 571-578.
    250. Dobrian AD, Schriver SD, Khraibi AA, et al. Pioglitazone prevents hypertension and reduces oxidative stress in diet-induced obesity[J]. Hypertension, 2004, 43(1): 48-56.
    251. Pearson SL, Cawthorne MA, Clapham JC, et al. The thiazolidinedione insulin sensitiser, BRL 49653, increases the expression of PPAR-gamma and aP2 in adipose tissue of high-fat-fed rats[J]. Biochem Biophys Res Commun, 1996, 229(3): 752-757.
    252. Suwaki N, Masuyama H, Masumoto A, et al. Expression and potential role of peroxisome proliferator-activated receptor gamma in the placenta of diabeticpregnancy[J]. Placenta, 2007, 28(4): 315-323.
    253. Zhu Y, Alvares K, Huang Q, et al. Cloning of a new member of the peroxisome proliferator-activated receptor gene family from mouse liver[J]. J Biol Chem, 1993, 268(36): 26817-26820.
    254. Kong W, Wei J, Abidi P, et al. Berberine is a novel cholesterol-lowering drug working through a unique mechanism distinct from statins[J]. Nat Med, 2004, 10(12): 1344-1351.
    255. Lee YS, Kim WS, Kim KH, et al. Berberine, a natural plant product, activates AMP-activated protein kinase with beneficial metabolic effects in diabetic and insulin-resistant states[J]. Diabetes, 2006, 55(8): 2256-2264.
    256. Carmichael GG. Medicine: silencing viruses with RNA[J]. Nature, 2002, 418(6896): 379-380.
    1.耿东升,刘发.小檗碱药理作用研究进展[J].解放军药学学报, 1997, 13(1): 26-28.
    2.任毅,杨静.小檗碱治疗2型糖尿病作用机制的进展[J].中西医结合心脑血管病杂志, 2008, 6(2): 208-210.
    3.谢培凤,周晖,高彦彬.小檗碱治疗2型糖尿病40例疗效观察[J].中国临床保健杂志, 2005, 8(5): 402-403.
    4.魏敬,吴锦丹,蒋建东,等.盐酸小檗碱治疗2型糖尿病合并脂肪肝的临床研究[J].中西医结合肝病杂志, 2004, 14(6): 334-336.
    5.陈其明,谢明智.黄连及小蘖碱降血糖作用的研究[J].药学学报, 1986, 21(6): 401-406.
    6.陈其明,谢明智.小檗碱对正常小鼠血糖调节的影响[J].药学学报, 1987, 22(3): 161-165.
    7. Yin J, Hu R, Chen M, et al. Effects of berberine on glucose metabolism in vitro[J]. Metabolism, 2002, 51(11): 1439-1443.
    8.殷峻,胡仁明,唐金凤,等.小檗碱的体外降糖作用[J].上海第二医科大学学报, 2001, 21(5): 425-427.
    9.殷峻,胡仁明,陈名道,等.二甲双胍、曲格列酮和小檗碱对HepG2细胞耗糖作用比较[J].中华内分泌代谢杂志, 2002, 18(6): 488-489.
    10.周丽斌,杨颖,唐金凤,等.小檗碱对脂肪细胞糖代谢的影响[J].上海第二医科大学学报, 2002, 22(5): 412-414.
    11. Zhang Y, Li X, Zou D, et al. Treatment of type 2 diabetes and dyslipidemia with the natural plant alkaloid berberine[J]. J Clin Endocrinol Metab, 2008 (in press)
    12. Yin J, Xing H, Ye J. Efficacy of berberine in patients with type 2 diabetes mellitus[J]. Metabolism, 2008, 57(5): 712-717.
    13. Cicero AF, Rovati LC, Setnikar I. Eulipidemic effects of berberine administered alone or in combination with other natural cholesterol-lowering agents. A single-blind clinical investigation[J]. Arzneimittelforschung, 2007, 57(1): 26-30.
    14.殷峻,胡仁明,陈名道,等.小檗碱、齐墩果酸和大蒜新素对糖代谢作用的体外研究[J].北京中医药大学学报, 2003, 26(2): 36-38.
    15.华卫国,宋菊敏,廖菡,等.黄连素对糖尿病性神经病变大鼠神经传导速度的影响及激素的调节[J].标记免疫分析与临床, 2001, 8(4): 212-214.
    16. Leng SH, Lu FE, Xu LJ. Therapeutic effects of berberine in impaired glucose tolerance rats and its influence on insulin secretion[J]. Acta Pharmacol Sin, 2004, 25(4): 496-502.
    17. Ko BS, Choi SB, Park SK, et al. Insulin sensitizing and insulinotropic action of berberine from Cortidis rhizoma[J]. Biol Pharm Bull, 2005, 28(8): 1431-1437.
    18.宋菊敏,毛良,施建玲,等.黄连素对非胰岛素依赖型糖尿病大鼠的抗氧化作用[J].中草药, 1992, 23(11): 590-591.
    19.王立琴,张洁,冷萍.黄连素对实验性2型糖尿病小鼠脂代谢异常的影响[J].中西医结合心脑血管病杂志, 2003, 1(8): 467-468.
    20.倪艳霞,刘安强.黄连素治疗Ⅱ型糖尿病60例疗效观察及实验研究[J].中西医结合杂志, 1988, 8(12): 711-713.
    21.高从容,张家庆,黄庆玲.黄连素增加胰岛素抵抗大鼠模型胰岛素敏感性的实验研究[J].中国中西医结合杂志, 1997, 17(3): 162-164.
    22.殷峻,陈名道,唐金凤,等.小檗碱对实验大鼠糖脂代谢的影响[J].中华糖尿病杂志, 2004, 12(3): 215-218.
    23. Zhou L, Yang Y, Wang X, et al. Berberine stimulates glucose transport through a mechanism distinct from insulin[J]. Metabolism, 2007, 56(3): 405-412.
    24. Yin J, Gao Z, Liu D, et al. Berberine improves glucose metabolism through induction of glycolysis[J]. Am J Physiol Endocrinol Metab, 2008, 294(1): E148-156.
    25.陆付耳,冷三华,屠庆年,等.黄连解毒汤与黄连素对2型糖尿病大鼠葡萄糖和脂质代谢影响的比较研究[J].华中科技大学学报(医学版), 2002, 31(6): 662-665.
    26.殷峻,陈名道,杨颖,等.小檗碱对大鼠脂代谢的影响[J].上海第二医科大学学报, 2003, 23(1Suppl): 28-30.
    27. Kong W, Wei J, Abidi P, et al. Berberine is a novel cholesterol-lowering drug working through a unique mechanism distinct from statins[J]. Nat Med, 2004, 10(12): 1344-1351.
    28.潘淮宁,王书奎,王自正,等.盐酸小檗硷对人肝Bel-7402细胞株LDLR表达的影响[J].南京医科大学学报(自然科学版), 2005, 25(12): 865-868.
    29. Lee S, Lim HJ, Park JH, et al. Berberine-induced LDLR up-regulation involves JNK pathway[J]. Biochem Biophys Res Commun, 2007, 362(4): 853-857.
    30. Brusq JM, Ancellin N, Grondin P, et al. Inhibition of lipid synthesis through activation of AMP kinase: an additional mechanism for the hypolipidemic effects of berberine[J]. J Lipid Res, 2006, 47(6): 1281-1288.
    31.王树海,王文健,汪雪峰,等.黄芪多糖和小檗碱对3T3-L1脂肪细胞糖代谢及细胞分化的影响[J].中国中西医结合杂志, 2004, 24(10): 926-928.
    32.周丽斌,陈名道,王晓,等.小檗碱对脂肪细胞分化的影响[J].中华医学杂志, 2003, 83(4): 338-340.
    33. Huang C, Zhang Y, Gong Z, et al. Berberine inhibits 3T3-L1 adipocyte differentiation through the PPARgamma pathway[J]. Biochemical and Biophysical Research Communications, 2006, 348(2): 571-578.
    34.何明坤,陆付耳,王开富,等.小檗碱对高脂血症伴胰岛素抵抗大鼠糖脂代谢的影响[J].中国医院药学杂志, 2004, 24(7): 389-391.
    1. Kim SH, Hyun SH, Choung SY. Anti-diabetic effect of cinnamon extract on blood glucose in db/db mice[J]. J Ethnopharmacol, 2006, 104(1-2): 119-123.
    2. Rudge MV, Damasceno DC, Volpato GT, et al. Effect of Ginkgo biloba on the reproductive outcome and oxidative stress biomarkers of streptozotocin-induced diabetic rats[J]. Braz J Med Biol Res, 2007, 40(8): 1095-1099.
    3. McCord JM, Keele BB, Jr., Fridovich I. An enzyme-based theory of obligate anaerobiosis: the physiological function of superoxide dismutase[J]. Proc Natl Acad Sci U S A, 1971, 68(5): 1024-1027.
    4. Baynes JW, Thorpe SR. Role of oxidative stress in diabetic complications: a new perspective on an old paradigm[J]. Diabetes, 1999, 48(1): 1-9.
    5. Ihara Y, Toyokuni S, Uchida K, et al. Hyperglycemia causes oxidative stress in pancreatic beta-cells of GK rats, a model of type 2 diabetes[J]. Diabetes, 1999, 48(4): 927-932.
    6. Ilhan N, Halifeoglu I, Ozercan HI. Tissue malondialdehyde and adenosine triphosphatase level after experimental liver ischaemia-reperfusion damage[J]. Cell Biochem Funct, 2001, 19(3): 207-212.
    7. Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction anddeath from cardiovascular causes[J]. N Engl J Med, 2007, 356(24): 2457-2471.
    8. Lee SH, Park IS. Effects of soybean diet on the beta cells in the streptozotocin treated rats for induction of diabetes[J]. Diabetes Res Clin Pract, 2000, 47(1): 1-13.
    9. Kim YY, Kang HJ, Ko SK, et al. Sopungsungi-won (SP) prevents the onset of hyperglycemia and hyperlipidemia in Zucker diabetic fatty rats[J]. Arch Pharm Res, 2002, 25(6): 923-931.
    10. Zhang Y, Li X, Zou D, et al. Treatment of type 2 diabetes and dyslipidemia with the natural plant alkaloid berberine[J]. J Clin Endocrinol Metab, 2008.
    11. Liu. Berberine[J]. Altern Med Rev, 2000, 5(2): 175-177.
    12. Kwon KB, Kim EK, Lim JG, et al. Protective effect of Coptidis Rhizoma on S-nitroso-N-acetylpenicillamine (SNAP)-induced apoptosis and necrosis in pancreatic RINm5F cells[J]. Life Sci, 2005, 76(8): 917-929.
    13. Leng SH, Lu FE, Xu LJ. Therapeutic effects of berberine in impaired glucose tolerance rats and its influence on insulin secretion[J]. Acta Pharmacol Sin, 2004, 25(4): 496-502.
    14. Yin J, Hu R, Chen M, et al. Effects of berberine on glucose metabolism in vitro[J]. Metabolism, 2002, 51(11): 1439-1443.
    15. Zhou L, Yang Y, Wang X, et al. Berberine stimulates glucose transport through a mechanism distinct from insulin[J]. Metabolism, 2007, 56(3): 405-412.
    16. Yin J, Gao Z, Liu D, et al. Berberine improves glucose metabolism through induction of glycolysis[J]. Am J Physiol Endocrinol Metab, 2008, 294(1): E148-156.
    17. Ko BS, Choi SB, Park SK, et al. Insulin sensitizing and insulinotropic action of berberine from Cortidis rhizoma[J]. Biol Pharm Bull, 2005, 28(8): 1431-1437.
    18. Zhou Jiyin, Zhou Shiwen, Zhang Kebin, et al. Chronic effects of berberine on blood, liver glucolipid metabolism and liver PPARs expression in diabetic hyperlipidemic rats[J]. Biological & pharmaceutical bulletin, 2008, 31(6): 1169-1176.
    19. Kong W, Wei J, Abidi P, et al. Berberine is a novel cholesterol-lowering drug working through a unique mechanism distinct from statins[J]. Nat Med, 2004, 10(12): 1344-1351.
    20. Brusq JM, Ancellin N, Grondin P, et al. Inhibition of lipid synthesis through activation of AMP kinase: an additional mechanism for the hypolipidemic effects of berberine[J].J Lipid Res, 2006, 47(6): 1281-1288.
    21. Srinivasan K, Viswanad B, Asrat L, et al. Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: a model for type 2 diabetes and pharmacological screening[J]. Pharmacol Res, 2005, 52(4): 313-320.
    22. Kalender Y, Kalender S, Uzunhisarcikli M, et al. Effects of endosulfan on B cells of Langerhans islets in rat pancreas[J]. Toxicology, 2004, 200(2-3): 205-211.
    23. Kakkar P, Das B, Viswanathan PN. A modified spectrophotometric assay of superoxide dismutase[J]. Indian Journal of Biochemistry and Biophysics, 1984, 21: 130-132.
    24. Draper HH, Hadley M. Malondialdehyde determination as index of lipid peroxidation[J]. Methods in Enzymology, 1990, 186: 421-431.
    25. Kadoglou NP, Iliadis F, Angelopoulou N, et al. Beneficial effects of rosiglitazone on novel cardiovascular risk factors in patients with Type 2 diabetes mellitus[J]. Diabet Med, 2008, 25(3): 333-340.
    26. Phuntuwate W, Suthisisang C, Koanantakul B, et al. Effect of fenofibrate therapy on paraoxonase1 status in patients with low HDL-C levels[J]. Atherosclerosis, 2008, 196(1): 122-128.
    27. Ar'Rajab A, AhreN B. Long-Term Diabetogenic Effect of Streptozotocin in Rats. Article[J]. Pancreas, 1993, 8(1): 50-57.
    28. Bolaffi JL, Nagamatsu S, Harris J, et al. Protection by thymidine, an inhibitor of polyadenosine diphosphate ribosylation, of streptozotocin inhibition of insulin secretion[J]. Endocrinology, 1987, 120(5): 2117-2122.
    29. Nukatsuka M, Yoshimura Y, Nishida M, et al. Importance of the concentration of ATP in rat pancreatic beta cells in the mechanism of streptozotocin-induced cytotoxicity[J]. J Endocrinol, 1990, 127(1): 161-165.
    30. Takasu N, Komiya I, Asawa T, et al. Streptozocin- and alloxan-induced H2O2 generation and DNA fragmentation in pancreatic islets. H2O2 as mediator for DNA fragmentation[J]. Diabetes, 1991, 40(9): 1141-1145.
    31. Grover JK, Vats V, Rathi SS. Anti-hyperglycemic effect of Eugenia jambolana and Tinospora cordifolia in experimental diabetes and their effects on key metabolic enzymes involved in carbohydrate metabolism[J]. J Ethnopharmacol, 2000, 73(3): 461-470.
    32. Ravi K, Ramachandran B, Subramanian S. Effect of Eugenia Jambolana seed kernel on antioxidant defense system in streptozotocin-induced diabetes in rats[J]. Life Sci, 2004, 75(22): 2717-2731.
    33. Sathishsekar D, Subramanian S. Beneficial effects of Momordica charantia seeds in the treatment of STZ-induced diabetes in experimental rats[J]. Biol Pharm Bull, 2005, 28(6): 978-983.
    34. Arulselvan P, Subramanian SP. Beneficial effects of Murraya koenigii leaves on antioxidant defense system and ultra structural changes of pancreatic beta-cells in experimental diabetes in rats[J]. Chem Biol Interact, 2007, 165(2): 155-164.
    35. Degirmenci I, Ustuner MC, Kalender Y, et al. The effects of acarbose and Rumex patientia L. on ultrastructural and biochemical changes of pancreatic B cells in streptozotocin-induced diabetic rats[J]. J Ethnopharmacol, 2005, 97(3): 555-559.
    36. Bolkent S, Yanardag R, Tabakoglu-Oguz A, et al. Effects of chard (Beta vulgaris L. var. Cicla) extract on pancreatic B cells in streptozotocin-diabetic rats: a morphological and biochemical study[J]. J Ethnopharmacol, 2000, 73(1-2): 251-259.
    37. Thum T, Bauersachs J. Letter by Thum et al regarding article, "Oxidant stress impairs in vivo reendothelialization capacity of endothelial progenitor cells from patients with type 2 diabetes mellitus: restoration by the peroxisome proliferator-activated receptor-gamma agonist rosiglitazone"[J]. Circulation, 2008, 117(10): e185; author reply e186.
    38. Coskun O, Kanter M, Korkmaz A, et al. Quercetin, a flavonoid antioxidant, prevents and protects streptozotocin-induced oxidative stress and beta-cell damage in rat pancreas[J]. Pharmacol Res, 2005, 51(2): 117-123.
    39. Yazdanparast R, Ardestani A, Jamshidi S. Experimental diabetes treated with Achillea santolina: effect on pancreatic oxidative parameters[J]. J Ethnopharmacol, 2007, 112(1): 13-18.
    40. Kanter M, Coskun O, Korkmaz A, et al. Effects of Nigella sativa on oxidative stress and beta-cell damage in streptozotocin-induced diabetic rats[J]. Anat Rec A Discov Mol Cell Evol Biol, 2004, 279(1): 685-691.
    41. Cossel L, Schneider E, Kuttler B, et al. Low dose streptozotocin induced diabetes in mice. Metabolic, light microscopical, histochemical, immunofluorescence microscopical, electron microscopical and morphometrical findings[J]. Exp Clin Endocrinol, 1985, 85(1): 7-26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700