用户名: 密码: 验证码:
白藜芦醇合酶基因转化生菜的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景和目的
     心血管疾病是严重威胁人类健康的主要疾病,尤其是发展中国家,承担了全球心血管疾病负担的86%。对发展中国家来说,心血管疾病已经不仅仅是一个威胁健康的问题,还会对社会经济发展产生严重影响。据世界卫生组织报道,2005年全球死于心血管疾病的人数高达1 750万,占全球所有死亡人数的30%,其中超过50%的死亡是由高血脂、高血压及肥胖等导致的冠心病及中风引起的,且80%的死亡发生在发展中国家。到2015年,估计全球每年死于心血管疾病的人数高达2 000万,心血管疾病将成为发展中国家的主要死亡原因。近20年来,我国心血管疾病在总死亡中所占的比例为30%~40%,已逐渐成为城乡居民的主要死亡原因。在我国35~65岁人群中,有2/3的人具有心血管疾病发病的危险因素。目前,对心血管疾病的处理主要是发展和推广普及介入与手术治疗,但它是针对发病后,甚至严重事件发生后进行的干预和补救。要更有效地降低心血管疾病的发病率,必须抓好疾病防治的一级预防措施。
     白藜芦醇(Resveratrol,Res)是植物为抵抗外界刺激,如紫外线、真菌、病毒感染或机械损伤而分泌的一种植物抗毒素(phytoalexin)。白藜芦醇及白藜芦醇苷的生物学功能主要包括:心血管保护作用、拮抗肿瘤作用、抗炎作用、抗病毒作用、神经保护作用、植物雌激素作用等。近年来,Res的心血管保护作用已成为研究的热点。白藜芦醇及白藜芦醇苷具有抑制血小板聚集,调节血脂代谢,保护血管内皮,拮抗内皮素Ⅰ等作用,从而防止冠心病和动脉粥样硬化等心血管疾病的产生。Res及其糖苷只存在于有限的植物之中,如虎杖、葡萄、花生、松树等。天然植物中存在的Res毕竟是微量的,并且,中药如虎杖等不能长期食用,食物如葡萄、花生等价格偏高、不是普及面广的常用食品。因此,利用基因工程等生物技术生产大量的Res倍受科学家的关注。
     白藜芦醇合酶(Resveratrol Synthase,RS)是二苯乙烯合酶(stilbene synthase,简称STS)中的一类。它是Res生物合成途径中唯一必需的关键酶,只存在于有Res合成的植物中,因而大多数作物都缺乏RS基因。RS催化Res的前体物质(4-香豆酰辅酶A和丙二酰辅酶A)经一步反应生成Res,而Res生物合成的前体物质普遍存在于植物中。目前对白藜芦醇合酶转基因植物的研究主要集中在Res植物抗毒素方面的定性分析,而对其心血管保护作用等保健功能的研究成功的报道很少;而且存在着外源基因在受体植物中转化率及表达量低等亟待解决的问题。因而应用基因工程技术在异源植物中表达RS基因从而合成白藜芦醇及白藜芦醇苷,将为提高人类的健康水平提供有效的途径。
     利用植物基因工程的方法,将外源基因转入植物中表达,从而生产价廉且可直接食用的功能性保健食品,这是目前植物基因工程和生物技术研究的热点,也是疾病预防的发展趋势。生菜是一种非常大众化的日常食用蔬菜,且是重要的转基因作物。
     本研究采用花椰菜花叶病毒35S启动子,构建植物表达载体,把葡萄的RS基因导入生菜中表达Res。同时,应用正交设计和均匀正交设计等统计试验设计方法,从①受体植物(生菜品种、外植体的苗龄、取材部位)、②共培养条件(农杆菌的生长状态、菌液浓度、外植体的预培养时间、浸染时间、共培养时间)、③生境因子及理化因素(生长素、细胞分裂素、AgNO_3、激素配比浓度、乙酰丁香酮等)的角度,筛选出受体植物生菜的最优离体再生体系及农杆菌转化生菜的最优条件,以期望能培育出一种普及面广、使用方便、价格低廉、安全高效的具有预防心血管疾病等功能的保健蔬菜。
     研究方法
     (1)含白藜芦醇合酶(RS)基因的植物表达载体的构建
     提取葡萄基因组总DNA,通过PCR扩增得到RS基因,将此基因连接到克隆载体pGEM-T Vector,得到重组载体pT-RS;经PCR、酶切及序列分析鉴定后,将RS基因克隆到植物表达载体pBI121,得到重组载体pBI-RS,用PCR及双酶切方法进行鉴定。双元表达载体pBI-RS通过冻融法导入根癌农杆菌菌株EHA105,采用PCR及双酶切方法鉴定正确后,保存于-70℃备用。
     (2)生菜离体再生系统及根癌农杆菌转化条件的优化
     采用正交设计,研究不同生菜品种、不同消毒时间对培养生菜无菌苗的影响,以及不同浓度的植物生长调节剂、AgNO_3和不同外植体来源对生菜外植体芽直接分化频率及生根成苗的影响,以获得生菜高频率的离体再生体系。采用剂量反应试验,研究不同卡那霉素、羧苄青霉素浓度对生菜再生芽的影响及羧苄青霉素、头孢霉素对分化芽生根的影响。
     采用均匀正交试验设计,探讨农杆菌的浓度、外植体的预培养时间、共培养时间、浸染时间和乙酰丁香酮对根癌农杆菌转化效率的影响。
     (3)RS基因在生菜中整合和表达的检测
     采用PCR、RT-PCR等分子生物学方法检测RS基因在生菜中的整合和表达情况。采用高效液相色谱法(HPLC)和气相色谱-质谱法(GC-MS)定量检测转基因生菜中白藜芦醇及白藜芦醇苷的含量。
     (4)继代培养分析
     采集RT-PCR检测阳性的母体植株(T0)的幼嫩叶片,消毒后接种于再生培养基中诱导分化芽。当不定芽长至1~2 cm时,切下不定芽至生根培养基中诱导生根,得到继代培养再生植株。通过PCR方法检测RS基因在转基因生菜继代培养植株中的稳定性。
     结果
     (1)DNA序列分析结果表明,葡萄白藜芦醇合酶基因全长1 631 bp,与GeneBank登录号AB046374.1的序列比较,核苷酸同源性达99%,证明已成功得到了葡萄白藜芦醇合酶基因DNA。重组载体pT-RS及pBI-RS的PCR、双酶切及序列分析结果均表明,植物表达载体pBI-RS构建正确。
     (2)生菜品种“美国大速生”种子用70%乙醇浸泡60 Sec,再用2%次氯酸钠处理15 min,发芽率达到80%,无菌苗生长好。生菜离体培养再生芽的最优分化条件组合为MS附加BA 0.2 mg/L,NAA 0.1 mg/L,外植体为2~3 day的子叶;其中,BA及NAA的交互作用对植株再生有重要的影响。在此条件下,生菜外植体芽的直接分化频率为85.5%。生菜再生芽在含低浓度的生长素(NAA 0.05 mg/L,或IAA0.5 mg/L)的1/2MS培养基中生根情况较好。
     在农杆菌介导的皱叶生菜子叶(2~3 day苗龄)转化试验中,采用含BA 0.2mg/L,NAA 0.1 mg/L,Kan 100 mg/L,Carb 500 mg/L的MS培养基,最优的转化条件为农杆菌稀释倍数为10倍,预培养时间为1 day,共培养时间为4 day,浸染时间为15 min,不添加乙酰丁香酮。在此条件下,农杆菌的转化率为25.2%。转化再生芽在含NAA 0.05 mg/L,Carb 300 mg/L的1/2MS培养基中生根情况较好。
     (3)120株转基因抗性再生植株中,PCR阳性率为27.5%,RT-PCR阳性率为25.8%。采用高效液体色谱分析和气相色谱-质谱分析法,鉴定转基因生菜中新的化合物分别为白藜芦醇及白藜芦醇苷。转基因生菜叶片中白藜芦醇的含量为0.1330~0.4280μg/g干重,平均含量为0.3050±0.0884μg/g;白藜芦醇苷的含量为0.5528~0.8380μg/g干重,平均含量为0.7200±0.0980μg/g。
     (4)转基因生菜植株在含Kan 100 mg/L的再生培养基中生长良好,其叶片形状、色泽等形态学特征与非转基因生菜植株没有观察到差异。随机抽取8株继代培养再生植株进行PCR分析,其中6株扩增到RS基因。
     结论
     (1)成功构建了含RS基因的植物表达载体pBI-RS。
     (2)“美国大速生”品种生菜的发芽时间短,发芽率较高(80%以上),优于意大利耐抽苔生菜。
     (3)建立了高频率生菜离体再生体系,预测生菜子叶直接芽分化频率为85.5%,重复试验的分化频率达到90%,高于目前国外的转化水平(约84%)。
     (4)建立了农杆菌转化生菜的优化条件,转化率达25.2%,转化再生植株的PCR阳性率为27.5%,RT-PCR阳性率为25.8%,高于目前国内外的转化水平(约10%)。
     (5)RS基因在转基因生菜的继代培养中能比较稳定传递,但仍存在一定程度的变异。
     (6)转基因生菜中白藜芦醇及白藜芦醇苷的平均含量分别为0.3050μg/g、0.7200μg/g,低于虎杖及花生中的含量。含CaMV 35S-35S双启动子的高效植物表达载体正在构建中,希望通过此途径能提高转基因生菜中白藜芦醇及其糖苷的含量。
Background & Objective
     Cardiovascular disease(CVD) is the leading risk factor of health status worldwide,and the developing countries account for 86%of the global CVD disease burden.To developing,low and middle-income countries,CVD is not only a risk factor of health status,but a factor of undermining the socioeconomic development. An estimated 17.5 million people died from cardiovascular disease in 2005, representing 30%of all global deaths.Among these deaths,more than 50%were due to coronary heart disease and stroke caused by hyperlipernia,hypertension and obesity,and around 80%of these deaths occurred in low and middle income countries.By 2015,an estimated 20 million people will die from cardiovascular disease every year,and it is estimated that CVD will be the leading cause of death in developing countries.In the recent twenty years,30%~40%of deaths in our country are due to CVD,and CVD has been the leading cause of death.About 2/3 people 35-65 years old in our country have the risk factors of CVD.At present,the main treatments of CVD are intervention treatment and operation,which are the remedy measures aiming directly at the disease,even severe events.In order to effective prevention of CVD,it is necessary to carry out the primary prevention measures of disease prevention and cure.
     Resveratrol(Res) is a phytoalexin produced in various plants in response to UV irradiation,fungal infection,viral infection or mechanical damage.Resveratrol and resveratrol glucoside have beneficial effects on human health,known as cardioprotection,anticancer effect,antioxidant activity,anti-inflammatory action, antibacterial action,anti-virus action,neuroprotective effect and phytoestrogen effect, et al.For the past few years,the cardioprotection role of Res has been a research hot topic.Resveratrol and resveratrol glucoside could inhibit platelet aggregation,adjust the lipid metabolism,protect the blood vessel endothelium,rivalry endothelin I,and thereby prevent coronary artery disease and artherosclerosis.Resveratrol is a naturally occurring stilbene found in a limited number of unrelated plant species such as giant knotweed rhizome,grape,peanut or pine.Its content is microcrystalline in the plants,and giant knotweed rhizome couldn't be edible for long time,and grape and peanut are expensive.Therefore,the scientists pay close attention to use biotechnology such as gene engineering and fermentation engineering to produce a lot of Res and its glucoside.
     Resveratrol Synthase(RS) is a kind of stilbene synthase(STS).The biosynthesis of resveratrol is catalysed by the enzyme resveratrol synthase(RS),which converts one molecule of 4-coumaroyl-CoA and three molecules of malonyl-CoA into resveratrol.Resveratrol synthase is the key,exclusively necessary enzyme in the resveratrol synthetic pathway and it presents only in the plants which can synthetize resveratrol.Most plants are short of resveratrol synthase gene,while the precursor molecules of resveratrol are present throughout the plant kingdom.At present,the researches about resveratrol synthase transgenic plant are mostly on its phytoalexin role,and few are on its cardioprotection role,and the problems such as the low transformation efficiency of exogenous gene and the low expression are urgently to be solved.Therefore,the introduction of the gene encoding resveratrol synthase for resveratrol production in heterologous plant species using genetic engineering will provide a tempting approach to improve human health.
     Now,to transfer and express exogenous genes in plants and to produce functionality health-care foods which are cheap and direct-edible,is not only the popular topic of plant genetic engineering and biotechnology,but also the development tendency of disease prevention.Lettuce(Lactuca sativa var.crispa L.) is one of the most popular vegetables that is cultivated worldwide,and is an important transgenic plant.
     In this study,the plant expression vector pBI-RS carrying the CaMV 35S promoter was constructed and transformed to lettuce,and the biologic activity of transgenic lettuce was evaluated.At the same time,in order to obtain a highfrequency regeneration system in vitro culture of lettuce and the optimal condition of Agrobacterium tumefaciens-mediated transformation of lettuce explants,the acceptor plant(such as lettuce genotype,explants),the co-culture conditions(such as the density of Agrobacterium cells,the preincubate duration of explants,the co-culture duration and the inoculation time),habitat factors(such as auxin, cytokinin,AgNO3,cytokinin/auxin molar ratios,acetosyringone) were studied using orthogonal design and uniformly orthogonal design.The objective of this research was to get functional lettuce containing anti-disease or health protection composition, which was popular,convenient,cheap and effective.
     Methods
     (1) Construction of plant expression vector containing RS gene
     The cloning vector pT-RS was constructed containing RS gene extracted from the leaf tip of Vitis vinifera by PCR amplification and RS sequence was identified by PCR amplification,enzymes digestion and sequence analysis.The plant expression vector containing RS gene was obtained and RS sequence was identified by PCR amplification and double enzymes digestion too.Binary plasmid vector was introduced into Agrobacterium tumefaciens strain EHA105 by freeze-thaw method and was stored at -70℃after identifying by PCR amplification and double enzymes digestion.
     (2) Optimization of the regeneration system in vitro culture of lettuce and the transformation conditions of Agrobacterium Tumefaciens.
     To obtain a high-frequency regeneration system in vitro culture of lettuce,the effect of genotype and sterilization time on the sterile seedling of lettuce was studied, and the effect of different plant growth regulators,AgNO_3 and explants on induction of direct adventitious buds and adventitious roots was also studied using orthogonal experiment.The effect of kanamycin(Kan) and carbenicillin(Carb) on regeneration shoots,carbenicillin and cefradium(Cef) on root,were tested using the dose-response tests.To establish the optimal condition of Agrobacterium tumefaciens-mediated transformation of lettuce cotyledons,the density of Agrobacterium cells,the preincubate duration of explants,the co-culture duration, the inoculation time and AS were studied using uniformly orthogonal design.
     (3) Integration and expression detection of RS in transgenic lettuce
     The integration information and expression level of RS in transgenic lettuce were detected by PCR amplification and RT-PCR amplification.The content of Res and glucoside was measured by high performance liquid chromatography(HPLC) and gas chromatogram-mass spectrography(GC-MS).
     (4) Subculture analysis
     The young leaves from TO plants which were RT-PCR-positive were cultured on regeneration medium after sterilized.The adventitious shoots were carefully excised from the explants when they were 1~2 cm high,and were rooted in the root media and obtained regeneration plants from subculture.RS gene was amplified by PCR in the regeneration plants of subculture.
     Results
     (1) The results of sequence analysis showed that the RS gene had a length of 1631 bp.The RS gene sequences were 99%in consistent with the sequences that reported by Gene Bank(accession number:AB046374.1).The results of PCR and restriction enzyme digestion of the recombinant vector pT-RS and pBI-RS showed that the plant expression vector pBI-RS had expected length of the target fragment.
     (2) The germination rate reached 80%and the sterile seedlings grew well when the lettuce seeds were treated for 60 sec with 70%ethanol,and then with 2%sodium hypochlorite for 15 min.The optimal condition of regeneration system in vitro culture of lettuce was Murashige and Skoog's medium(MS) supplemented with 0.2 mg/L 6-benzylaminopurine(BA),0.1 mg/Lα-naphthaleneacetic acid(NAA),and using the cotyledons of seedling with 2~3 days-old as explants.The interaction of BA×NAA played an important role in the expression of regeneration responses. Under this condition,the predicted frequency of shoots regeneration was 85.5%.The adventitious roots grew well in half-strength basal MS(1/2 MS) medium containing 0.05 mg/L NAA or 0.5 mg/L indole-3-acetic acid(IAA).
     The greatest efficiency in Agrobacterium-mediated transformation of lettuce cotyledons(2~3 days-old) was obtained by 10-time dilution of Agrobacterium cells, 15-min inoculation time,1-day pre-culture,4-day co-culture and without AS using the MS(Murashige and Skoog's,1962) medium supplemented with 0.2 mg/L 6-benzylaminopurine(BA),0.1 mg/Lα-naphthaleneacetic acid(NAA),100 mg/L Kan and 500 mg/L Carb,.Under this condition,the shoot rate of transformation explants was 25.2%.Roots of transformation regeneration shoots grown well on 1/2 MS medium supplemented with 0.05mg/L NAA and 300 mg/L Carb.
     (3) PCR-positive rate was 27.5%and RT-PCR-positive rate was 25.8%among 120 transgenic Kan-resistant regeneration plants.In transgenic lettuce plants,two additional compounds were identified as resveratrol and glucoside by HPLC and GC-MS.Quantitative analysis showed that the average content ofresveratrol reached 0.3050±0.0884μg/g leaf dry weight,and glucoside was 0.7200±0.0980μg/g leaf dry weight.
     (4) The transgenic lettuce plants could grow in regeneration medium containing 100 mg/L Kan,no difference was observed between transgenic versus non-transgenic lettuce seedlings in morphological assays.RS gene was found in 6 among 8 randomly selected regeneration plants of subculture.
     Conclusions
     (1) The plant expression vector pBI-RS containing RS gene was successfully constructed.
     (2) The germination capacity of Lactuca sativa var.crispa L.,cultivar "MGDSS" had an advantage on cultivar "Italian Yearly Very Late Bolt Lettuce".
     (3) The high-frequency regeneration system in vitro culture of lettuce was established and the predicted frequency of shoots regeneration was 85.5%.
     (4) The optimization transformation condition of Agrobacterium-mediated transformation of lettuce explants was obtained,and the shoot rate of transformation explants was 25.2%,PCR-positive rate was 27.5%and RT-PCR-positive rate was 25.8%,which was higher than that of other studies(about 10%).
     (5) RS gene could transmit in subculture of the transgenic lettuces,but the gene variation appeared.
     (6) In transgenic lettuce plants,the average content of resveratrol and Rglucoside were 0.3050 +/- 0.0884μg/g and 0.7200 +/- 0.0980μg/g leaf dry weight, respectively.The effective plant expression vector carrying CaMV 35S-35S double promoter is being constructed,which is expected to improve the content of resveratrol and R- glucoside in transgenic lettuce.
引文
[1]Kobayashi S,DingC K,Nakamura Y,et al.Transformed kiwifruitwith a Vitis stilbene synthase gene produced piceid.Plant Cell Reports,2000,19:904-910
    [2]孙敬三,朱至清主编.植物细胞工程实验技术.北京:化学工业出版社,2006:289-294
    [3]Clercq JD,Zambre M,Montagu MV,et al.An optimized Agrobacterium-mediated transformation procedure for Phaseolus acutifolius A.Gray.Plant Cell Rep,2002,21:333-340
    [4]López M,Humara JM,Rodríguez R,et al.Factors involved in Agrobacterium tumefaciensmediated gene transfer into Pinus nigra Am.ssp.salzmannii(Dunal)Franco.Euphytica,2000,114:195-203
    [5]Matand K,Prakash CS.Evaluation of peanut genotypes for in vitro plant regeneration using thidiazuron.Journal of Biotechnology,2007,130:202-207
    [6]Saeed Rauf,Hafeez-ur-Rahman.A study of in vitro regeneration in relation to doses of growth regulators in hybrids of upland cotton. Plant Cell, Tissue and Organ Culture, 2005, 83: 209-215
    [7] Nunez M, Siqueira WJ, Hernandez M, et al. Effect of spirostane analogues of brassinosteroids on callus formation and plant regeneration in lettuce (Lactuca sativa). Plant Cell, Tissue and Organ Culture, 2004, 78: 97-99
    [8] Wei Xiaoping, Gou Xiaoping, Yuan Tong, et al. A highly efficient in vitro plant regeneration system and Agrobacterium-mediated transformation in Plumbago zeylanica. Plant Cell Rep, 2006, 25: 513-521
    [9] Jordan M, Humam M, Bieri S, et al. In vitro shoot and root organogenesis, plant regeneration and production of tropane alkaloids in some species of Schizanthus. Phytochemistry, 2006, 67: 570-578
    [10] Tang W, Newton RJ, Charles TM. Plant regeneration through multiple adventitious shoot differentiation from callus cultures of slash pine (Pinus elliottii). Journal of Plant Physiology, 2006, 163: 98-101
    [11] Lattoo SK, Bamotra S, Sapru Dhar R, et al. Rapid plant regeneration and analysis of genetic fidelity of in vitro derived plants of Chlorophytum arundinaceum Baker—an endangered medicinal herb. Plant Cell Rep, 2006, 25: 499-506
    [12] Clarke HJ, Wilson JG, Kuo I, et al. Embryo rescue and plant regeneration in vitro of selfed chickpea (Cicer arietinum L.) and its wild annual relatives. Plant Cell, Tissue and Organ Culture, 2006, 85: 197-204
    [13] Lakshmanan P, Geijskes RJ, Wang L, et al. Developmental and hormonal regulation of direct shoot organogenesis and somatic embryogenesis in sugarcane (Saccharum spp. interspecific hybrids) leaf culture. Plant Cell Rep, 2006, 25: 1007-1015
    [14] Jha AK, Dahleen LS, Suttle JC. Ethylene influences green plant regeneration from barley callus. Plant Cell Rep, 2007, 26: 285-290
    [15] Akasaka-Kennedy Y, Yoshida H, Takahata Y. Efficient plant regeneration from leaves of rapeseed (Brassica napus L.): the influence of AgNO3 and genotype. Plant Cell Rep, 2005, 24(11): 649-654
    [16] Xue JP, Chang W, Zhang AM, et al. Studies on petal tissue culture of the traditional Chinese medicine Chrysanthemum morifolium. Zhongguo Zhong Yao Za Zhi, 2004, 29(3): 211-214
    [17] Susan Eapen, Leela George. Plant regeneration from peduncle segments of oil seed Brassica species: Influence of silver nitrate and silver thiosulfate. Plant Cell, Tissue and Organ Culture, 1997, 51: 229-232
    [18] Naik SK, Chand PK. Silver nitrate and aminoethoxyvinylglycine promote in vitro adventitious shoot regeneration of pomegranate (Punica granatum L.). J Plant Physiol, 2003, 160(4): 423-430
    [19] Hisano H, Kimoto Y, Hayakawa H, et al. High frequency Agrobacterium- mediated transformation and plant regeneration via direct shoot formation from leaf explants in Beta vulgaris and Beta maritime. Plant Cell Rep, 2004, 22: 910-918
    [20] Song GQ, Loskutov AV, Sink KC. Highly efficient Agrobacterium tumefaciens- mediated transformation of celery (Apium graveolens L.) through somatic embryogenesis. Plant Cell Tiss Organ Cult, 2007, 88:193-200
    [21] Kim JH, Botella JR. Etrl-1 gene expression alters regeneration patterns in transgenic lettuce stimulating root formation. Plant Cell, Tissue and Organ Culture, 2004, 78: 69-73
    [22] Clercq JD, Zambre M, Montagu MV, et al. An optimized Agrobacterium- mediated transformation procedure for Phaseolus acutifolius A. Gray. Plant Cell Rep, 2002, 21:333-340
    [23] Lopez M, Humara JM, Rodri guez R, et al. Factors involved in Agrobacterium tumefaciens-mediated gene transfer into Pinus nigra Arn. ssp. salzmannii (Dunal) Franco. Euphytica, 2000, 114: 195-203
    
    [24] Han KH, Meilan R, Ma C, et al. An Agrobacterium tumefaciens transformation protocol effective on a variety of cotton wood hybrids (genus Populus). Plant Cell Reports, 2000, 19:315-320
    
    [25] Humara JM, Lopez M, Ordas RJ. Agrobacterium tumefaciens- mediated transformation of Pinus pinea L. cotyledons: an assessment of factors influencing the efficiency of uidA gene transfer. Plant Cell Reports, 1999,19: 51-58
    
    [26] Wu H, Sparks C, Amoah B, et al. Factors influencing successful Agrobacterium- mediated genetic transformation of wheat. Plant Cell Rep, 2003, 21:659-668
    
    [27] Venkatachalam P, Geetha N, Jayabatan N, et al. Agrobacterium- Mediated Genetic Transformation of Groundnut (Arachis hypogaea L,): An Assessment of Factors Affecting Regeneration of Transgenic Plants. J. Plant Res, 1998, 111: 565-572
    
    [28] Cervera M, Pina JA, Juarez J, et al. Agrobacterium-mediated transformation of citrange: factors affecting transformation and regeneration. Plant Cell Reports, 1998, 18:271-278
    
    [29] Wydro M, Kozubek E, Lehmann P. Optimization of transient Agrobacterium- mediated gene expression system in leaves of Nicotiana benthamiana. Acta Biochimica Polonica, 2006, 53(2):289-298
    
    [30] Flowers JL, Vaillancourt LJ. Parameters affecting the efficiency of Agrobacterium tumefaciens-mediated transformation of Colletotrichum graminicola. Curr Genet, 2005, 48: 380-388
    
    [31] Nandakumar R, Chen L, Rogers SMD. Factors affecting the Agrobacterium- mediated transient transformation of the wetland monocot, Typha latifolia. Plant Cell,Tissue and Organ Culture,2004,79:31-38
    [32]Orlikowska TK,Cranston HJ,Dyer WE.Factors influencing Agrobacterium tumefaciens-mediated transformation and regeneration of the safflower cultivar 'centennial'.Plant Cell Tiss Org Cult,1995,40:85-91
    [33]Malonek S,Meinhardt F.Agrobacterium tumefaciens-mediated genetic transformation of the phytopathogenic ascomycete Calonectria morganii.Curr Genet,2001,40:152-155
    [34]Degefu Y,Hanif M.Agrobacterium tumefaciens-mediated transformation of Helminthosporium turcicum,the maize leafblight fungus.Arch Microbiol,2003,180:279-284
    [35]Leclerque A,Wan H,Abschutz A,et al.Agrobacterium-mediated insertional mutagenesis(AIM) of the entomopathogenic fungus Beauveria bassiana.Curr Genet,2004,45:111-119
    [36]Guo X,Huang C,Jin S,et al.Agrobacterium-mediated transformation of Cry1C,Cry2A and Cry9C genes into Gossypium hirsutum and plant regeneration.BIOLOGIA PLANTARUM,2007,51(2):242-248
    [37]Zheng Qiusheng,Ju Bao,Liang Likun,et al.Effects of antioxidants on the plant regeneration and GUS expressive frequency of peanut(Arachis hypogaea)explants by Agrobacterium tumefaciens.Plant Cell Tiss Organ Cult,2005,81:83-90
    [38]Cardoza V,Stewart CN.Increased Agrobacterium-mediated transformation and rooting efficiencies in canola(Brassica napus L.) from hypocotyl segment explants.Plant Cell Rep,2003,21:599-604
    [39]方开泰,马长兴.正交与均匀试验设计.北京:科学出版社,2001
    [40]仇丽霞,刘桂芬,何大卫,等.二次响应面回归模型用遗传算法探索最优试验条件[J].中国卫生统计,2004,21(4):194-197
    [41]Vanjildorj E,Bae TW,Riu KZ,et al.Overexpression of Arabidopsis ABF3 gene enhances tolerance to drought and cold in transgenic lettuce(Lactuca sativa).Plant Cell,Tissue and Organ Culture,2005,83:41-50
    [42]年洪娟,刘玲,杨淑慎,等.胸腺肽基因转化生菜及其表达的研究.中国农业科学,2004,37(7):1085-1088
    [43]刘敬梅,陈大明,陈杭.甜蛋白基因MBLII对莴苣的遗传转化.园艺学报,2001,28(3):246-250
    [44]Chiron H,Drouet A,Lieutier F,et al.Gene Induction of Stilbene Biosynthesis in Scots Pine in Response to Ozone Treatment,Wounding,and Fungal Infection.Plant Physiology,2000,124:865-872
    [45]Bruno B,Philippe J,Aline P,et al.Resveratrol and Stilbene Synthase mRNA Production in grapevine leaves treated with Biotic and abiotic phytoalexin elicitors.Am.J.Enol.Vitic,2004,55:1
    [46]Schubert R,Fischer R,Hain R,et al.An ozone-responsive region of the grapevine resveratrol synthase promoter differs from the basal pathogen-responsive sequence.Plant Molecular Biology,1997,34:417-426
    [47]Bassman JH.Ecosystem Consequences of Enhanced Solar Ultraviolet Radiation:Secondary Plant Metabolites as Mediators of Multiple Trophic Interactions in Terrestrial Plant Communities.Photochemistry and Photobiology,2004,79(5):382-398
    [48]Grimmig B,Gonzalez-Perez MN,Leubner-Met G,et al.Ozone-induced gene expression occurs via ethylene-dependent and-independent signaling.Plant Molecular Biology,2003,51:599-607
    [49]Zinser C,Jungblut T,Heller W,et al.The effect of ozone in scots pine(pinus sylvestris L.):gene expression,biochemical changes and interactions with UV-B radiation.Plant,Cell and Environment,2000,23:975-982
    [50]Schoeppner A.Kindl H.Purification and properities of stilbene synthase from induced cell suspension cultures of peanut.J.Biol.Chem.,1984,259(11):6806-6811
    [51]Cantos,E.Espin,J.C.Tomas-Barberan,F.A.Postharvest induction modeling method using UV irradiation pulses for obtaining resveratrol-enriched table grapes:a new "functional" fruit.[J]Journal of Agricultural & Food Chemistry,2001,49(10):5052-5058
    [52]李景明.葡萄采后白藜芦醇的诱导与酿造工艺对葡萄酒中白藜芦醇影响:[博士学位论文].北京:中国农业大学,2003
    [53]Krayervon Krauss MP,Kaiser M,Almaas V,et al.Diagnosing and prioritizing uncertainties according to their relevance for policy:the case of transgene silencing.Sci Total Environ.2008,390(1):23-34
    [54]Fischer U,Kuhlmann M,Pecinka A,et al.Local DNA features affect RNA-directed transcriptional gene silencing and DNA methylation.Plant J.,2008,53(1):1-10
    [55]Himmelbach A,Zierold U,Hensel G,et al.A set of modular binary vectors for transformation of cereals.Plant Physiol.,2007,145(4):1192-200
    [56]Mourrain P,van Blokland R,Kooter JM,et al.A single transgene locus triggers both transcriptional and post-transcriptional silencing through double-stranded RNA production.Planta,2007,225(2):365-79
    [57]Sk(?)rn M,Eike MC,Meza TJ,et al.An inverted repeat transgene with a structure that cannot generate double-stranded RNA,suffers silencing independent of DNA methylation.Transgenic Res,2006,15(4):489-500
    [58]Meng L,Ziv M,Lemaux PG.Nature of stress and transgene locus influences transgene expression stability in barley.Plant Mol Biol,2006,62(1-2):15-28
    [59]Geanacopoulos M.An introduction to RNA-mediated gene silencing.Sci Prog,2005,88:49-69
    [60]Meins FJ,Si-Ammour A,Blevins T.RNA silencing systems and their relevance to plant development.Annu Rev Cell Dev Biol,2005,21:297-318
    [61]Stem M,Mol NMJ,Kooter J.The silencing of genes in transgenic plants.Annu of Botany,1997,79:3-12
    [62]Ui-Tei K,Naito Y,Saigo K.Guidelines for the selection of effective shortinterfering RNA sequences for functional genomics.Methods Mol Biol,2007,361:201-216
    [63]Yasuda H,Tada Y,Hayashi Y,et al.Expression of the small peptide GLP-1 in transgenic plants.Transgenic Res,2005,14(5):677-684
    [64]Wójcik C,Fabunmi R,DeMartino GN.Modulation ofgene expression by RNAi.Methods Mol Med,2005,108:381-393
    [65]肖尊安.植物生物技术.北京:化学工业出版社,2005,60-64
    [66]李浚明,朱登云编译.植株组织培养教程(第3版).北京:中国农业大学出版社,2005,243-265
    [67]孙敬三,朱至清编.植物细胞工程实验技术.北京:化学工业出版社,2006,182-185
    [68]Chaturvedi HC,Jain M,Kidwai NR.Cloning of medicinal plants through tissue culture-a review.Indian J Exp Biol,2007,45(11):937-948
    [69]Liao Z,Chen M,Sun X,et al.Micropropagation of endangered plant species.Methods Mol Biol,2006,318:179-185
    [70]Debnath M,Malik CP,Bisen PS.Micropropagation:a tool for the production of high quality plant-based medicines.Curr Pharm Biotechnol,2006,7(1):33-49
    [71]Pati PK,Rath SP,Sharma M,et al.In vitro propagation of rose-a review.Biotechnol Adv,2006,24(1):94-114
    [1]Bertelli A,Giovannini L,Stradi R,et al.Kinetics of trans-and cis-resveratrol(3,4',5-trihydroxystilbene) after red wine oral administration in rats[J].Int Clin Pharmacol Res,1996,16(4-5):77-81
    [2]Jang M,Cai L,Udeani GO,et al.Cancer chemopreventive activity of resveratrol,a natural product derived from grapes[J].Science,1997,275(10):218-220
    [3]Lin JK,Tsai SH.Chemoprevention of cancer and cardiovascular disease by resveratrol[J].Proc Natl Sci Counc Repub China B,1999,23(3):99-106
    [4]Kaneko T,Tahara S,Takabayashi F,et al.Suppression of lipid hydroperoxide-induced oxidative damage to cellular DNA by esculetin[J].Biol Pharm Bull,2003,26(6):840-844
    [5]Virag L,Szabo E,Gergely P,et al.Peroxynitrite-induced cytotoxicity:mechanism and opportunities for intervention[J].Toxicol Lett,2003,(140-141):1123-1124
    [6]Burkhardt S,Reiter RJ,Tan DX.DNA oxidatively damaged by chromium(Ⅲ)and H(2)O(2)isprotectedbytheantioxidantsmelatonin,N(1)-acetyI-N (2)-formyI-5-methoxykynuram-ine,resveratrol and uric acid[J].Int J Biochem Cell Biol,2001,33(8):775-783
    [7]Ciolino HP,Yeh GC.Inhibition of aryl hydrocarbon-induced cytochrome P-4501A1 enzyme activity and CYP1A1 expression by resveratrol[J].Mol Pharmacol,1999,56(4):760-767
    [8]Uenobe F,Nakamura S,Miyazawa M.Animutagenic effect of resveratrol against Trp-P-1[J].Mutat Res,1997,373(2):197-200
    [9]Kensler TW.Chemoprevention by inducers of carcinogen detoxication enzymes[J].Environ Health Perspect,1997,105(SuppI 4):965-970
    [10] Subbaramaiah K, Chung WJ, Michaluart P, el al. Resveratrol inhibits cyclooxygenase-2 transcription and activity in phorbol ester—treated human mammary epithelial cells [J]. Biol Chem, 1998, 273 (34): 21875
    [11] Li ZG, Hong T, Shimada Y, el al. Suppression of N-nitro-somethylbenzylamine (NMBA) -induced esophageal tumorigenesis in F344 rats by resveratrol [J]. Carcinogenesis, 2002, 23 (9): 1531
    [12] Banerjee S, Bueso Ramos C, Aggarwal BB. Suppression of 7,12-dimethylbenz(a) anthracene-induced mammary carcinogenesis in rats by resveratrol: role of nuclear factor-kappaB, cyclooxygenase 2, and matrix metalloprotease 9[J]. Cancer Res, 2002, 62(17): 4945-4954
    [13] Stewart JR, Ward NE, Ioannides CG, et al. Resveratrol preferentially inhibits protein kinase C-catalyzed phosphorylation of a cofactor-independent, arginine- rich protein substrate by a novel mechanism [J]. Biochemistry, 1999, 38(40): 13244-13251
    [14] Fabbro D, Parkinson D, Matter A. Protein tyrosine kinase inhibitots: new treatment modalities [J]. Curr Opin Pharmacol, 2002, 2(4): 374-381
    [15] Atten MJ, Attar BM, Milson T, et al. Resveratrol-induced inactivation of human gastric adenocarcinoma cells through a protein kinase C-mediated mechanism [J]. Bioehem Pharmacol, 2001, 62 (10): 1423-1432
    [16] Miura D, Miura Y, Yagasaki K. Resveratrol inhibits hepatoma cell invasion by suppressing gene expression of hepatocyte growth factor via its reactive oxygen species-scavenging property. Clinical & Experimental Metastasis, 2004, 21: 445-451
    [17] Asou H, Koshizuka K, Kyo T, et al. Resveratrol, a natural product derived from grapes, is a new inducer of differentiation in human myeloid leuke mias [J], Int J He matol, 2002, 75(5): 528-533
    [18] Ahmad N, Adhami VM, Afaq F, et al. Resveratrol causes WAF-1 / p2 1-mediated G(1)-phase arrest of cell cycle and induction of apoptosis in human epidermoid carcinoma A431 cells[J]. Clin Cancer Res, 2001, 7(5): 1466-1473
    
    [19] Clement MV, Hirpara JL, Chawdhury SH, et al. Chemopreventive agent resveratrol, a natural product derived from grapes, triggers CD95 signaling- dependent apoptosis in human tumor cells [J]. Blood, 1998, 92(3): 996-1002
    
    [20] Holmes-McNary M, Baldwin AS Jr. Chemopreventive properties of trans- resveratrol are associated with inhibition of activation of the IkappaB kinase[J]. Cancer Res, 2000, 60(13):3477-3483
    
    [21] Pellegatta F, Bertelli AA, Staels B, et al. Different short and long term effects of resveratrol on nuclear factor—kappaB phosphorylation and nuclear appearance in human endothelial cells [J]. Am J Clin Nutr, 2003, 77(5): 1220-1228
    
    [22] She QB, Bode AM, Ma WY, et al. Resveratrol-induced activation of p53 and apoptosis is mediated by extracellular-signal-regulated protein kinases and p38 kinase[J]. Cancer Res, 2001, 61(4): 1604-1610
    
    [23] Dong Z. Molecular mechanism of the chemopreventive effect of resveratrol [J]. Mutat Res, 2003, 523-524: 145-150
    
    [24] Dobrydneva Y, Williams RL, Morris GZ, et al. Dietary phytoestrogens and their synthetic structural analogues as calcium channel blockers in human platelets [J]. J Cardiovasc Pharmacol, 2002, 40: 399-410
    
    [25] Bertelli AA, Giovannini L, Giannessi D, et al. Antiplatelet activity of synthetic and netural resveratrol in red wine[J]. Int J Tissue React, 1995, 17(1): 1-3
    
    [26] Burkitt MJ, Duncan J. Effects of trans-resveratrol on copper-dependent hydroxyl- radical formation and DNA damage: evidence for hydroxyl-radical scavenging and a novel, glutathione sparing mechanism of action[J]. Arch Biochem Biophys, 2000, 381: 253-263
    [27] Carluccio MA, Siculella L, Ancora MA, et al. Arterioscler Thromb Vasc Biol, 2003,14(8): 116-118
    [28] Haworth RS, Avkiran M. Inhibition of protein kinase D by resveratrol. Biochem Pharmacol, 2001, 62(12): 1647-1651
    [29] Slater SJ, Seiz JL, Cook AC, et al. Inhibition of protein kinase C by resveratrol. Biochim Biophys Acta, 2003, 1637 (1): 59-69
    [30] Yang LC, Wang F, Liu M. A study of an endothelin antagonist from a Chinese anti-snake venom medicinal herb[J]. J Cardiovasc Pharmacol, 1998, 31: 249-250
    [31] Zou JG, Wang ZR, Huang YZ, et al. Effect of red wine and wine polyphenol resveratrol on endothelial function in hypercholesterolemic rabbits [J]. Int J Mol Med, 2003, 11:317-320
    [32] Das S, Das DK. Anti-inflammatory responses of resveratrol. Inflamm Allergy Drug Targets, 2007, 6(3): 168-173
    [33] Elmali N., Esenkaya I., Harma A., et al. Effect of resveratrol in experimental osteoarthritis in rabbits. Inflamm. res., 2005, 54: 158-162
    [34] Tou J S, Urbizo C. Resveratrol inhibits the formation of phosphatidic acid and diglyceride in chemotactic peptide-or phorbol ester-stimulated human nentrophils. Cellular Signalling, 2001, 13: 191-197
    [35] Chan MY. Antimicrobial efect of resveratrol on dermatophytes and bacterial pathogms of the skin. Biochemical Pharmacology, 2002, 63: 99-104
    [36] Ates O, Cayli S, Altinoz E, et al. Neuroprotection by resveratrol against traumatic brain injury in rats. Molecular and Cellular Biochemistry, 2007, 294: 137-144
    [37] Gehm BD, Mcandrews JM, Chien PP, et at. Resveratrol, a polyphenolic compound found in grapes and wine, is an agonist for the estrogen receptor[J]. Proc Natl acad Sci USA,1997,94(25):14138-14143
    [38]Bhat KP,Lantvit D,Christov K,at al.Estrogenic and antiestrogenic propertys of resveratrol in mammary tumor models[J].Cancer Res,2001,61(20):7456-7463
    [39]Dai Z,Li Y,Quarles LD,et al.Resveratrol enhances proliferation and osteoblastic differentiation in human mesenchymal stem cells via ER-dependent ERK1/2 activation.Phytomedicine,doi:10.1016/j.phymed.2007.04.003
    [40]郝捍东,何立人,赵伟珍,等.白藜芦醇抗柯萨奇病毒感染性小鼠心肌炎的治疗研究[J].中成药,2003,25(5):398-401
    [41]Docherty JJ,Smith JS,Fu MM,et al.Effect of topically applied resveratrol on cutaneous herpes simplex virus infections in hairless mice.Antiviral Res.,2004,61(1):19-26
    [42]Evers DL,Wang X,Huong SM,et al.3,5',4-Trihydroxy-trans-stilbene(resveratrol) inhibits human cytomegalovirus replication and virus-induced cellular signaling.Antiviral Res.,2004,63(2):85-95
    [43]Hayashibara T,Yamada Y,Nakayama S,et al.Resveratrol induces downregulation in survivin expression and apoptosis in HTLV-1-infected cell lines:a prospective agent for adult Tcell leukemia chemotherapy,Hutr Cancer,2002,44(2):193-201
    [44]Wang LX,Heredia A,Song H,et al.Resveratrol glucuronides as the metabolites of resveratrol in humans:characterization,synthesis,and anti-HIV activity.J Pharm Sci.,2004,93(10):2448-2457
    [45]Rainsford KD.Influenza("Bird Flu"),inflammation and anti-inflammatory/analgesic drugs.Inflammopharmacology,2006,14(1-2):2-9
    [46]Schwekendiek A,Pfeffer G,Kindl H.Pine stilbene synthase cDNA,a tool for probing environmental stress.FEBS,1992,301(1):41-44
    [47] Trpf S, Karcher B, Schroder G, et al. Reaction mechanisms of homodimeric plant polyketide synthases (stilbene and chalcone synthase). J Biochem Chem, 1995, 270(14): 7822-7937
    [48] Liswidowati, Melchior F, Hohmann F, et al. Induction of stilbene synthase by Botrytis cinerea in cultured grapevine cells. Planta, 1991, 183: 307-314
    [49] Fliegmann J, Schroder G, Schanz S, et al. Molecular analysis of chalcone and dihydropinosylvin synthase from Scots pine (Pinus sylvestris) and differential regulation of these and related enzyme activities in stressed plants. Plant Mol Biol, 1992, 18:489-503
    [50] Yamaguchi T, Kurosaki F, Suh DY, et al. Cross-reaction of chalcone synthase and stilbene synthase overexpressed in Escherichia coli. FEBS, 1999, 460: 457-461
    [51] Sparvoli F, Martin C, Scienza A, et al. Cloning and molecular analysis of structural genes involved in flavonoid and stilbene biosynthsis in grape (Vitis vinifera L.). Plant Mol Biol, 1994, 24: 734-755
    [52] Schroder G, Brown J WS, Schroder J. Molecular analysis of resveratrol synthase: cDNA, genomic clones and relationship with chalcone synthase. Eur J Biochem, 1988,172: 161-169
    [53] Lanz T, Schroder G, Schroder J. Differential regulation of genes for resveratrol synthase in cell cultures of Arachis hypogaea L. Planta, 1990, 181: 169-175
    [54] Melchior F, Kindl H. Grapevine stilbene synthase cDNA only slightly differing from chalcone synthase cDNA is expressed in Escherichia coli into catalytically active enzyme. Febs Lett, 1990, 268 (1): 17-20
    [55] Melchior F, Kindl H. Coordinate- and elicitor-dependent expression of stilbene synthase and phenylalanine ammonia-lyase genes in Vitis cv. Optima. Arch Biochem Biophys, 1991, 288(2): 552-557
    [56] Hiroyuki Ohashi, Tsutomu Takayanagi, Tohru Okuda, et al. Structure of grapevine stilnene synthase genes inducing different amounts of resveratrol under elicitor treatment. Am J Enol Vitic, 2001, 52(3): 284
    [57] Chung IM, Park MR, Rehman S, Yun SJ. Tissue specific and inducible expression of resveratrol synthase gene in peanut plants. Mol Cells, 2001,12(3): 353-359
    [58] Hipskind JD, Paiva NL. Constitutive accumulation of a resveratrol glucoside in transgenic alfalfa increases resistance to Phoma medicaginis. Moleclar Plant-Microbe Interaxtions, 2000, 13: 551-562
    [59] Bavaresco L, Fregoni C, Cantu E, Trevisan M. Stilbene compounds: from the grapevine to wine. Drugs Exp Clin Res, 1999, 25(2-3): 57-63
    [60] Rolfs CH, Schon H, Steffens M, et al. Cell-suspension culture of Arachis hypogaea L. model system of specific enzyme induction in secondary metabolism. Planta, 1987,172: 238-244
    [61] Schubert R, Fischer R, Hain R, et al. An ozone-responsive region of the grapevine resveratrol synthase promoter differs from the basal pathogen- responsive sequence. Plant Mol Biol, 1997, 34: 417-426
    [62] Grimmig B, Gonzalez-Perez MN, Leubner-Metzger G, et al. Ozone-induced gene expression occurs via ethylene-dependent and -independent signaling. Plant Molecular Biology, 2003, 51: 599-607
    [63] Gehlert R, Schoppner A, Kindl H. Stilbene synthase from seedings of Pinus sylvestris purification and induction in response to fungal infection. Mol Plant-Microbe Interactions, 1990, 3(6): 444-449
    [64] Hain R, Bieseler B, Kindl H, et al. Expression of a stilbene synthase gene in Nicotiana tabacum results in synthesis of the phytoalexin resveratrol. Plant Mol Biol, 1990, 15: 325-335
    [65] Lanz T, Tropf S, Marner FJ,et al. The role of cysteines in polyketide synthases. Site-directed mutagenesis of resveratrol and chalcone synthases, two key enzymes in different plant-specific pathways. J Biol Chem, 1991,266: 9971-9976
    [66] Ryder TB, Cramer CL, Robbins MP, et al. Elicitor rapidly induces chalcone synthase mRNA in Phaseolus vulgaris cells at the onset of the phytoalexin defense response. Proc Natl Acad Sci, 1984, 81: 5724-5728
    [67] Hain G, Reif HJ, Krause E, et al. Disease resistance results from foreign phytoalexin expression in a novel plant. Nature, 1993, 361: 153-156
    [68] Versari A, Parpinello GP, Tomielli GB, et al. Stilbene compounds and stilbene synthase expression during ripening, wilting, and UV treatment in grape cv. Corvina. J Agric Food Chem, 2001, 49(11): 5531-5536
    [69] Adrian M, Jeandet P, Bessis R, et al. Induction of phytoalexin (resveratrol) synthesis in grapevine leaves treated woth aluminium chloride (A1C13). J. Agric. Food Chem, 44: 1979-1981
    [70] Schubert R, Fischer R, Hain R, et al. An ozone-responsive region of the grapevine resveratrol synthase promoter differs from the basal pathogen-responsive sequence. Plant Mol Biol. 1997, 34(3): 417-426
    [71] Hain R, Biesrler B, Kindl H, et al. Expression of a stilbene synthase gene in Nicotiana tabacum results in synthesis of the phytoalexin resveratrol. Plant Mol Biol, 1990, 15(2): 325-335
    [72] Hipskind JD, Paiva NL. Constitutive accumulation of a resveratrol glucoside in transgenic alfalfa increases resistance to Phoma medicaginis. Moleclar Plant- Microbe Interaxtions, 2000, 13: 551-562
    [73] Punja ZK. Genetic engineering of plants to enhance to fungal patnogens-a review of progress and future prospects. Can J Plant Patrol, 2001, 23: 216-235
    [74]Morelli R,Das S,Bertelli A,et al.The introduction of the stilbene synthase gene enhances the natural antiradical activity of Lycopersicon esculentum Mill.Mol Cell Biochem,2006,282(1-2):65-73
    [75]Jung Dae Lim,Song Joong Yun,I11 Min Chung,et al.Resveratrol synthase transgene expression and accumulation of resveratrol glycoside in Rehmannia glutinosa.Molecular Breeding,2005,16:219-233
    [76]Kobayashi S,Ding CK,Nakamura Y,et al.Kiwifruits(Actinidia deliciosa)transformed with a Vitis stilbene synthase gene product piceid(resveratrol-glucoside).Plant Cell Reports,2000,19(9):904-910
    [77]Ruhmann S,Treutter D,Fritsche S,et al.Piceid(resveratrol glucoside) synthesis in stilbene synthase transgenic apple fruit.J Agric Food Chem,2006,54(13):4633-4640
    [78]Fischer R,Budde I,Hain R.Stilbene synthase gene expression causes changes in flower colour and male sterility in tobacco.Plant Journal,1997,11(3):489-498
    [79]田文忠,丁力,曹守云,等.植物抗毒素转化水稻和转基因植株的生物鉴定.植物学报,1998,49(9):803-808
    [80]梁辉,郑近,段霞瑜,等.用基因枪法获得抗白粉病转芪合酶基因小麦.科学通报,1999,44(24):2644-2648
    [81]谭琳,康由发,马兵刚,郑学勤.芪合酶基因转化番茄产生白藜芦醇的研究.生命科学研究,2003,7(3):262-266

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700