用户名: 密码: 验证码:
多馈直流系统接入对交流电网的影响及混联系统关键问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
直流输电在远距离、大容量输送功率、直流输电联网、海底电缆送电及非同步互联两端交流系统等方面优势显著,引起了人们的重视,我国亦建成或正在规划多条直流输电线路,直流输电系统的建成及投入运行必然会对已有交流系统产生重要影响。本文研究了直流功率紧急控制策略下交直流系统相互支援、协调控制的原理、实现方法及其对维护电网稳定性的影响和作用;研究了特高压多馈直流系统接入交流系统后混合系统的稳定性及发生直流故障和小扰动时系统的稳定性问题;研究了交直流混合系统继电保护特性及架空线-电缆混合线路故障定位原理,研制出了相关的保护监控装置及功能插件;最后研究了混联系统中直流量的分布特性,分析了土壤特性对直流量的分布所产生的影响。主要研究内容有:
     基于直流频率调制和直流有功功率调制研究了直流功率紧急控制策略下的交直流系统功率相互支援、协调控制的原理、实现方法及引入直流功率紧急控制后对交直流系统稳定性的影响;以西南水电交直流混合系统中具体的洪沟~板桥、资阳~北碚和龙泉~龙王三条双回通道为例,研究了其发生三永跳双回故障系统失稳时,与直流系统协调配合所需输入控制信号的选择;研究了维持系统稳定性的第三道防线配置原则及协调控制策略。研究了特高压多馈直流系统接入交流系统后送出直流系统及其逆变站落点附近主干线路在基础方式和极限方式运行下系统的稳定性,分析了输电线路无功-电压特性原理及发电机组传递函数控制模型,研究了送端线路故障及发电机组故障情况下系统的安全稳定性。
     以四川交直流混合电网为研究对象,首先从理论上分析了直流系统接入对交流输电系统继电保护的影响,并利用RTDS实时仿真系统进行了验证性试验,得出了引入多馈直流输电系统对不同交流系统保护原理的影响及相应的防护措施。基于双端行波原理,提出了一种架空线-电缆混合输电线路故障定位算法,并将该算法嵌入某双端行波故障测距装置中,建立混合线路故障暂态行波仿真模型对其进行验证。结果表明该算法定位误差不超过1km,并且具有可重复性。进一步与继电保护配合,构成了混合线路自适应重合闸控制系统的实现方案。研制出集行波采集、时间同步、行波测距、通信和事件告警等功能为一体的行波故障测距功能插件。
     研究了混联系统中直流量的分布特性,在单极运行方式下分别计算了土层结构对地表电位及直流电流分布的影响。基于德宝直流输电项目实际工程参数,应用CDEGS仿真软件,建立了分层土壤结构下直流输电单极大地回路运行方式下的仿真模型,研究了地表电位及直流电流分布对土壤参数的敏感度,得出了与第二层、第三层土壤相比,第一层土壤电阻率及厚度的变化对直流量(即地表电位及直流电流分布)影响最大,地表电位受影响的程度低于直流电流分布的结论。
The advantage of DC transmission in the aspects of transmitting large capacity power long-distantly, interconnecting power system with DC transmission as well as submarine cable transmission and asynchronously interconnecting the both ends of AC system etc. is significantly prominent, to which more and more attention has been laid. Several DC transmission lines have been built and more DC transmission lines are now being under design in China. Significant effects on the running of AC power system that has been existed previously will be produced inevitably accompanying the establishment and operation of DC transmission system. This dissertation studies the theory and realization of AC and DC hybrid system supporting with each other by coordinated control under the strategy of DC active power emergency control as well as its impacts and function for maintaining the stability of system. The stability of AC and DC hybrid system is also studied when DC defaults or small disturbances happen after ultra-high voltage multi-feed DC system being connected into AC power system. The theories of relay protection characteristics of AC and DC hybrid system as well as fault location for hybrid transmission line are investigated. The relative protective and monitoring device and faults distance measuring plug-in card are developed. At last, the distribution characteristics of DC quantities in hybrid system are studied and effects on DC quantities distribution caused by soil properties are analyzed. The main research contexts are as follows.
     Based on DC frequency modulation and DC active power modulation, the principle and realization method of AC and DC hybrid system power supporting with each other by coordinated control under the strategy of DC active power emergency control is investigated, and also the stability impacts on AC and DC hybrid system after DC power emergency control being introduced is studied. Taking the concrete three double-aisled lines of HongGou-BanQiao, ZiYang-BeiPei and LongQuan-LongWang in southwest hydropower AC-DC hybrid system for example, the choice of control signals needed to be used to coordinate and cooperate with DC system is investigated when the system lost stability caused by the faults of three-phase permanent tripping taking place. The configuration principles of the third defense line as well as its coordinated control strategy for maintaining system stability are studied. The system stability is studied when the send out DC system and backbone lines which lie in the vicinity of inverter station run in the modes of foundation way and extreme way separately after the ultra-high voltage multi-feed DC system being connected into AC power system in SiChuan electric network. The principle of reactive power voltage characteristics of transmission line and the transfer function control model of generating set are analyzed. The security and stability of system is studied when the send out lines or generating set go wrong.
     Takeing Sichuan AC-DC hybrid power grid as the study object, the effect on relay protection of AC transmission line caused by the connection of DC system is theoretically analyzed in the first place, and the validation test is completed based on RTDS, through which the effects as well as corresponding protective measures under different protective theory of AC system are obtained when multi-feed DC transmission system is introducted. Based on the theory of two-terminal travelling wave, an algorithm of faults location for hybrid transmission mixed by overhead lines and cables was proposed. The simulation model of fault transient travelling waving for hybrid lines which has embedded the algorithm through some two-terminal travelling wave device for fault range measuring is established to verify its validity. Result shows that the location error of this algorithm is no more than 1km with repeatability. Combined with relay protection formore, the implementation scheme of adaptive reclosing contral system for hybrid transmission line was constituded. The faults distance measuring plug-in card on basis of travelling wave was developed, which posseses the function of travelling wave sampling, time synchronization, travelling wave faults distance measuring, communication and evevts warning and so on simultaneously.
     The distribution characteristics of DC quantities in hybrid system is studied, and effects on the distribution of ground surface potential and direct current caused by stratified soil structure with monopole mode working is calculated and analyzed respectively. Based on actual project parameters applied in De-Bao DC transmission item, the simulation model of DC transmission under monopole earth return mode of operation was built by CDEGS simulation software in the situation of stratified soil structure. The sensitivity to ground surface potential and direct current for soil parameters is studied. Compared with the second and third layer of soil, the variation of soil resistivity as well as its depth of the first layer soil has a greater influence on DC quantities(that is ground surface potential and direct current distribution) while ground surface potential is less affected than direct current distribution by the soil parameters.
引文
[1]赵畹君主编.高压直流输电工程技术[M].北京:中国电力出版社,2004.
    [2]李兴源.高压直流输电系统的运行和控制[M].科学出版社,1998.
    [3]吴广宁,蒋伟,曹晓斌.现代高压电力工程[M].北京:中国电力出版社,2008.
    [4]中国电力工程顾问集团公司.金沙江一期溪洛渡、向家坝水电站送电华东、华中十800kV特高压直流输电工程可行性研究报告[R].北京:中国电力工程顾问集团公司,2005.
    [5]国家电网公司.溪洛渡、向家坝水电站输电方案优化论证报告[R].北京:国家电网公司,2005.
    [6]董凌.特高压直流输电对受端交流系统稳定影响的研究[D].华北电力大学,2007.
    [7]何智江.发展中的中国高压直流输电事业[J].高压电器,2006,42(6):460-463.
    [8]曾南超.高压直流输电在我国电网发展中的作用[J].高电压技术,2004,30(11):11-12.
    [9]哀清云.特高压直流输电技术现状及在我国的应用前景[J].电网技术,2005,29(14):1-3.
    [10]浙江大学发电教研组直流输电科研组.直流输电[M].北京:电力工业出版社,1982.
    [11]Won-CheolYun. A strategic approach for electric power interconnection in North-East Asia[C].APEC Study Centre Conference,2004.
    [12]舒印彪,刘泽洪,高理迎等.十800kV 6400MW特高压直流输电工程设计[J].电网技术,2006,30(1):1-8.
    [13]Liang X M, Liu Z H, Wang S W, et al. Planning of UHVDC transmission system in China[C]. Asia Pacific Region T&D Conference, Dalian, China,2005.
    [14]赵美莲,梁小冰.直流输电的技术优势及对电力设备的负面影响[J].广西电力,2006,6:36-38.
    [15]詹奕,尹项根.高压直流输电与特高压交流输电的比较研究[J].高电压技术,2001,27(4):44-46.
    [16]胡劲松,黎岚,吴安平等.特高压直流输电工程可行性研究主要技术原则[J].中国电力,2007,40(8):36-39.
    [17]喻新强.2003年以来国家电网公司直流输电系统运行情况总结[J].电网技术,2005年,29(20):41-46.
    [18]苏宏田,齐旭.我国特高压直流输电市场需求研究[J].电网技术,2005,29(24):1-4.
    [19]SU Hong-tian, QI Xu, WU Yun. Study on market demand of UHVDC power transmission in China[J]. Power System Technology,2005,29(24):1-4.
    [20]YUAN Qing-yun. Present state and application prospect of ultra HVDC transmission in China[J]. Power System Technology,2005,29(14):1-3.
    [21]倪炜.地区电网稳定性研究[J].电力自动化设备,2006,22(6):71-74.
    [22]赵希正.强化电网安全保障可靠供电[J].电网技术,2003,27(10):1-7.
    [23]电力科学研究院.BPA稳定程序用户手册(中国版210).电力科学研究院,1991.
    [24]洪佩孙.关于电力系统稳定(Ⅰ)[J].江苏电机工程,2001,20(4):47-48.
    [25]洪佩孙.关于电力系统稳定(Ⅱ)[J].江苏电机工程,2001,21(1):44-47.
    [26]电力系统安全稳定导则(DL 755-2001).北京:中华人民共和国国家经济贸易委员会,2001.
    [27]卢睿.多馈入直流对华东电网稳定性影响研究.浙江大学工学硕十学位论文,2006.
    [28]印永华,郭剑波,赵建军等.美加“8.14”大停电事故初步分析以及应吸收的教训[J].电网技术,2003,27(10):8-11.
    [29]何井龙.特高压入湘后受端电网安全稳定性研究[D].湖南大学,2009.
    [30]吴宝英,陈允鹏,陈旭,等.十800kV云广直流输电工程对南方电网安全稳定的影响[J].电网技术.2006,30(22):5-12.
    [31]丁明,黄凯,李生虎.交直流混合电力系统的概率稳定性[J].中国电机工程学报.2002,22(8):11-16.
    [32]水利电力部.电力系统暂态稳定计算暂行规定[Z].(87)电生供字第205号,北京:水利电力部,1987.
    [33]Denis L.H.A., Andersson G.. Voltage stability analysis of multi-infeed HVDC systems[J]. IEEE Trans on Power Delivery,1997,12(3):1308-1318.
    [34]T.J.Hammons, R.L.Yeo, C.L.Gwee, P.A.Kacejko. Enhancement of Power System Transient Response by Control of HVDC Converter Power[J].Electric Machines and Power Systems,2000,28(3): 219-241.
    [35]Yang W D, Xu Z. Co-ordinated hierarchical control strategy for multi-infeed Transmission HVDC systems[J].IEE Proceedings Generation and Distribution,2002,149(2):242-248.
    [36]王梅义,吴竞昌,蒙定中.大电网系统技术[M],第二版,北京:中国电力出版社,1995.
    [37]南京地区电网调度所.2000年-2001年南京电网稳定运行规定[Z].南京:南京地区电网调度所,2000.
    [38]韩祯祥.电力系统稳定[M].北京:中国电力出版社,1995.
    [39]徐政.交直流电力系统动态行为分析[M].北京,机械工业出版社,2004.
    [40]毛晓明,张尧,管霖,等.南方交直流混合电网区域振荡的协调控制策略[J].电力系统自动化,2005,29(20):55-59.
    [41]刘洪超,李兴源,王路,等.多馈入直流输电系统中直流调制的协调优化[J].电网技术,2004,28(1):5-9.
    [42]Lei X Z, Lerch E N, Povh D, et al. Optimization and Coordination of Damping Controls for Improving System Dynamic Performance[J]. IEEE Trans on Power Systems,2001,16(3):473-480.
    [43]陈树恒,李兴源,武凌云,等.基于降阶模型辨识的较直立混合输电系统广域阻尼控制[J].电网技术,2007,31(17):36-40.
    [44]殷威扬.直流附加阻尼控制在灵宝背靠背工程中的应用[J].高电压技术,2004,30(11):15-17.
    [45]郭小江,马世英,卜广全,等.多馈入直流系统协调控制综述[J].电力系统自动化,2009,33(3): 9-14.
    [46]余涛,沈善德,任震.华中-华东多回HVDC紧急功率转移控制研究[J].电网技术,2004,28(12):1-5.
    [47]余涛,沈善德.华中-华东多回HVDC辅助功率/频率控制[J].电力系统自动化,2005,29(1):77-82.
    [48]杨卫东.多馈入直流系统控制策略研究[D].杭州:浙江大学,2001.
    [49]李兴源,陈凌云,颜泉,等.多馈入高压直流输电系统非线性附加控制器的设计[J].中国电机工程学报,2005,25(15):16-19.
    [50]朱浩骏,蔡泽祥,刘浩明,等.多馈入交直流输电系统的模糊控制器协调优化算法[J].中国电机工程学报,2006,26(13):7-13.
    [51]Ching C Y, Han Z X, NiYX. Decentralized nonlinear variable structure control for AC-DC power systems[C]. Proceedings of IEE International conference on Advances in Power System Control, Operation & Management, November 5-8,1991, Hong Kong, China:821-826.
    [52]邵震霞.利用高压直流输电控制提高电力系统稳定性研究[D].成都:四川大学,2002.
    [53]李兴源,邵震霞,汤广福.多馈入高压直流输电系统的分散协调控制研究[J].2005,25(16):8-12.
    [54]Yang Weidong, Xu Zheng. Co-ordinated hierarchical control strategy for multi-feed HVDC systems[J].IEE Proceedings:Generation, Transmission and Distribution,2002,149(2):242-248.
    [55]Reeve J, Lane-Smith S P. Multi-infeed HVDC transient response and recovery strategies [J]. IEEE Trans on Power Delivery,1993,8(4):1995-2001.
    [56]Szechtman M, Pilotto L A S, Ping W W. The behavior of several HVDC links terminating in the same load area[C]. Proceedings of CIGRE, August 29-September 5, Paris, France.
    [57]王珂,杨卫东,方勇杰,等.有利于多馈入直流输电系统协调恢复的VDCOL控制策略研究[J].江苏电机工程,2007,26(1):1-4.
    [58]杨大春,刘天琪,李兴源,等VDCOL参数整定的改进对多馈入直流输电系统暂态稳定性的影响研究[J].四川电力技术,2009,32(2):24-27.
    [59]高锡明,刘云,张晋华,等.多回直流系统远方集中控制中心设计[J].电力系统自动化,2007,31(15):106-110.
    [60]周长春,徐政.由直流输电引起的次同步振荡得阻尼特性分析[J].中国电机T程学报,2003,23(10):6-10.
    [61]周长春,徐政.一种评价多个直流换流站系统次同步扭振相互作用的新指标[J].中国电机工程学报,2004,24(4):6-11.
    [62]Electric Power Research Institute. HVDC system control for damping of subsynchronous oscillations[R]. New York:EPRI,1982.
    [63]Svensson S, Mortensen K. Damping of subsynchronous oscillations by an HVDC link,an HVDC simulator study[J]. IEEE Trans on Power Apparatus and System,1981,100(3):1431-1437.
    [64]江泉元,程时杰,曹一家.基于遗传算法的HVDC附加次同步阻尼控制器设计[J].中国电机工程学报,2002,22(11):87-91.
    [65]6. Hsu Y-Y, Wang L. Modal control of an HVDC system for the damping of subsynchronous oscillations[J]. IEE Proceedings, Part C,1988,136(2):78-86.
    [66]Harley R G, Balda J.C. Subsynchronous resonance damping by specially controlling a parallel HVDC link[J]. IEE Proceedings,1985,132(3):154-160.
    [67]CIGRE. IEEE Joint Task Force Report. Guide for planning DC links terminating at AC locations having low short-circuit capacities, partⅠ:AC/DC interaction phenomena[M].CIGRE Publication, 1992.
    [68]IEEE Committee Report. DC transmission terminating at low circuit ratio location[J]. IEEE Trans. On Power Delivery,1986,1(3):308-318.
    [69]Paulo F.D.T, Bernt B, Gunnar A. Multiple infeed short circuit ratio:aspects related to multiple HVDC into one AC network[C]. Transmission and Distribution Conference & Exhibition:Asia and Pacific,2005 IEEE/PES, Dalian, China,2005.
    [70]林伟芳,汤涌,卜广全.多馈入直流系统短路比的定义和应用[J].中国电机工程学报,2008,28(31):1-8.
    [71]吴冲,李兴源.高压直流输电系统换相失败及相关问题的研究[J].现代电力,2007,24(3):1-5.
    [72]Thio C V, Davies J B, Kent K L. Commutation failures in HVDC transmission system[J].IEEE Trans on Power Delivery,1996,11(2):946-957.
    [73]何朝荣,李兴源,金小明.高压直流输电系统换相失败的判断标准[J].电网技术,2006,30(22):19-23.
    [74]何朝荣,李兴源,金小明等.高压直流输电系统换相失败的判断标准的仿真分析[J].电网技术2007,31(22):20-24.
    [75]欧开健,任震,荆勇.直流输电系统换相失败的研究(一)换相失败的影响因素分析[J].电力系统自动化设备,2003,23(5):5-8.
    [76]项玲,郑建勇,胡敏强.多端和多馈入直流输电系统中换相失败的研究[J].电力系统自动化,2005,29(11):29-33.
    [77]林凌雪,张尧,钟庆,等.多馈入直流输电系统中换相失败研究综述[J].电网技术,2006,30(17):40-46.
    [78]林伟芳,汤涌,卜广全.多馈入交直流系统电压稳定性研究[J].电网技术,2008,32(11):7-12.
    [79]原蔚鹏,张尧.多馈入直流线路的交直流混合电网静态电压稳定分析[J].中国电力,2006,39(7):35-39.
    [80]杨秀,郎鹏越,靳希.高压直流输电系统功率/电压静态稳定性的建模与分析[J].华东电力, 2006,24(3):10-12.
    [81]Denis L H A, Andersson G. Impact of dynamic modeling on power system of HVDC system[J]. IEEE Trans on Power Delivery,1998,13(3):1427-1437.
    [82]Denis L H A, Andersson G. Quasi-static stability of HVDC systems considering dynamic effects of synchronous machines and excitation voltage control[J]. IEEE Trans on Power Delivery,2006, 21(3):1501-1514.
    [83]Denis Lee Hau Aik, Andersson G. Nonlinear dynamic in HVDC systems[J]. IEEE Trans on Power Delivery,1999,14(4):1417-1425.
    [84]Claudio A. Voltage collapse and transient energy function analyses of ac/dc systems[D].Madison: University of Wisconsin Madison,1991.
    [85]周保荣,金小明,吴小辰,等.特高压直流对交直流并联电网安全稳定影响[J].南方电网技术,2010,4(2):31-34.
    [86]刘可真,束洪春,孙士云,等.±800kV云广特高压直流控制方式的动态特性分析[J].高电压技术,2010,36(1):190-195.
    [87]齐旭,曾德文,史大军,等.特高压直流输电对系统安全稳定影响研究[J].电网技术,2006,30(2):1-6.
    [88]郭小江,卜广全,马世英,等.西南水电送华东多送出多馈入直流系统稳定控制策略[J].电网技术,2009,33(2):56-61.
    [89]欧开健,任震,荆勇.直流输电系统换相失败的研究(一)—换相失败的影响因素分析[J].电力自动化设备,2003,23(5):5-9.
    [90]任震,欧开健,荆勇.直流输电系统换相失败的研究(二)—避免换相失败的措施[J].电力自动化设备,2003,23(6):6-9.
    [91]荆勇,欧开健,任震.交流单相故障对高压直流输电换相失败的影响[J].高电压技术,2004,30(3):60-62.
    [92]鲁德锋,毛为民,冼伟雄.直流换流站换流失败引起继电保护不正确动作的分析及防范措施探讨[J].电力设备,2006,7(1):54-56.
    [93]邵震.高压直流系统换相失败对交流侧继电保护的影响[J].南方电网技术,2007,1(1):77-80.
    [94]刘强,蔡泽祥,刘为雄,等.交直流互联电网暂态功率倒向及对继电保护的影响[J].电力系统自动化,2007,31(7):34-38.
    [95]李海锋,朱革兰,王钢,等[J].直流单极—大地方式谐波特性及其对交流保护影响的分析[J].继电器,2008,36(4):5-10.
    [96]葛耀中.新型继电保护和故障测距的原理与技术[M].第2版.西安:西安交通大学山版社,2007
    [97]徐丙垠,李京,陈平,等.现代行波测距技术及其应用[J].电力系统自动化,2001,25(23):62-65.
    [98]CHEN Yanxia, YIN Xianggen, ZHANG Zhe, et al. The research of the overcurrent relays based on phase-to-phase differential current adaptive setting and coordination[C]. Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference. Dallas, TX, United States: IEEE,2003:250-255.
    [99]吴娟娟,杨晓敏.基于两相电流差和线电压的中低压线路自适应保护[J].电力系统保护与控制,2008,36(24):36-40.
    [100]揭林玲.配电线路自适应保护研究[D].重庆:重庆大学电气工程学院,2009.
    [101]欧阳兵,吕艳萍,骆德昌.配电网网络式自适应电流保护研究[J].电网技术,2003,27(7):52-55.
    [102]ABYANEH H A, DABBAGH M A, KAPEGAR H K, et al. A new optimal approach for coordination of overcurrent relays in interconnected power systems [J].IEEE Transactions on Power Delivery,2003,18(2):430-435.
    [103]ABEDLAZIZ A Y, TALAAT H E A, NOSSEIT A I, et al. An adaptive protection scheme for optimal coordination of overcurrent relays[J]. Electric Power Systems Research,2002,61(1):1-9.
    [104]GALE P.F, STOJOE J, LROSSLEY P.A. Practical experience with travelling wave fault locators on Scottish power's 275 and 400 kV transmission system[C].Proceedings of Sixth International Conference on Developments in Power System Protection.Nottingham, UK:IEE,1997:192-196.
    [105]陈平,徐丙垠,李京,等.现代行波故障测距装置及其运行经验[J].电力系统自动化,2003,27(6):66-69.
    [106]陈平.输电线路现代行波故障测距及其应用研究[D].西安:西安交通大学电气工程学院,2003.
    [107]董新洲.小波理论应用于输电线路故障测距研究[J].两安:西安交通大学电气上程学院,1996.
    [108]FERNADO H M, ALIA. Faullt Location using wavelets [J]. IEEETrans on Power Delivery,1998, 13(4):1475-1480.
    [109]覃剑,彭莉萍,王和春.基于小波变换技术的输电线路单端行波故障测距[J].电力系统自动化,2005,29(19):62-65.
    [110]马强,荣命哲,贾申利.基于振动信号小波包提取和短时能量分析的高压断路器合闸同期性的研究[J].中国电机工程学报,2005,25(13):149-154.
    [111]梁军,负志皓,仟妹霏,等.小波变换的二抽取环节对行波测距精度的影响[J].电力自动化设备,2006,26(10):28-31.
    [112]张小丽,曾祥君,马洪江等.基于Hilbert-Huang变换的电网故障行波定位方法[J].电力系统自动化,2008,32(8):64-68.
    [113]卢继平,黎颖,李健等.行波法与阻抗法结合的综合单端故障测距新方法[J].电力系统自动化,2007,31(23):65-69.
    [114]LEE J B, HACW, JUNG C H. Development of digital distance relaying algorithm in combined transmission lines with underground power cables[C].Proceedings of the IEEE Power Engineering Society Summer Meeting:Vol 1, July 15-19,2001, Vancouver, Canada:611-616.
    [115]吴承恩,邰能灵,郁惟墉等.超高压电缆架空线混合线路故障测寻法[J].电力系统自动化,2005,29(10):26-30.
    [116]束洪春,孙涛.电缆一架空线混合线路故障行波测距新方法[J].电力自动化设备,2008,28(10):1-7.
    [117]刘湖连,陈平.现代行波故障测距原理分析与评价[J].广东输电与变电技术,2006(2):7-11.
    [118]董杏丽,葛耀中,董新洲.行波保护中合闸到故障线路的检测方法[J].中国电机工程学报,2002,22(10):77-80.
    [119]严凤.中性点非有效接地系统单相接地行波故障定位方法的研究[D].保定:华北电力大学,2003.
    [120]孙向飞,束洪春,司大军.输电线路不同期合闸操作的行波特征分析[J].中国电机工程学报,2006,26(24):31-36.
    [121]薛永端,徐丙垠,李京,等.铁路10kV自闭/贯通线路行波故障测距技术[J].电力系统自动化,2006,30(5):68-73.
    [122]陈平,牛燕雄,徐丙垠,等.现代行波故障测距系统的研制[J].电力系统自动化,2003,27(12):81-85.
    [123]LEE H, MOUSA A.M. GPS travelling wave fault locator systems investigation into the anomalous measurements related to lightning strikes[J].IEEE Trans on Pow Delivery,1996,11(3):1214-1223.
    [124]GALE P.F, TAYLOR P.V, NAIDAAP, etal. Travelling wave fault locator experience on Eskom's transmission network[C]. Proeedings of Seventh International Conference on Developmenu in Power Svstem Protection, Amsterclam.Netherlands, IEE.2001:327-330.
    [125]CHEN Ping, XU Bingyin, LI Jing. A traveling wave based fault locating system for HVDC transmission lines[C]. Proceedings of International Conference on Power System Technology, Chongqing, China.IEEE,2006:1-4.
    [126]陈平,葛耀中,徐丙垠.利用故障线路分闸暂态行波的故障测距[J].电力系统自动化,2004,28(1):53-58.
    [127]陈平,朱瑛,徐丙垠,等.利用重合闸暂态行波的输电线路故障测距[J].电力系统自动化,2009,33(11):76-80,93.
    [128]王兴国,黄少锋.一种基于屏蔽滤波的行波信号消噪力法[J].电力自动化设备,2009,29(6):35-39.
    [129]束洪春,程春和,赵文渊,等.形态学与HHT检测相结合的行波波头准确标定力法[J].电力自动化设备,2009,29(7):1-7.
    [130]熊立新,徐丙垠,李京.电力系统暂态信号采集方法:中国200610045193.8[P],2007-12-26.
    [131]熊立新.超高速电力系统暂态数据采集系统[D].济南:山东大学电气工程学院,2006,21-33.
    [132]葛耀中.自适应继电保护及其前景展望[J].电力系统自动化,1997,21(9):42-46.
    [133]葛耀中.对自适应电流速断保护的评价[J].电力自动化设备,2000,20(6):1-5.
    [134]陈皓.自适应技术在电力系统继电保护中应用[J].电力自动化设备,2001,21(10):56-61.
    [135]中华人民共和国电力行业标准.高压直流输电大地返回运行系统设计技术规定.北京:中国电力出版社,2005:1-30.
    [136]T.N.Giao,M.P sarma. Effect of a two Layer Earth on the Electric Field Near HVDV Ground Electrodes[J]. IEEE Trans.PAS,1972,91(6):36-41.
    [137]F.Dawalibi, D.Mukhedkar. Optimum Design of Substation Grounding in a two Layer Earth Structure. Part Ⅰ, Ⅱ and Ⅲ[J]. IEEE Trans.PAS,1975,94(2):252-272.
    [138]Jinxi Ma, Farid P. Dawalibi. Analysis of Grounding Systems in Soils with Finite Volumes of Different Resistivities[J]. IEEE Transactions on Power Delivery,2002,17(2):13-19.
    [139]Jinxi Ma, and Farid P Dawalibi. Analysis of Grounding Systems in Soils with Cylindrical Soil Volumes[J]. IEEE Transactions on Power Delivery,2000,15(3):1-7.
    [140]J.Ma, F.P. Dawalibi, R.D.Southey. On the equivalence of uniform and two-layer soils to multilayer soils in the analysis of grounding systems[J]. IEE Proc-Gener. Transm. Distrib,1996,143(1): 267-273.
    [141]R.H.Heppe. Computation of Potential at Surface Above an Energized Ground or Other Electrode, Allowing for Non-Uniform Current Distrubution[J]. IEEE Trans.on PAS,1979,98(6):153-158.
    [142]Pierre Kouteynikoff. Numerical Computation of Grounding Resistance of Substations and Towers[J]. IEEE Trans Power Apparatus and Systems,1980,99(3):957-965.
    [143]陈慈萱.边界元法在接地计算中的应用—线路防雷接地电阻的计算[J].高电压技术,1983,2(1):1-5.
    [144]陈慈萱.边界元法在接地计算中的应用一发、变电站地网接地电阻的计算[J].高电压技术1983,9(1):1-3.
    [145]陈慈萱.地网流散电流分布对接地问题的影响[J].高电压技术,1983,9(1):4-7.
    [146]戴江江.发变电站(站)大地网接地问题边界单元法计算[J].武汉水利电力学院学报,1984,1(1):5-8.
    [147]CIGRE Wrking Group 14.21. HVDC ground electrode design [R]. CIGRE Report, Paris,1997: T S97-313.
    [148]Tykeson K, Nyman A, Carlsson H. Environmental and geographical aspects in HVDC electrode design[J]. IEEE Transactions on Power Delivery,1996,11(4):1948-1954.
    [149]陈辉祥,孙帮新.穗东换流站共用接地极研究及论证报告:云广特高压直流输电工程可行性研究报告[R].成都:西南电力设计院,广州:广东省电力设计研究院,2005.
    [150]孙帮新,陈辉祥,董晓辉.高压直流输电工程共用接地极专题研究报告[R].广州:广东省电力设计研究院,武汉高压研究所,2005.
    [151]孙帮新,陈辉祥.高压直流输电共用接地极技术研究[J].高电压技术,2006,(32)12:150-153, 167.
    [152]ZHANG Bo, ZHAO Jie, ZENG Rong, et al. Estimation of DC current distribution in AC power system caused by HVDC transmission system in ground return status[J]. Proceedings of the CSEE, 2006,26(13):84-88.
    [153]曾连生.直流输电接地极电流对电力变压器的影响[J].高电压技术,2005,31(4):57-58.
    [154]姚缨英.大型电力变压器直流偏磁现象的研究[D].沈阳工业大学博士学位论文,2000.
    [155]蒯狄止.电网设备直流偏磁影响检测分析与抑制[D].南京理工大学博十学位论文,2004.
    [156]Y.You, E.F Fuchs, P. R. Barnes. Reactive Power Demand of Transformers with DC Bias[J].IEEE Industry Alications Magazine,1996,(7-8):45-52.
    [157]郭征.特高压长线路分相电流差动保护新原理[D].天津大学,2004.
    [158]徐松晓.特高压输电线的分相电流相位差动保护[D].天津大学,2007.
    [159]陆继明.直流输电接地极对地表电位分布的影响[J].高电压技术,2006,32(9):55-58.
    [160]蒋伟UHVDC输电引起变压器直流偏磁及其抑制措施的研究[D].成都:西南交通大学,2009.
    [161]孙为民.非均匀土壤中发变电站接地系统优化设计研究[D].北京:清华大学,2001.
    [162]袁建生,李中新.求解多层媒质中点电源电场问题的复镜像法[J].清华大学学报(自然科学版),1999,39(5):51-53.
    [163]赵志斌,张波,崔翔.分层土壤中点电流源电流场计算的递推算法[J].华北电力大学学报,2003,30(1):22-25.
    [164]刘曲,李立涅,郑健超.考虑海洋影响的直流输电单极大地运行时变压器中性点直流电流研究[J].电网技术,2007,31(2):57-60.
    [165]刘曲.高压直流输电系统单极大地运行时地中电流分布的研究[D].清华大学,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700