用户名: 密码: 验证码:
基于视觉和雷达的智能车辆自主换道决策机制与控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
智能车辆从根本上改变了传统的车辆驾驶方式,将驾驶员从“驾驶员一车辆-道路”的闭环系统中解放出来,利用先进的电子与信息技术控制车辆行驶,让驾驶活动中常规的、持久且易疲劳的操作自动完成,能够极大地提高交通系统的效率和人员的安全性。研究智能车辆的自主换道关键技术,最终能够实现多车的自主交互协同,提高部队人员、装备的使用效率和战场环境的适应能力;同时,通过准确的环境信息感知,加上科学、合理的决策分析与稳定可靠的控制算法,使车辆自主换道的安全性比充满不确定因素的驾驶员换道更具优越性,有效地控制人为因素造成的交通事故。
     本文通过分析驾驶员的驾驶行为过程,研究了驾驶员换道意图的产生及阶段,分析了影响驾驶员换道的因素,进而深入研究了驾驶员换道的决策机制,并针对智能车辆的结构特点,模拟驾驶员换道的决策过程,解析了智能车辆自主换道的决策机制。通过分析人体器官在驾驶员驾驶车辆过程中的功能,建立了“驾驶员-车辆-道路”的系统模型,从控制论的角度分别研究了驾驶员、车辆和道路在系统中的功能与作用,并提出了系统控制的评价指标;通过试验数据,得出了诱发车辆换道的主要原因是本车道前方有慢车,而驾驶员对时间与空间的追求是影响车辆换道的主要因素;本文将车辆的换道过程分为换道意图的产生、换道时机的决策、换道轨迹的规划和换道轨迹的跟踪控制四个阶段;建立了“驾驶员-车辆-道路”系统的高速公路典型场景,得出了驾驶员的换道过程是以驾驶员行为特性为主导的信息感知、决策与操控的三个模块相互作用的行为决策与控制过程;分析了驾驶员换道决策阶段的表征参数,选取了车道线信息、车道边缘信息、交互车辆信息等作为智能车辆自主换道研究的特征参数;根据智能车辆的结构特点,模拟驾驶员换道决策过程,建立了“机器-车辆-道路”的系统模型,解析了智能车辆自主换道的决策机制。
     通过建立路权雷达图进行信息融合,对换道过程中换道意图的产生、换道时机的决策、换道轨迹的规划三个阶段进行分析,建立了智能车辆自主换道的决策模型,并针对换道过程出现的突发异常情况,建立了静、动态障碍车辆的避障模型。模拟人类认知行为的注意力分配机制,根据路权的概念,建立了变粒度路权雷达图,使用较少的存储空间和计算资源完成对人类认知行为的模拟和计算,通过路权雷达图实现了信息融合、仿真分析和路径规划等功能;定义了智能车辆的最小行车安全距离,在此基础上确定了智能车辆产生换道意图的期望值。通过选取2名熟练驾驶员、选择典型高速公路路线、制定试验控制条件等设计试验方案,采集影响驾驶员换道的特征参数311组,其中,车道保持数据97组,换道行驶数据214组;采用v-支持向量机进行训练,选取(δ,v)=(0.12,0.03)作为v-支持向量机的模型参数,判断换道行为的准确率为91.05%;从换道时间、换道横向加速度、曲率突变等方面分析比较了智能车辆常用的换道轨迹规划方法,根据本文研究的对象,确定了梯形加速度换道轨迹的方法;针对换道过程的突发意外事件,建立了静、动态障碍车辆的避障模型;为了满足实时性要求,在环境建模中设计了变尺度栅格图,当车辆高速行驶时,变尺度栅格图比传统栅格的CPU占用降低约34%;将变尺度栅格图与路权雷达图进行融合,通过静态选择式避障模块和动态障碍避障策略,实现对突发意外障碍车辆的躲避。
     通过分析智能车辆纵横向耦合系统的建模与控制方法,建立了智能车辆纵横向耦合运动学模型,该模型考虑纵向、横向以及横摆运动状态,可以更为精确地对智能车辆换道轨迹与换道完成后的车道保持进行控制。分析了车辆行驶过程中的纵横向耦合影响,提出了智能车辆纵横向耦合建模与控制问题,建立了智能车辆纵横耦合控制系统,包括纵向运动、横向运动以及横摆运动模型;采用指数型滑模变结构方法设计换道轨迹跟踪控制器,使智能车辆系统在车辆换道过程中满足期望的动静态性能指标;针对换道完成后的车道保持问题,建立智能车辆的横向偏差模型,采用Terminal滑模变结构方法设计车道保持控制器,将横向运动与横摆运动结合起来,使得横向偏差可以随着车道曲率变化而自动调节,同时,可以提高车道保持过程中纵横向运动的稳定性;采用MATLAB仿真工具对智能车辆换道轨迹跟踪控制以及换道完成后的车道保持控制进行仿真,验证了控制器设计的有效性和稳定性。
     针对某型越野车的结构特点,进行了智能车辆平台的机械改造,搭建了智能车辆的硬件和软件平台,并进行了实际高速公路的试验,验证了系统的可靠性和稳定性。根据智能车辆自主换道技术验证的需要,对原车进行了智能化改造,采用电动转向方案设计了车辆的转向机构,在原车制动系统中加装一套液压阀组改造了制动机构,通过并联安装一套电控拉线盘实现油门机构的智能控制;搭建了智能车辆的硬件平台,优化仪器设备;采用多线程技术进行软件设计,将系统分为主线程、控制线程、道路信息采集线程和串口通讯线程四个部分:进行了智能车辆高速公路自主驾驶试验,完成我国首次在权威机构、测试机构和新闻媒体三方共同监督下的智能车辆高速公路自主驾驶试验,测试公里数达到1500公里以上,共计完成自主换道95次,试验数据证明了智能车辆在高速公路环境下的自主换道具有较好的稳定性和可靠性。
Intelligent vehicle is using advanced electronics and information technology to automatically complete the regular, durable and tiring driving operations, which relieves drivers from traditional "driver-vehicle-road" closed loop systems. Thus intelligent vehicle greatly enhances traffic efficiency and safety. Autonomous lane-changing technology can further achieve cooperative driving among multiple vehicles, improve the efficiency of military equipment, and boost the ability to adapt to the battlefield environment. Meanwhile, it uses accurate environmental perception, scientific and rational decision analysis, and robust control algorithm to reduce the traffic accidents caused by human factors more effectively than a driving experience based lane changing.
     This dissertation analyzes the driving behavior of the driver, the generation and gradation of lane-changing intention, and the factors influencing the lane-changing. Furthermore, the decision mechanism of lane-changing is investigated and the "driver-vehicle-road" system model is proposed. From the point of cybernetics, it presents the evaluation index of the control system among the "driver-vehicle-road" system. Experimental analysis implies that the slow vehicles ahead are a major cause of lane-changing, and the driver's pursuit of space and time is a main factor. The dissertation classifies the lane-changing into four stages:generation of lane-changing intention, decision of lane-changing time, planning of lane-changing trajectory, and tracking control of lane-changing. After creating the typical highway scene of the "driver-vehicle-road" system, the autonomous lane-changing can be described as the interaction process of environment perception, behavior decision and strategy control. The dissertation chooses lane markings, lane edges, and the surrounding vehicles as the feature vectors of lane-changing, develops the "vision-vehicle-road" system model, and gives a solution to the decision mechanism of the autonomous lane-changing.
     The right of way radar map (RWRM) is developed for information fusion, and the three stages, generation of lane-changing intention, decision of lane-changing time, planning of lane-changing trajectory are analyzed. The decision model of the autonomous lane-changing is developed as well as the model to avoid both static and moving vehicles. According to the attention allocation mechanism of human cognitive behavior and the right of way, the RWRM with variable particle size is developed to accomplish the simulation and calculation for human cognitive behavior with less time and memory. A minimum safe distance for intelligent vehicle is defined and the desired value of generation of lane-changing intention is also computed. Two experienced drivers are selected as well as typical highway route and experiment scheme. A total of311feature parameters are extracted. Among them,97feature parameters are influencing the lane-keeping, while214feature parameters are influencing the lane-changing. The V-support vector machine is employed to train the samples, and the condition (8, v)=(0.12,0.03) is chosen, which yields an accuracy of91.05%in the lane-changing. A comparison of the usual path planning for lane-changing is made considering the lane-changing time, vehicle acceleration, and road curvature mutation. A trapezoidal based lateral acceleration method is used as well as variable scale grid method in the environment modeling. When the vehicle is running at a high speed, the variable scale grid method reduces the CPU occupancy by34%than the ordinary grid method. The fusion between the variable scale grid method and the RWRM with variable particle size, can avoid obstacle vehicle in case of an emergency.
     A combined longitudinal and lateral coupling kinematic model for intelligent vehicle is developed. It takes longitudinal motion, lateral motion and yaw motion into consideration, which can accurately achieve tracking control for lane-changing and subsequent lane-keeping. After the analysis of both longitudinal and lateral coupling influence, a combined longitudinal and lateral coupling control system is provided, and an exponential type sliding mode control method (ESMC) is used to design the tracking controller, which can meet the expectations of the dynamic and static performance index in lane-changing process. Aiming at the subsequent lane-keeping after the lane-changing, a lateral deviation from the lane center line is developed. A terminal sliding mode control method (TSMC) is used to design the lane-keeping controller combining the lateral motion with yaw motion, which can not only regulate the lateral deviation fitting in with the road curvature, but also improve both longitudinal and lateral stability of the lane-keeping process. The effectiveness and stability of both lane-changing controller and lane-keep controller are verified in the MATLAB environment.
     According to the structural characteristics of one off-road vehicle, the mechanism reconstruction is carried out, and both hardware and software platform of the intelligent vehicle are set up. The reliability and stability of the intelligent vehicle are verified in highway vehicle experiments. The hardware composition includes electric motor steering, hydraulik blocks based mechanical braking, and drawing by electric power throttle and so on. The software is classified into four threads by multi-threading technology, such as main thread, control thread, road information acquisition thread, and serial communication thread. The autonomous driving official highway test has been achieved for the first time in China. It covers1500km, and completes a total of95autonomous lane-changing, which verifies the reliability and stability of the proposed method on the highway.
引文
[1]赵建辉,徐友春,李伟,等.美军战场无人地面机器人研究现状[J].军事交通学院学报,2011,13(10):80-83
    [2]韩仁辉,赵祥君,于坤炎,等.外军无人车发展现状及启示[J].军事交通学院学报,2010,12(5):91-93
    [3]Morita T, et al. An Approach to the Intelligent Vehicle [J]. IEEE Intelligent Vehicles Symposium,1993:426-432
    [4]胡海峰,史忠科,徐德文.智能汽车发展研究[J].计算机应用研究,2004,6:20-23
    [5]Tim van Dijck. Vision Sense:An Advanced Lateral Collision Warning System [J]. IEEE Transactions on Control Systems Technology,2005:296-301
    [6]Victor L. Knoop, Jonathan Cole, R. Eddie Wilson. Quantifying the Number of Lane Changes in Traffic[J].2010:109-116
    [7]Gipps, P. G.A model for the structure of lane-changing decisions [J]. Transportation Research, Part B.1986,20(5):403-414
    [8]Ahmed K I. Modeling drivers' acceleration and lane changing behavior [D]. Massachusetts:Massachusetts Institute of Technology,1999
    [9]Hidas P. Modeling lane changing and merging in microscopic traffic simulation [J]. Transportation Research Part C:Emerging Technologies,2002,10(1): 351-37
    [10]Ratrout N T, Rahman S M. A comparative analysis of currently used microscopic and macroscopic traffic simulation software [J]. The Arabian Journal for Science and Engineering,2009,34(1):121-133
    [11]Rickert, M. et al. Two lane traffic simulations using cellular automata [J]. Physica A,1996,231:534-550
    [12]Nagel, K., et al. Two-lane traffic rules for cellular automata:A systematic approach [J]. PHYSICAL REVIEW E,1998,58(2):1425-1436
    [13]金立生,杨双宾,Mascha van der Voort, Martijn Tidema.高速公路汽车辅助驾驶安全换道模型[J].吉林大学学报(工学版),2009,39(3):582-586
    [14]杨双宾.高速公路车辆行驶安全辅助换道系统研究[D].吉林大学学位论文,2008
    [15]魏丽英,隽志才,田春林.驾驶员车道变换行为模拟分析[J].中国公路学报,2001,14(1):77-80
    [16]Huiping Zhou, Makoto Itoh, Toshiyuki Inagaki. How Do Cognitive Distraction Affect Driver Intent of Changing Lanes [J]. ICIRA,2009:235-244.
    [17]Huiping Zhou, Makoto Itoh, Toshiyuki Inagaki. Influence of cognitively distracting activity on driver's eye movement during preparation of changing lanes [J]. SICE Annual Conference 2008:866-871
    [18]李迎峰,史忠科,周致纳.微观交通仿真中随机决策换道行为研究[J].系统仿真学报,2008,20(16):4273-4277
    [19]谭春满.基于Agent与模糊逻辑的车辆换道仿真模型[J].系统工程学报,2007,22(1):40-45
    [20]杨小宝,张宁,黄留兵.通行能力仿真中的换道模型研究[J].公路交通科技,2007,24(5):109-112
    [21]王晓原,杨新月,王晓辉,刘智平。D-S证据理论在驾驶行为决策中的应用[J].计算机工程与应用,2007,43(27):230-233
    [22]王家凡,罗大庸.交通流微观仿真中的换道模型[J].系统工程,2004,22(3):92-95
    [23]王晓原,王雷.基于认知活动链的驾驶行为协调仿真模型[J].西南交通大学学报,2007,4(2):238-242
    [24]王晓原.基于心理物理综合认知结构的微观交通仿真模型[J].计算机仿真,2005,11(11):233-236
    [25]Daganzo C F. A behavioral theory of multi-lane traffic flow, Part I: Long homogeneous freeway sections[J]. Transportation Research B,2002,36(1): 131-158.
    [26]李勇,何伟,苏虎.微观交通仿真中的驾驶员模型[J].重庆工学学报;自然科学,2008,22(1):19-23
    [27]王晓原,杨新月.基于三次样条非参数拟合的驾驶行为仿真模型[J].系统仿真学报,2006,18(9):2691-2694
    [28]Oliver, N. M., Rosario, B., Pentland, A. P., A Bayesian computer vision system for modeling human interactions [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2000, Volume,22 Issue,8:831-843
    [29]Liu, A., Veltri, L., Pentland, A. P. Modeling changes in eye fixation patterns while driving. Vision in Vehicles [J]. A. G. Gale, Ed., Vision in Vehicles VI, Amsterdam:Elsevier:13-20
    [30]Raymond J. Kiefer, Jonathan M. Hankey. Lane change behavior with a side blind zone alert system [J]. Accident Analysis and Prevention,2008:683-690
    [31]Suzanne E. Lee. Erik C.B. Olsen, Walter W. Wierwille. A Comprehensive Examination of Naturalistic Lane-Changes [R]. Virginia Tech Transportation Institute,2004
    [32]M. Fitch, J. Hankey, J. Sudweeks, and T. Dingus. Analysis of Lane-Change Crashes and Near-Crashes [R]. Virginia Tech Transportation Institute,2009
    [33]裴玉龙,张银.车道变换期望运行轨迹仿真[J].交通与计算机,2008,26(4):68-71
    [34]裴玉龙,于涛.车道变换进程中驾驶员视点转移特性研究[J].交通信息与安全,2009,27(2):92-95
    [35]Tony Wynn, John. Cognitive activity modeling:a case study of lane change schemas and sensation seeking [C]. European Conference on Human Centered Design for Intelligent Transport Systems,2008:177-285
    [36]W. van Winsum, D. de Waard, K. A. Brookhuis. Lane Change Maneuvers and Safety Margins [J]. Transportation Research Part F, 1999(2):139-149
    [37]刘小明,关淑辉.基于动态重复博弈的车辆换道模型[J].公路交通科技,2008,25(6):121-125
    [38]林旸,蒋珉,柴干.基于模糊控制的微观车辆换道模型的研究及仿真[J].计算机技术与发展,2009,19(11):250-253
    [39]付梦印,邓志红,刘彤.智能车导航技术[M],北京科学出版社,2009:7-8
    [40]方华京,魏然.人工场法在多机器人运动中的研究[J].控制工程,2007,14(2):115-117
    [41]Yoshihiro Nishiwaki,Chiyomi Miyajima, Norihide Kitaoka, et al. Generating Lane-Change Trajectories of Individual Drivers[C]. Proceedings of the 2008 IEEE International Conference on Vehicular Electronics and Safety Columbus, OH, USA,2008:271-275..
    [42]Shin kato, Kohji tomita, Sadayuki tsugawa. Lane departure detection with and onboard vision system [C].1998 IEEE International Conference on Intelligent Vehicle. NJ:IEEE Press,1998
    [43]Nathaniel Hawthorne Sledge. An Investigation of Vehicle Critical Speed and Its Influence on Lane-Change Trajectories [D]. University of Texas at Austin, 1997
    [44]Eshelman, R. L., Desai S.D., Articulated Vehicle Handling [R]. National Highway Traffic Safety Administration, DOT-HS-800-674,1972
    [45]Fett, I. H. C., Simulation of Lane Change Maneuvers on Intersection Approaches[D], University of Texas at Austin,1974.
    [46]Daily J. Fundamentals of Traffic Accident Reconstruction [D], University of North Florida,1988
    [47]Fricle, L. B., Traffice Accident Reconstruction [D]. Northwestern University Traffic Institute,1990
    [48]Limpert R. Motor Vehicle Accident Reconstruction and Cause Analysis [M]. Michie Co.,1994
    [49]Zellner, J. W., Weir, D. H., Teper, G., Development of Handling Test Procedures for Motorcycles[J]. Motorcycles Dynamics and Rider Control, SAE 780314,1978:91-100
    [50]Kanayama, Y.,Miyake, N., Trajectory Generation for Mobile Robots [C]. Third Intemational Symposium on Robotics Research, Gouvieux, France, MIT Press, 1985:333-340
    [51]Chee, W., Tomizuka, M., Patwardham, S., et al. Experimental Study of Lane-change Maneuver for AHS Applications[C]. Proceedings of the American Control Conference,1995:139-143
    [52]De Boor, C., A Practical Guide to Splines[M]. Springer-Verlag, New York, 1978
    [53]李玮,高德芝,段建民.智能车辆自由换道模型研究[J].公路交通科技,2010,27(1):119-123
    [54]徐慧智,裴玉龙,程国柱.基于期望运行轨迹的车道变换行为安全性分析[J].中国安全科学学报,2010,1:90-95
    [55]高越,杨得军,宗长富,等.汽车轨迹测量的速度积分方法及其实施技术[J].汽车技术,2002,9:22-24
    [56]任殿波,张继业,张京明,等.智能车辆弯路换道轨迹规划与横摆率跟踪控制[J].中国科学:技术科学,2011,41(3):306-317
    [57]Salvucci D D,Liu A. The time course of a lane change:Driver control and eye-movement behavior[J]. Elsevier Science Ltd., Transportation Research Part F,2002,5:123-132
    [58]Feng J, Ruan J, Li Y. Study on intelligent vehicle lane change path planning and control simulation[C]. Proceeding of the IEEE International Conference on Information Acquisition,2006:683-688
    [59]Rajamani R, Tan H S, Law B K, et al. Demonstration of integrated longitudinal and lateral control for the operation of automated vehicles in platoons[C]. IEEE Transactions on Control Systems Technology,2000,8(4):695-708
    [60]Hesse T, Sattel T. An approach to integrate vehicle dynamics in motion planning for advanced driver assistance systems[C]. Proceedings of IEEE Intelligent Vehicles Symposium, Istanbul, Turkey,2007:1240-1245
    [61]游峰,智能车辆自动换道与自动超车控制方法的研究[D].吉林大学博士学位论文,2005
    [62]Tan H S, Guldner J, Chen C, et al. Earle changing Maneuvers with look. Down reference systems on automated highways[J]. Control Engineering Practice,2000, 8(9):1033-1043
    [63]Hatipoglu C, Redmill K, Ozgfiner. Steering and lane change:A working system[C]. Proceeding of IEEE Conference on Intelligent Transportation System, Boston, MA, USA,1997:272-277
    [64]Hatipoglu C, Ozgiiner O, Redmill K. Automated lane change controller design[C]. IEEE Transactions on Intelligent Transportation Systems,2003,4(1): 13-22
    [65]Lin Y S, Cook G. Automobile Steering Autopilot with lane change capability[C]. Proceedings of the 23rd International Conference on Industrial Electronics, Control and Instrumentation, New Orleans, LA, USA,1997: 143-148
    [66]Hessburg T. Fuzzy logic control for lane change maneuvers in lateral vehicle guidance[R]. PATH Research Report, University of California, USA,1995: 2-10
    [67]Hedrick J K, Swaroop D. Dynamic coupling in vehicles under automatic control[J]. Vehicle System Dynamics,1994,23(8):209-220
    [68]孙振平.自主驾驶汽车智能控制系统[D].国防科学技术大学博士学位论文,2004
    [69]候永平,胡于进,李成刚,郭孔辉.大侧偏角下侧偏松弛长度特性的研究[J].汽车工程,2001(2):78-81
    [70]Li L, Wang F Y, Zhou Q Z. Integrated longitudinal and lateral tire/road friction modeling and monitoring for vehicle motion control [J]. IEEE Transactions on Intelligent Transportation Systems,2006,7(1):1-19
    [71]Rajamani R. Vehicle Dynamics and Control [M]. New York:Springer,2006
    [72]Lim E M. Lateral and longitudinal vehicle control coupling in the automated highway system[M]. Master dissertation, University of California, Berkeley, USA,1998
    [73]李以农,杨柳,郑玲,等.基于滑模控制的车辆纵横向耦合控制,中国机械工程[J],2007,18(7):866-870
    [74]Mammar S, Netto M. Integrated longitudinal and lateral control for vehicle low speed automation[C]. Proceedings of IEEE International Conference on Control Applications, Taipei, Taiwan,2004:350-355
    [75]Beji L, Bestaoui Y. Motion generation and adaptive control method of automated guided vehicles in road following[J]. IEEE Transactions on Intelligent Transportation Systems,2005,6(1):113-123
    [76]Pham H. A. Combined lateral and longitudinal control of vehicles for the automated highway system[D]. PhD dissertation, University of California Berkeley, USA,1996
    [77]Xiong Bo, Qu Shiru. Intelligent vehicle's path tracking based on fuzzy control [J]. Journal of Transportation Systems Engineering and Information Technology, 2010,10(2):70-75
    [78]吴付威,秦加合,任超伟等,高速公路智能汽车自动超车控制算法仿真研究[J].计算机工程与设计,2013,34(7):25422546
    [79]U. Kiencke, R. Majjad, S. Kramer. Modeling and performance analysis of a hybrid driver model[C]. Control Engineering Practice,1999,7:985-991
    [80]Nobuyuki Kuge, Hiroshi Ueno, Hideaki Ichikawa, Kiyoshi Ochiai. A Study on the Causes of Rear-end Collision Based on an Analysis of Driver Behavior [J]. JSAR Review,1995,16:55-60
    [81][Worrall R.D, Bullen A.G.R. An empirical analysis of lane changing on multilane highways[R]. Washington:Highway Research Board
    [82]Wallis G, Chatziastros A, Bulthoff H. An unexpected role for visual feedback in vehicle steering control[J]. Current Biology,2002,12(4):295-299
    [83]杨志刚,戚志锦,黄燕,智能车辆自由换道轨迹规划研究,重庆交通大学学报(自然科学版)[J],2013,32(3):520-524
    [84]黄秋菊,车道变换行为特性及其对交通安全影响的研究[D].哈尔滨工业大学博士学位论文,2007
    [85]霍克.城市道路驾驶员车道变换行为及注视转移特性研究[D].长安大学博士学位论文,2010
    [86]杨建国,王金梅,李庆丰,王兆安.微观仿真中车辆换道的行为分析和建模[J].公路交通科技,2004,21(11):93-97
    [87]王晓原,邢丽,吴芳.基于决策树模型的驾驶员期望车速[J].计算机应用,2009,29(12):318-321
    [88]郑安文.期望车速的意义及其影响因素分析[J].武汉科技大学学报(自然科学版),2005,28(1):61-64
    [89]徐杰,杜文.跟随车安全距离的分析[J].交通运输工程学报,2002,2(1):101-104
    [90]彭金栓.基于视觉特性与车辆相对运动的驾驶人换道意图识别方法[D].长安大学博士学位论文,2012
    [91]HIDAS P. Modeling lane changing and merging in microscopic traffic simulation [J]. Transportation Research Part C,2002,10(5):351-371
    [92]周立军,基于驾驶员信息处理特性的跟驰及换道模型研究[D].吉林大学博士学位论文,2008
    [93]M. Dietze, D. Ebersbach, CH. Lippold. Road Geometry, Driving Behavior and Road Safety[R]. Road Infrastructure Safety Protection-Core Research and Development for Road Safety in Europe,2008
    [94]徐友春,王荣本,李兵,李斌.世界智能车近况综述[J].汽车工程,2001,23(5):289-295
    [95]徐友春,李华,王肖,等.基于单目视觉的普通道路检测方法[J].军事交通学院学报,2010,12(5):51-54
    [96]徐友春,李克强,连小珉.智能车机器视觉发展近况[J].汽车工程,2003,25(5):438-443
    [97]邓明哲.高速公路追尾碰撞预警系统的研究[D].武汉理工大学博士学位论文,2006
    [98]余志生.汽车理论[M].机械工业出版社,2009,第5版:98-100
    [99]Peter Seiler, Bongsob Song. Development of a collision avoidance system [J]. Automotive Engineering.1998(9):24-30
    [100]候德藻.高速公路追尾碰撞预防报警系统开发研究及其主控程序设计[D].西安公路交通大学博士学位论文,2000
    [101]陈光武.高速公路追尾碰撞预防报警系统开发研究[D].西安公路交通大学博士学位论文,2000
    [102]王伟杰,黄守志,赵学增.基于ZIGBEE的高速公路车辆间通信技术研究[J].大连交通大学学报,2009,30(6):90-94
    [103]Burgett AL, carter A, miller RJ, et al. A collision warning algorithm rear-end collisions[J]. National Highway Traffic Safety Administration United States, 1998,2:31-40
    [104]杨彦宁.支持向量回归机在基金净值预测中的应用[D].西安科技大学博士学位论文,2008
    [105]刘鹤立.基于线性规划算法的支持向量机及其应用[D].上海海事大学博士学位论文,2006
    [106]杜京义.基于核算法的故障智能诊断理论及方法研究[D].西安科技大学博士学位论文,2006
    [107]杨宏丽.再生核空间中若干非线性问题的研究[D].哈尔滨工业大学博士学位论文,2006
    [108]N.Aronszajn, Theory of reproducing kernel[J].Trans. Amer. Math. Soc.,1950, 68:337-404
    [109]Parzen E. Regression analysis of continuous parameter time series [C]. Proceedings of the Fourth Berkeley Symposia on Mathematical Statistics and Probability,1961, I:469-489
    [110]N. Aronszajn. Theory of reproducing kernels[J]. Trans. Amer. Math. Soc., 1950,68:337-404
    [111]Antoniou I, Gustafson K. Wavelets and stochastic processes[J]. Mathematics and Computers in Simulation,1999,49:81-104
    [112]Vapnik V. N. Statistical Learning Theory[M]. New York:John Wiley&Sons, 1998
    [113]Rodriguez C C. The kernel trick[M]. http://omega.albany.edu:8008, 2004
    [114]Bernhard E. Boser, Isabelle M. Guyon and Vladimir N. Vapnik. A Training Algorithm for Optimal Margin Classifiers[C]. Proceedings of the fifth Annual Workshop Computational Learning Theory, ACM Press,1992:144-152
    [115]Bernhard Scholkopf, Patrice Simard, Alex Smola, Vladimir Vapnik. Prior knowledge in support vector kernels[C]. Proceedings of the 1997 conference on Advances in neural information processing systems,1998
    [116]李盼池,许少华.支持向量在模式识别中的核函数特性分析[J].计算机工程与设计,2005,26(2):302-304
    [117]Scholkopf B, Smola A, Wiliamon R, et al. New support vector algorithms [J]. Neural Computation,2000,12(15):1207-1245
    [118][美]Nello Cristianini, John Shawe-Taylor著,李正国,王猛,曾华军译.支持向量机导论[M],北京:电子工业出版社,2004
    [119]张纯刚,席裕庚.动态未知环境中移动机器人的滚动路径规划及安全性分析[J].控制理论与应用,2003,20(1):37-44
    [120]袁曾任,高明.在动态环境中移动机器人导航和避障的一种新方法[J].机器人,2000,22(2):81-88
    [121]徐潼,唐振民.动态环境中的移动机器人避碰规划研究[J].机器人,2003,25(2):117-139
    [122]喻凡,林逸.汽车系统动力学[M].北京:机械工业出版社,2005
    [123]梅生伟,申铁龙,刘康志.现代鲁棒控制理论与应用[M].北京:清华大学出版社,第2版,2008
    [124]任殿波,张京明,崔胜民,张继业.车辆换道纵横向耦合控制[J].交通运输工程学报,2009,9(3): 112-116
    [125]马育林.车队协同驾驶分散变结构建模、仿真与控制研究[D].武汉理工大学博士学位论文,2012
    [126]庄开宇,张克勤,苏宏业,等.高阶非线性系统的Terminal滑模控制[J].浙江大学学报,2002,36(5):482-485
    [127]李生波,李克强,王建强等.非奇异快速的终端滑模控制方法及其跟车控制应用[J].控制理论与应用,2010,27(5):543-550
    [128]刘金琨.滑模变结构控制MATLAB仿真[M].北京:清华大学出版社,2005
    [1]胡海峰,史忠科,徐德文.智能汽车发展研究[J].计算机应用研究,2004,6:20-23
    [2]Tim van Dijck. Vision Sense:An Advanced Lateral Collision Warning System [J]. IEEE Transactions on Control Systems Technology, 2005:296-301
    [3]Victor L. Knoop. Jonathan Cole. R. Eddie Wilson. Quantifying the Number of Lane Changes in Traffic[J].2010:109-116
    [4]Gipps, P. G.A model for the structure of lane-changing decisions [J]. Transportation Research, Part B.1986,20(5):403-414
    [5]Ahmed K I. Modeling drivers' acceleration and lane changing behavior [D]. Massachusetts: Massachusetts Institute of Technology,1999
    [6]Hidas P. Modeling lane changing and merging in microscopic traffic simulation [J]. Transportation Research Part C:Emerging Technologies.2002. 10(1):351-37
    [7]Ratrout N T, Rahman S M. A comparative analysis of currently used microscopic and macroscopic traffic simulation software [J]. The Arabian Journal for Science and Engineering, 2009,34(1):121-133
    [8]Rickert, M. et al. Two lane traffic simulations using cellular automata [J]. Physics A,1996, 231:534-550
    [9]Nagel, K., et al. Two-lane traffic rules for cellular automata: A systematic approach [J]. PHYSICAL REVIEW E,1998,58(2): 1425-1436
    [10]金立生,杨双宾,Mascha van der Voort, Martijn Tidema.高速公路汽车辅助驾驶安全换道模型[J].吉林大学学报(工学版), 2009,39(3):582-586
    [11]杨双宾.高速公路车辆行驶安全辅助换道系统研究[D].吉林大学学位论文,2008
    [12]魏丽英,隽志才,田春林.驾驶员车道变换行 为模拟分析[J].中国公路学报,2001,14(1):77-80
    [13]Huiping Zhou, Makoto Itoh. Toshiyuki Inagaki. How Do Cognitive Distraction Affect Driver Intent of Changing Lanes [J]. ICIRA, 2009:235-244
    [14]Huiping Zhou, Makoto Itoh, Toshiyuki Inagaki. Influence of cognitively distracting activity on driver's eye movement during preparation of changing lanes [J]. SICE Annual Conference 2008:866-871
    [15]李迎峰,史忠科,周致纳.微观交通仿真中随机决策换道行为研究[J].系统仿真学报,2008,20(16):4273-4277
    [16]谭春满.基于Agent与模糊逻辑的车辆换道仿真模型[J].系统工程学报,2007,220):40-45
    [17]杨小宝,张宁,黄留兵.通行能力仿真中的换道模型研究[J].公路交通科技,2007,24(5):109-112
    [18]王晓原,杨新月,王晓辉,刘智平.D-S证据理论在驾驶行为决策中的应用[J].计算机工程与应用,2007,43(27):230-233
    [19]王家凡,罗大庸.交通流微观仿真中的换道模型[J].系统工程,2004,22(3): 92-95
    [20]王晓原,王雷.基于认知活动链的驾驶行为协调仿真模型[J].西南交通大学学报,2007,4(2):238-242
    [21]王晓原.基于心理物理综合认知结构的微观交通仿真模型[J].计算机仿真.2005,11(11):233-236
    [22]Daganzo C F. A behavioral theory of multi-lane traffic flow. PartI:Long homogeneous freeway sections[J]. Transportation Research B,2002, 36(1):131-158
    [23]李勇,何伟,苏虎.微观交通仿真中的驾驶员模型[J].重庆工学学报:自然科学,2008,22(1):19-23
    [24]王晓原,杨新月.基于三次样条非参数拟合的驾驶行为仿真模型[J].系统仿真学报,2006,18(9):2691-2694
    [25]付梦印,邓志红,刘彤.智能车导航技术[M],北京科学出版社,2009:7-8
    [26]方华京,魏然.人工场法在多机器人运动中的研究[J].控制工程,2007,14(2):115-117
    [27]Yoshihiro Nishiwaki, Chiyomi Miyajima, Norihide Kitaoka, et al. Generating Lane-Change Trajectories of Individual Drivers[C]. Proceedings of the 2008 IEEE International Conference on Vehicular Electronics and Safety Columbus, OH, USA. 2008: 271-275
    [28]Shin kato, Kohji tomita, Sadayuki tsugawa. Lane departure detection with and onboard vision system [C].1998 IEEE International Conference on Intelligent Vehicle. NJ:IEEE Press,1998
    [29]Nathaniel Hawthorne Sledge. An Investigation of Vehicle Critical Speed and Its Influence on Lane-Change Trajectories [D]. University of Texas at Austin,1997
    [30]Eshelman, R. L., Desai S. D., Articulated Vehicle Handling [R]. National Highway Traffic Safety Administration, DOT-HS-800-674,1972
    [31]Fett, I. H. C., Simulation of Lane Change Maneuvers on Intersection Approaches[D], University of Texas at Austin,1974.
    [32]Daily J. Fundamentals of Traffic Accident Reconstruction [D]. University of North Florida, 1988
    [33]Fricle, L. B., Traffice Accident Reconstruction [D]. Northwestern University Traffic Institute, 1990
    [34]Limpert R. Motor Vehicle Accident Reconstruction and Cause Analysis [M]. Michie Co.,1994
    [35]Zellner, J. W., Weir, D. H.,Teper, G., Development of Handling Test Procedures for Motorcycles[J]. Motorcycles Dynamics and Rider Control, SAE 780314,1978:91-100
    [36]Kanayama, Y., Miyake, N., Trajectory Generation for Mobile Robots [C]. Third International Symposium on Robotics Research, Gouvieux, France, MIT Press,1985:333-340
    [37]Chee, W., Tomizuka, M., Patwardham,S., et al. Experimental Study of Lane-change Maneuver for AHS Applications[C]. Proceedings of the American Control Conference,1995: 139-143
    [38]De Boor, C., A Practical Guide to Splines[M]. Springer-Veriag, NewYork,1978
    [39]李玮,高德芝,段建民.智能车辆自由换道模型研究.公路交通科技,2010,27(1):119-123
    [40]徐慧智,裴玉龙,程国柱.基于期望运行轨迹的车道变换行为安全性分析[J].中国安全科学学报,2010,1:90-95
    [41]高越,杨得军,宗长富,等.汽车轨迹测量的速度积分方法及其实施技术[J].汽车技术,2002,9:22-24
    [42]任殿波,张继业,张京明,等.智能车辆弯路换道轨迹规划与横摆率跟踪控制[J].中国科学:技术科学,2011,41(3):306-317
    [43]Satvucci D D, Liu A. The time course of a lane change:Driver control and eye-movement behavior[J]. Elsevier Science Ltd., Transportation Research Part F.2002,5:123-132
    [44]Feng J, Ruan J, Li Y. Study on intelligent vehicle lane change path planning and control simulation[C]. Proceeding of the IEEE International Conference on Information Acquisition,2006:683-688
    [45]Rajamani R, Tan H S, Law BK, et al. Demonstration of integrated longitudinal and lateral control for the operation of automated vehicles in platoons[C]. IEEE Transactions on Control Systems Technology.2000,8(4): 695-708
    [46]Hesse T, Sattel T. An approach to integrate vehicle dynamics in motion planning for advanced driver assistance systems[C]. Proceedings of IEEE Intelligent Vehicles Symposium. Istanbul. Turkey,2007: 1240-1245
    [47]游峰,智能车辆自动换道与自动超车控制方法的研究[D].吉林大学博士学位论文,2005
    [48]Tan H S, Guldner J. Chen C, et al. Earle changing Maneuvers with look. Down reference systems on automated highways[J]. Control Engineering Practice,2000,8(9):1033-1043
    [49]HatipogluC, Redmill K, Ozgfiner. Steering and lane change:A working system[C]. Proceeding of IEEE Conference on Intelligent Transportation System, Boston, MA, USA,1997:272-277
    [50]Hatipoglu C, Ozgiiner O, Redmill K. Automated lane change controller design[C]. IEEE Transactions on Intelligent Transportation Systems,2003,4(1):13-22
    [51]LinYS, Cook G. Automobile Steering Autopilot with lane change capability[C]. Proceedings of the 23rd International Conference on Industrial Electronics, Control and Instrumentation, New Orleans, LA, USA,1997:143-148
    [52]Hessburg T. Fuzzy logic control for lane change maneuvers in lateral vehicle guidance[R]. PATH Research Report, University of California, USA, 1995:2-10
    [53]Hedrick J K, Swaroop D. Dynamic coupling in vehicles under automatic control[J]. Vehicle System Dynamics,1994,23(8):209-220
    [54]孙振平.自主驾驶汽车智能控制系统[D].国防科学技术大学博士学位论文.2004
    [55]候永平,胡于进,李成刚,郭孔辉.大侧偏角下侧偏松弛长度特性的研究[J].汽车工程,2001(2):78-81
    [56]Li L, Wang F Y, Zhou Q Z. Integrated longitudinal and lateral tire/road friction modeling and monitoring for vehicle motion control [J]. IEEE Transactions on Intelligent Transportation Systems,2006,7(1):1-19
    [57]Rajamani R. Vehicle Dynamics and Control[M]. NewYork:Springer,2006
    [58]Lim E M. Lateral and longitudinal vehicle control coupling in the automated highway system[M]. Master dissertation. University of California, Berkeley, USA,1998
    [59]李以农,杨柳,郑玲,等.基于滑模控制的车辆纵横向耦合控制,中国机械工程[J], 2007,18(7):866-870
    [60]Mammar S, Netto M. Integrated longitudinal and lateral control for vehicle low speed automation[C]. Proceedings of IEEE International Conference on Control Applications, Taipei, Taiwan,2004:350-355

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700