用户名: 密码: 验证码:
永磁式涡流缓速器电磁特性与制动性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
制动性是车辆主动安全性能中最主要的性能之一,良好的制动性能是车辆安全行驶的重要保障。随着车辆动力技术的提高和道路条件的改善,车辆载重量和行驶速度的增加使得主制动系统制动负荷过大的问题日渐突出,车辆的安全性能越来越受到人们的普遍重视。解决制动负荷过大等问题切实可行的方法是加装辅助制动装置。
     永磁式涡流缓速器是独立于车辆主制动系统和驻车制动系统以外的一种新型的节能、环保行车辅助制动装置。它通过电磁感应原理,利用永磁场产生强大的非接触式制动效能,及时对车辆制动负荷分流,不仅增强了行车安全性,而且延长了主制动器的使用寿命,是将来车辆辅助制动装置发展的新方向。目前,国内的相关研究仍处于起步阶段,制动系统生产企业缺乏具有自主知识产权的永磁式涡流缓速器产品。因此,开展永磁式涡流缓速器关键技术的研究,不仅具有重要的学术价值,而且对提高国内车辆主动安全性能以及推动我国车辆辅助制动装置行业的科技进步都具有重要意义。在此背景下,结合当前国内外在永磁式涡流缓速器方面的研究现状,采用理论分析、有限元求解和试验测试相结合的方法对永磁式涡流缓速器的制动力矩、电磁场和制动性能展开了系统的研究工作。主要研究内容和取得的结论包括:
     1、永磁式涡流缓速器涡流与制动力矩计算方法的研究。在合理简化永磁式涡流缓速器物理模型的基础上,以电磁场理论为理论指导,考虑涡流透入深度,推导出永磁式涡流缓速器转子鼓上涡流密度和有效电流数学表达式,在此基础上,将永磁体等效为磁动势,把涡流去磁效应折算到永磁体上,利用等效磁路方法获取了气隙磁密的计算公式,进而由涡流损耗原理推导出制动力矩的计算公式。为深入揭示出永磁式涡流缓速器制动机理,将永磁体等效为磁化面电流,从麦克斯韦方程出发,应用Rogowski方法,重点分析了气隙磁场和涡流密度的分布,推导出了永磁式涡流缓速器制动力矩计算公式。为验证制动力矩理论计算公式的有效性,在缓速器试验台上进行了试验研究。结果表明:制动力矩理论计算值与试验结果的误差小于10%,在可接受范围内,等效磁路法适用于缓速器工程设计,Rogowski法适用于永磁涡流制动机理理论研究。
     2、永磁式涡流缓速器磁场有限元分析与漏磁研究。忽略转子鼓转动效应和涡流去磁效应,应用有限元理论和有限元软件ANSYS建立永磁式涡流缓速器有限元模型,对准制动状态时转子鼓、永磁体和磁铁支架等部件上的静磁场分布进行数值模拟,分析了准制动状态时气隙磁密随磁性材料特性、气隙宽度、永磁体尺寸、转子鼓尺寸以及磁铁支架厚度变化的关系,试验验证了气隙磁密有限元计算结果。运用有限元法研究了非制动状态时气隙宽度、永磁体尺寸和磁极数对漏磁系数的影响规律,并对一种新型永磁式涡流缓速器漏磁进行了探讨。研究结果表明:有限元计算结果与试验值基本吻合,采用有限元方法研究永磁式涡流缓速器电磁场特性是可行的。仿真计算结果为该类缓速器的结构参数优化选择和进一步的性能分析奠定了基础。
     3、永磁式涡流缓速器的关键技术研究。对永磁式涡流缓速器的永磁材料、软磁材料、永磁体磁化方式的选择,磁极数和磁极片厚度的确定进行了系统的分析和探讨。针对制动状态时要对感应涡流进行直接测量非常困难,提出了永磁式涡流缓速器制动状态下感应涡流密度的软测量技术。根据仿真分析的结果得出了永磁式涡流缓速器制动状态下感应涡流随转子鼓转速、气隙宽度的变化规律,在此基础上建立了永磁式涡流缓速器制动状态下涡流密度的软测量模型。研究结果表明:基于RBF神经网络的涡流的软测量模型具有很高的测量精度,可以在实际工程计算研究中发挥有效作用。
     4、永磁式涡流缓速器制动性能影响因素敏感性研究。为研究永磁式涡流缓速器制动性能与结构参数的关系,以制动力矩作为评价缓速器制动性能的指标,采用均匀设计和逐步回归分析方法建立了制动力矩与五个结构参数(转子鼓内半径、永磁体周向长度、气隙宽度、转子鼓轴向宽度以及永磁体高度)的回归方程,分析了上述5个结构参数对永磁式涡流缓速器制动力矩影响的敏感性,掌握了结构参数变化对制动性能影响的规律。基于敏感性分析结果,以增大制动力矩为目标,采用全排列法对永磁式涡流缓速器结构参数优化。研究结果表明:永磁体高度对永磁式涡流缓速器制动性能有显著影响,其次为永磁体周向长度,第三为气隙宽度,第四为转子鼓轴向宽度,而转子鼓内半径对制动性能的影响不敏感;结构参数优化效果显著。研究结论可为永磁式涡流缓速器设计过程中各主要结构参数的选择和优化提供参考依据。
     5、装用永磁式涡流缓速器车辆制动性能研究。建立了使用永磁式涡流缓速器制动时的汽车动力学方程,基于ECE法规实例仿真分析了永磁式涡流缓速器与主制动器复合制动对车辆制动稳定性的影响,采用道路试验和理论分析相结合的方法,从平路减速距离和坡道稳定持续下坡车速与坡度关系两个方面分别考察了使用永磁式涡流缓速器单独制动以及其与排气制动联合制动的制动能力。研究结果表明:只要永磁式涡流缓速器与整车匹配得当,复合制动对原车的制动稳定性没有太大影响;车辆装用永磁式涡流缓速器能缩短减速距离,在坡度不大于5%的坡道上能满足车辆持续制动下坡的要求;制动联合制动能进一步提高车辆的制动能力。
The braking ablity is one of the major performances for vehicle's active safety, and good braking will guarantee safe working for vehicles. Along with the improvements of vehicle dynamical technology and road conditions, which lead to the increase of automotive loading capacity and driving speed, the importance of vehicle's safety performance is getting more and more emphasized. A practical solution to problems resulting from large braking load of vehicles is the auxiliary braking device.
     Permanent magnet type eddy current retarder is a novel auxiliary braking device apart form the vehicle's own braking and parking brake system, featuring beneficial to energy saving and environment protection. Based on the principle of electromagnetic interaction, the device redistributes the braking load in time by making use of the strong non-contact braking ability generated by the permanent magnetic field. With this kind of the device, not only is the safety performance enhanced, but also the service life of the main braking system is greatly prolonged, indicating a new direction for auxiliary braking device development. At present, the domestic research on permanent magnet type eddy current retarder is just in its initial stage. Domestic auxiliary braking system manufacturing enterprises are short of their own intellectual properties of permanent magnet type eddy current retarder. Under the background mentioned above, research on permanent magnet type eddy current retarder will not only have academic values, but also be important to improve the vehicle's main braking performance, and lead to scientific and technological progress of vehicle's auxiliary braking system industry of China. Based on the present study and technology of permanent magnet type eddy current retarder at home and abroad, the author made systematic study on the electromagnetic field, braking toque and braking performance of the permanent magnet type eddy current retarder with theoretical analysis, finite element analysis and testing approaches. The major research work and results are summarized as followed:
     1. The computation of eddy current and braking torque for permanent magnet type eddy current retarder. Based on the reasonable simplification of the physical model and the consideration of penetration depth, the author derived the formulations to calculating eddy current density and effective current. Furthermore, through computing the equivalent magnetic potential, adding the demagnetization effect to the permanent-magnet and applying the air-gas magnetic flux density expression obtained with method of equivalent magnetic circuit, the author derived the braking torque formulation from the eddy current loss principle. To find the braking principle of the retarder, the equivalent magnetic surface current was calculated. Based on the Maxwell equation and the Rogowski method, the distribution pattern of air gas magnetic field and eddy current density were analyzed, and braking torque formulation for calculating permanent magnet type eddy current retarder was derived. To prove the effectiveness of braking torque theory, experiments were carried out on the test-bed. The results showed that the error between theoretical and experimental results was less than 10%, which is acceptable. It is concluded that the equivalent-magnetic-circuit method could be suitable for the engineering design and the Rogowski method effective for the braking principle theoretical research.
     2. The finite element analysis of magnetic field and magnetic leakage research. Under the condition of ignoring the rotation effect and demagnetization effect, and with the help of finite element analysis software ANSYS, the author completed the following research:building the finite element model for permanent magnet type eddy current retarder, simulating the static magnetic field distribution of the quasi-braking state, analyzing the relationships among the air-gas magnetic density, various magnetic material characteristics, size of rotor and permanent magnet, air-gas width and thickness of the components. The experimental results showed to be consistent to the theoretical results. Based on the finite element method, the influence of air-gas width, permanent magnet size and magnetic polar number on the leakage coefficient was analyzed, and the magnetic leakage for a novel permanent magnet type eddy current retarder was discussed. The finite element analysis results showed to be consistent to the experimental results. It is concluded that it could be feasible to apply finite element analysis to study the magnetic field characteristics. The simulation result may provide the foundation to the further performance analysis and the optimal parameters selection.
     3. The research of key techniques for permanent magnet type eddy current retarder. The techniques for selection of material, size, magnetization methods and polar number and thickness were analyzed. Since it is difficult to directly measure the induction current of braking states, the author proposed a Soft measurement method. Behavior of induction current with the variation of rotating speed and air-gap width was obtained based on the simulation analysis. The soft-measuring model of eddy current density for braking state then was built. The results show clearly that RBF neural network based soft-sensing model has high measurement precision, and can play efficiency effect in practice engineering calculation and study.
     4. The sensitivity research of influential factors of braking performance. In order to learn the relationship between the braking performance and structural parameters, the regression equation with braking torque as the function of five structural parameters (inner radius of rotor, circumferential length of permanent magnet, air-gap width, axial width of rotor, height of permanent magnet) was constructed based on the uniform design and regression analysis. The influential sensitivity of the above five structural parameters on the braking performance was analyzed and their relationships were obtained. Based on the results from sensitivity analysis, the structural parameters of retarder were optimized by the full-arrangement method, aimed at increasing the braking torque. The results showed that the height of permanent magnet was the most significant factor to impact the braking performance and the other factors were inner radius of rotor, air-gap width and axial width of rotor in a descending order. The inner radius of rotor had no significant influence on the braking performance. Structural parameters optimization showed remarkable effect. The research results may be helpful to the selection and optimization of the structural parameters.
     5. The research of the braking performance for vehicles equipped with permanent magnet type eddy current retarder. The researches in this part include:constructing the dynamics equation for vehicles equipped with permanent magnet type eddy current retarder, analyzing the influence of united braking system witch includes the permanent magnet type eddy current retarder and the vehicle's own braking device on the braking stability based on the ECE law simulation, and comparing the braking performance of single retarder to that of the retarder combined with exhaust braking system in terms of the deceleration distance on flat road and the relationship between speed and slope on slope road, the researching approach being field test combined with theoretical analysis. The results showed that united braking had no significant influence on braking stability if the retarder matches well to the whole vehicle. The equipment of the permanent magnet type eddy current retarder could reduce the deceleration distance and meet the continuous braking requirement in the case of slope less than 5%. The united braking system could further improve the braking capability of vehicles.
引文
[1]何仁.汽车辅助制动装置[M].北京:化学工业出版社,2001
    [2]王作函.Jake Brake发动机辅助制动装置[J].商用汽车,2002,(12):48-49
    [3]周均,张卓,徐进等.ADAMS在汽车制动分析中的应用研究[J].机械设计与制造,2006,(6):54-56
    [4]Richard W, Radlinski. Braking performance of heavy U. S. Vehicles[J]. SAE Paper,870492, 1987
    [5]赵场利.汽车制动性能及其统计特征研究[D].青岛:山东科技大学,2005
    [6]孙为民.电涡流缓速器的理论研究[D].北京:北京工业大学,2005
    [7]蔡亚男.汽车盘式制动器摩擦块偏磨机理的研究与应用[J].武汉:武汉理工大学,2006
    [8]深圳市外贸通达实业有限公司.TELMA电涡流缓速器[J].城市车辆,2002,(2):52-54
    [9]陈兴旺.鼓式制动器温度场的数值模拟分析[J].北京汽车,2005,(6):11-15
    [10]刘少林.电涡流缓速器性能测试系统的研究[D].杭州:浙江大学,2004
    [11]赵丽云.摩擦片在汽车制动系统使用过程中的问题浅析[J].非金属矿,2000,23(6):47-48
    [12]吴剑增.汽车制动尖叫噪声产生原因及影响[J].汽车与安全,2003,(9):66-67
    [13]黄学文,张金换,董光能,等.汽车摩擦制动噪声研究进展与发展趋势[J].汽车工程,2007,29(5):385-388
    [14]Gay S E, Ehsani M. Optimized design of an integrated eddy-current and friction brake for automotive applications[C]//Vehicle Power and Propulsion, IEEE Conference,2005:189-193
    [15]胡昌斌.道路与桥梁检测技术[M].北京:人民交通出版社,2007
    [16]交通部.我国“五纵七横”国道主干线今年年底基本贯通[EB/OL]. (2007-12-18). http:// www.moc.gov.cn/zhuantizhuanlan/gonglujiaotong/wuzongqiheng_QXGT/redianxinwen/200712/ t20071218_453485.html
    [17]交通部规划研究院.国家高速公路网规划[E].交通部综合规划司,2004
    [18]许洪国,周立,鲁光泉.中国道路交通安全现状、成因及其对策[J].中国安全科学学报,2004,(8):34-38
    [19]薄大明,王元海,王军利,等.交通安全管理现状分析与对策研究[J].中国人民公安大学学报(自然科学版),2008,(1):82-85
    [20]母国勇,陈明伟.基于事故统计的道路交通安全现状及对策研究[J].交通标准化,2005,(Z1):37-39
    [21]焦治波.电涡流缓速器在汽车制动中的控制研究[D].西安:长安大学,2006
    [22]公安部.2005年全国道路交通事故统计分析[EB/OL]. (2006-01-12). http://www.china.com.cn/ chinese/MATERIAL/1090738.htm
    [23]孙平,宋瑞,王海霞.我国道路交通事故成因分析及预防对策[J].安全与环境工程,2007,14(2):97-100
    [24]余强.客车下坡持续制动性能研究[D].西安:西安公路交通大学,2000
    [25]吴迎峰.汽车电磁缓速制动器的基础理论研究[D].武汉:武汉理工大学,2005
    [26]刘增岗.电涡流缓速器的发展及应用[J].2006,(5):64-67
    [27]何建清,何仁,衣丰艳.汽车用电涡流缓速器的工作原理及其使用效果[J].轻型汽车技术2002,(11):17-24
    [28]Henrich G. The present status of electro-magnetic retarders in commercial vehicles[J]. SAE Paper,922450,1992:1-5
    [29]Schreck H, Kucher H, Reisch B. ZF retarder in commercial vehicles[J]. SAE Paper,922452, 1992:1-11
    [30]程军.重型车制动技术的发展趋势[J].汽车研究与开发,1995,(2):23-27
    [31]吴修义.商用汽车电磁缓速器[J].重型汽车,2002,(2):15-16
    [32]余强,陈荫三,马建,等.发动机制动、排气制动与缓速器联合作用时的非连续线性控制系统的研究[J].中国公路学报,2005,18(1):117-121
    [33]Meyer H O. Hydrodynamische dauerbremsachse fuer anhaenger and Sattelauflieger[J]. ATZ, 1972,1 (74):314-319
    [34]张炳荣.国内汽车缓速器行业标准现状及发展[J].时代汽车,2007(11):101-103
    [35]林重博.液力缓速器和电涡流缓速器[J].汽车研究与开发,2001,(6):37-41
    [36]何仁,盛金东,李强.车用电涡流缓速器试验方法的探讨[J].汽车技术,2005,(3):26-28
    [37]Society of Automotive Engineers. SAE-J1489-2002, Heavy truck and bus retarder downhill performance mapping procedure [S]. USA:SAE to advance the state of technical and engineering sciences,2000
    [38]Japanese Automobile Standard. JASO C455-83, Exhaust retarder road test procedure[S]. Japan: The Society of Automotive Engineers of Japan,1983
    [39]国家质量技术监督局.GB 12676-1999,汽车制动系统结构、性能和试验方法[S].北京:中国标准出版社,1999
    [40]交通部办公厅.JT/T325-2006,营运客车类型划分及等级评定[S].北京:人民交通出版社,2007
    [41]建设部.CJ/T 162-2002,城市客车分等级技术要求与配置[S].北京:中国标准出版社,2002
    [42]建设部.CJ/T230-2006,城市客车缓速器制动性能要求与试验方法[S].北京:中国标准出版 社,2007
    [43]马建,陈荫三,余强,等.汽车缓行器辅助制动效果分析[J].西安公路交通大 学学报,1999,19(3):77-80
    [44]王铁.车用电控液力缓速器三维流场分析的仿真方法研究[D].长春:吉林大学,2007
    [45]赵小波,周俊,姬长英,等.车用永磁式缓速器研究现状与展望[J].拖拉机与农用运输车,2007,34(5):46-48
    [46]Kuwahara T. Motivation and process of development of permanent magnet eddy current retarder[J].ぃすず技报,1997:82-91
    [47]王佩玲译.永久磁铁涡电流式轻型减速器[J].北京汽车,1994,(1):34-37
    [48]赵宝德,翟永丰.稀土永磁在汽车领域新用途——永磁式减速器的开发与展望[J].电工合金,1996,(3):48-49
    [49]王戊国.载货汽车控制系统的应用动向[J].重型汽车,1996,(5):9-11
    [50]杨立慧.轻量永磁式缓速器[J].商用汽车,2003,(7):74
    [51]齐风春.永磁材料的发展现状[J].材料导报,1994,(3):22-26
    [52]林河成.我国稀土永磁材料的新进展[J].矿冶,2005,14(3):53-57
    [53]于荣海.高性能烧结NdFeB永磁材料新进展[J].新材料产业,2005,(8):35-38
    [54]王淀佐.稀土发现与2000年稀土发展展望[J].中国稀土学报,1996,(8):12-15
    [55]杜海燕.钕铁硼材料“磁性”十足[J].世界动态-稀土信息,2005,(5):10-11
    [56]晓哲.稀土元素钕及其应用[J].科普知识,2005,(253):31-32
    [57]刘思德,刘国征.2004年我国钕铁硼永磁材料生产状况[J].产业聚焦,2005,(1):18-19
    [58]黄亦其.车用永磁式缓速器关键技术研究[D].南京:南京农业大学,2008
    [59]Kimbrough S. Optimal control of electromagnetic brake retarders[J]. SAE Paper,942325,1994: 1-9
    [60]Simeu E, Georges D. Modeling and control of an eddy current brake[J]. Control Eng. Practice, 1996,4(1):19-26
    [61]Lee K, Paek K. Optimal robust control of a contactless brake system using an eddy current[J]. Mechatronics,1999, (9):615-631
    [62]时军.车用液力减速制动器研究[D].武汉:华中科技大学,2002:2-3
    [63]韩锋钢.商用车辆制动发展趋势[J].商用汽车,2000,(6):36-39
    [64]何仁,刘成晔.车用电涡流缓速器转子盘非稳态温度场数值分析[J].汽车工程,2006,28(2):181-185
    [65]Bergmann M, Marwitz H, Povel R. The Influence of retarder on the braking behaviour of commercial vehicles[C]//IPC Conference Proceedings,2001, shanghai
    [66]何仁,刘成哗,衣丰艳.车用电涡流缓速器转子盘温度场计算方法[J].江苏大学学报(自然科学版),2005,26(2):117-120
    [67]Albertz D, Dappen S, Henneberger G. Calculation of the 3D non-linear eddy current field in moving conductors and its application to braking systems[J]. IEEE Transactions on Magnetics, 1996,32 (3):768-771
    [68]马建,陈荫三,余强,等.缓行器在汽车下坡行驶中的应用研究[J].西安公路交通大学学报,1999,19(4):84-86
    [69]董颖,何仁.发动机制动技术的研究与展望[J].专用发动机,2006,(3):1-4
    [70]魏文虎.汽车制动系统试验装置的开发及应用[J].汽车技术,2003,(3):25-27
    [71]朱宁,王永华.轻型永久磁铁式汽车缓速器[J].客车技术与研究,2002,(4):19-20
    [72]Kubomiya T, Kuwahara T, Araki K. Permanent magnet type retarder in commercial vehicles [J]. SAE Paper,922455,1992:1-6
    [73]Kuwahara T, Araki K. Development of permanent magnet type eddy current retarder [J]. JSAE Review (Japan),1992,13 (1):92-96
    [74]Araki K. Recent permanent magnet ECB retarder[J]. Sumitomo Metal,1996,48(4):218-220
    [75]Kuwahara T, Shintan K, Sakamoto H, et al. Development of permanent magnet type compact ECB retarder[J]. Sumitomo Metals,1991,43 (5):24-30
    [76]Kuwahara T. Eddy current braking system:US,5143183[P].1992-09-01
    [77]Kuwahara T. Eddy current type brake system:US,5145038[P].1992-09-08
    [78]Kuwahara T. Eddy current reduction gear:EP,1638194[P].2006-03-22
    [79]#12
    [80]何仁,牛润新.车用永磁式缓速器设计中漏磁影响因素分析[J].农业机械学报,2007,38(8):44-48
    [81]何仁,牛润新,胡青训.一种分级控制永磁式缓速器:中国,10037966.3[P].2005-03-04
    [82]Kuwahara T. Composite magnet of electromagnet and permanent magnet and eddy current retarder:US,6756870B2 [P].2004-06-29
    [83]Albertz D, Dappen S, Henneberger G. Calculation of the induced currents and forces for a hybrid magnetic levitation system[J]. IEEE Transactions on Magnetics,1997,33 (2):1263-1266
    [84]Tsai H, Xiang You-qing. Eddy current brake for automotive vehicles:US, 6253885B1[P].2001-07-03
    [85]Lamb K J. Permanent magnet braking system for drive shafts:US,5473209 [P].1995-12-05
    [86]李德胜,叶乐志.新型汽车永磁缓速器的设计与分析[C]//中国汽车工程学会.2007中国汽 车工程学会年会论文集,北京:机械工业出版社,2007:629-632
    [87]Gay S E. Contactless Magnetic brake for automotive applications[D]. Texas:Texas A&M University,2005:16-19
    [88]何仁,衣丰艳.电涡流缓速器性能特性评价方法[J].中国公路学报,2006,19(5):114-118
    [89]Khan P M, Halbe V G, Rajakumar K, et al. Development and evaluation of exhaust brake systems for light commercial vehicle[J]. SAE Paper,2005-26-063,2005:717-721
    [90]Lai Nanhui, Wu Liming, Wang Guitang, et al. Research on automotive eddy current retarder and its virtual testing and simulation[C]//ICEMI'2007,2007:166-169
    [91]Dietrich A B, Chabu I E, Cardoso J R. Eddy-current brake analysis using analytic and FEM calculations-Part Ⅱ:application[C]//IEEE International Electric Machines and Drive Conference, 2001:458-461
    [92]Kim D H, Lowther D A, Sykulski J K. Efficient global and local force calculations based on continuum sensitivity analysis1[J]. IEEE Transactions on Magnetics,2007,43(4):1177-1180
    [93]Kamcari A. Local force calculation in 3D FEM with edge elements[J]. International Journal of Applied Electromagnetics in Materials,1993, (3):231-240
    [94]Edwards J D, Jayawant B V, Dawson W R C, et al. Permanent magnet linear eddy-current brake with a non-magnetic reaction plate [J]. IEE Proc.-Electr Power Appl,1999,146(6):627-631
    [95]Jang S M, Lee S H. Comparison of three types of permanent magnet linear eddy-current brakes according to magnetization pattern[J]. IEEE Transactions on Magnetics,2003,39(5):3004-3006
    [96]Wang P J, Chiueh S J, Analysis of eddy-current brakes for high speed railway[J]. IEEE Transactions on Magnetics,1998,34 (4):1237-1239
    [97]Canova A, Vusini B. Design of axial eddy-current couplers[J]. IEEE Trans. On Industry Applications,2003,3 (3):725-733
    [98]Schieber D. Braking torque on rotating sheet in stationary magnetic field[J]. IEEE Proceedings, 1974,121 (2):117-122
    [99]Wouterse J H. Critical torque and speed of eddy current brake with widely separated soft iron poles[J]. IEE Proceedings-B,1991,138 (4):153-158
    [100]Bigeon J, Sabonnadiere J C. Analysis of an electromagnetic brake[J]. IEEE Journal of Electric Machines and Power Systems,1985,10:285-297
    [101]杨树忠.涡流制动器制动力矩计算公式的推导[J].汽车技术,1976,(3):17-19
    [102]何建清,何仁,衣丰艳.车用电涡流缓速器的设计方法[J].汽车工程,2003,(增刊):110-118
    [103]孙为民.电涡流缓速器制动力矩计算的新方法[J].现代机械,2005,(4):21-22
    [104]何仁,衣丰艳,何建清.电涡流缓速器制动力矩的计算方法[J].汽车工程,2004,26(2): 197-200
    [105]李西民.汽车电涡流测功机的设计与计算[J].陕西汽车,1990,(3):11-16
    [106]衣丰艳,何仁,刘成晔,等.车用电涡流缓速器三维有限元分析[J].交通运输工程学报,2004,4(2):53-564
    [107]Sakamoto H, Araki K, Ishida A, et al. Design of permanent magnet type compact ECB retarder[J]. SAE Paper,973228,1997:19-25
    [108]何仁,赵万忠,牛润新.车用永磁式缓速器制动力矩的计算方法[J].交通运输工程学报,2006,6(4):62-65
    [109]赵万忠,何仁,刘成晔.基于虚拟边界法的永磁式缓速器转子鼓温度场计算方法[J].拖拉机与农用运输车,2006,33(4):46-48
    [110]赵万忠,何仁,胡青训.车用永磁式缓速器转子鼓瞬态温度场计算方法[J].轻型汽车技术,2006,(5):15-19
    [111]赵万忠,何仁,刘成晔.永磁式缓速器转子鼓的瞬态温度场分析[J].农业工程学报,2006,22(5):90-94
    [112]何仁,赵万忠,胡青训.车用永磁式缓速器转子鼓温度应力场计算[J].江苏大学学报:自然科学版,2006,27(3):220-224
    [113]何仁,赵万忠,胡青训.永磁式缓速器转子鼓瞬态温度场的计算方法[J].兵工学报,2007,28(1):52-56
    [114]何仁,牛润新.永磁式缓速器热-磁耦合建模与试验[J].农业机械学报,2007,38(11):12-16
    [115]何仁,牛润新.基于Galerkin法的车用永磁式缓速器热-磁耦合场分析[J].机械科学与技术,2007,26(7):871-874
    [116]吉田敬介,篠原健治郎,石田昭佳.永久磁石式涡电流リタ一ダの冷却特性[C]//日本楼械学|会热工学讲演会讲演论文集,No.97-25,1997
    [117]Yoshida K. Convective heat transfer enhancement of a rotating drum for the permanent magnet type eddy current retarder[C]//Proceedings of the 33rd National Heat Transfer Conference,1999: 1-6
    [118]#12
    [119]Yoshida K, Tasaka M. Convective heat transfer from a rotating drum with fin array for the permanent magnet type eddy current retarder[J]. Thermal Science & Engineering,2004,12 (6): 45-53
    [120]#12
    [121]Noguchi Y, Miyahara M, Imanishi K, et al. Creep fatigue life prediction for permanent magnet type eddy current retarder [C]//The Eighth International Fatigue Congress,2002,5:3101-3108
    [122]Noguchi Y, Miyahara M. Multiaxial creep-fatigue life evaluation under proportional loading[J]. Acta Metallurgica Sinica,2004,17 (4):355-360
    [123]#12
    [124]内田,清五.永磁涡流盘形制动装置的基本特性[J].变流技术与电力牵引,2001, (4)27-30
    [125]小原,孝则.旋转型永磁涡流制动装置[J].国外铁道车辆.2003,40(1):30-33
    [126]张圣楠.永磁涡流制动的电磁分析与设计[J].内蒙古科技与经济,2005:118-120
    [127]唐永春,叶云岳.永磁涡流制动的有限元分析与设计[J].微电机,2006,39(3):34-36
    [128]Gay S E, Ehsani M. Analysis and experimental testing of a permanent magnet eddy-current brake[C]//Vehicle Power and Propulsion,2005 IEEE Conference,2005:756-765
    [129]何仁,衣丰艳,何建清.车用缓速器结构参数对制动力矩的影响分析[J].农业机械学报,2005,36(9):21-24
    [130]牛润新,何仁.永磁式缓速器的稳健性设计[J].江苏大学学报:自然科学版,2006,27(6):493-496
    [131]Marechal Y, Meunier G. Computation of 2D and 3D eddy currents in moving conductors of electromagnetic retarders[J]. IEEE Transactions on Magnetics,1990,26(5):2382-2384
    [132]Labbe N, Marechal Y, Meunier G, et al.2D nonlinear finite element modeling of electromagnetic retarders using time-stepping algorithms and the Petrov-Galerkin method with homogenization techniques[J]. IEEE Transactions on Magnetics,1992,32 (3):772-775
    [133]Albertz D, Dappen S, Henneberger G. Calculation of the 3D non-linear eddy current field in moving conductors and its application to braking systems[J]. IEEE Transactions on Magnetics.1996,32 (3):768-771
    [134]张秀荣,朱仙福,庞乾麟.线性涡流制动装置磁场分布的有限元计算[J].铁道学报,1997,19(5):21-26
    [135]Muramatsu K, Takahashi N, Hashio T, et al.3-D eddy current analysis in moving conductors of permanent magnet type retarders using moving coordinate system[J]. Electric Machines and Drives Conference Record,1997:MC1/5.1-MC1/5.3
    [136]Muramatsu K, Takahashi N, Yamada C, et al.3-D eddy current analysis in moving conductors of permanent magnet type retarders using moving coordinate system[J]. IEEE Transactions on Energy Conversion,1999,14 (4):1312-1317
    [137]#12
    [138]Muramatsu K, Takahashi N, Iwao N, et al. Three dimensional steady state eddy-current analysis of moving conductor using edge elements and moving-coordinate system[J]. IEEE Transactions on Magnetics,2002,38(2):597-600
    [139]Gay S E, Ehsani M. Parametric analysis of eddy-current brake performance with by 3D finite element analysis[J]. IEEE Transactions on Magnetics,2006,42 (2):319-328
    [140]Ogawa M, Yamada, Kobayashi S, et al. Optimization of permanent magnet type of retarder[J].1998:357-364
    [141]#12
    [142]Takahashi N. Optimal design of magnetic devices[J]. Journal of Magnetism and Magnetic Materials,2000, (209):42-44
    [143]Gay S E, Ehsani M. Integration of eddy-current and friction brakes in conventional and hybrid vehicles[J]. SAE Paper,2005-01-3455,2005:189-193
    [144]何仁,何建清.装用电涡流缓速器的汽车制动性能分析[J].江苏大学学报:自然科学版,2004,25(1):29-32
    [145]衣丰艳,何仁,刘成晔.车用电涡流缓速器弯道制动的研究[J].汽车科技,2004, (5):20-24
    [146]何仁,王永涛,赵迎生.汽车联合制动系统的性能仿真分析[J].兵工学报,2007,28(10):1153-1158
    [147]丁能根,朱建国.发动机制动对汽车制动性能的影响分析[J].汽车技术,2002,(64):26-28
    [148]马健,陈荫三,余强,等.缓行器在汽车高速行驶状况下的应用研究[J].中国公路学报,1999,12(3):105-110
    [149]Machillot J P. Evolution of the retarder function on commercial vehicles[J]. Tech Pap FISITA Congr,1999
    [150]Druzhinina M, Stefanopoulou A G. Speed control experiments for commercial heavy vehicles with coordinated friction and engine compression brakes[C]//Proceedings of the American Control Conference,2002:2546-2551
    [151]Fancher P S, Winkler B C. Retarders for heavy vehicles:experimentation and analysis; performance, brake savings, and vehicle stability[R]. Highway Safety Research Institute The University of Michigan,1984:3-65
    [1]Sakamoto H, Araki K, Ishida A, et al. Design of permanent magnet type compact ECB retarder[J]. SAE Paper,973228,1997:508-513
    [2]胡青训,何仁.车用永久磁铁缓速器的工作原理及使用[J].客车技术,2005,(3):22-26
    [3]http://www.sumitomometals.co.jp/e/osakasteelworks/ritada/index.html
    [4]广州ISUZU客车有限公司,客车保养手册(空气-油复合式制动器)
    [5]王佩玲.永久磁铁电涡流式轻型减速器[J].北京汽车,1994,(1):34-38
    [6]Kubomiya T, Kuwahara T, Araki K. Permanent magnet type retarder in commercial vehicles[J]. SAE Paper,922455,1992:1-6
    [7]Kuwahara T, Shintan K, Sakamoto H, et al. Development of permanent magnet type compact ECB retarder[J]. Sumitomo Metals,1991,43 (5):24-30
    [8]Toru Kuwahara. Motivation and process of development of permanent magnet eddy current retarder[J].ぃすず技,1997(1):82-91
    [9]Kenji Araki. Recent permanent magnet ECB retarder[J]. Sumitomo Metals,1996,48 (4):218-220
    [10]马建,陈荫三,余强,等.汽车缓行器辅助制动效果分析[J].西安公路交通大学学报,1999,19(3):77-80
    [11]朱宁,王永华.轻型永久磁铁式汽车缓速器.客车技术与研究[J].2002,24(4):19-20
    [12]Kuwahara T, Araki K. Development of Permanent Magnet Type Eddy Current Retarder [J]. JSAE Review (Japan).1992,13 (1):92-96
    [13]何建清,何仁,衣丰艳.汽车用电涡流缓速器的工作原理及其使用效果[J].2002,(11):17-24
    [14]罗治中.电涡流缓速器在城市公交车上应用效果的研究分析[J].2003,(3):45-47
    [15]Fancher P S, O'Day J, Bunch H, et al. Retarders for heavy vehicles:evaluation of performance characteristics and in-services costs [R]. Highway Safety Research Institute The University of Michigan,1981:3-109
    [16]Fancher P S, O'Day J, Winkler B C. Retarders for heavy vehicles:field evaluations[R]. Highway Safety Research Institute The University of Michigan,1982:4-68
    [17]Fancher P S, Winkler B C. Retarders for heavy vehicles:experimentation and analysis; performance, brake savings, and vehicle stability[R]. Highway Safety Research Institute The University of Michigan,1984:3-65
    [18]Bergmann M, Marwitz H, Povel R, et al. The Influence of retarders on the braking behaviour of commercial vehicles[C]//IPC Conference Proceedings,2001, shanghai
    [19]Machillot J P. Evolution of the retarder function on commercial vehicles[J]. Tech Pap FISITA Congr,1999
    [20]Henrich G. The present status of electro-magnetic retarders in commercial vehicles[J]. SAE Paper,922450,1992:1-5
    [21]Gibbins J. Joint Venture/marketing agreement:Voith adds permanent magnet secondary braking system to retarder portfolio[J]. Truck & Bus Builder,2008,30 (7):8
    [1]Muramatsu K, Takahashi N, YamadaC, et al.3-D eddy current analysis in moving conductors of permanent magnet type retarders using moving coordinate system[J]. IEEE Transactions on Energy Conversion,1999,14 (4):1312-1317
    [2]左俊业,田学义.感应子式涡流测功机的有效参数计算[J].大电机技术,1972,(2):31-42
    [3]哈尔滨工业大学电机研究所.涡流测功机[M].哈尔滨:黑龙江科学技术出版社,1993
    [4]Dietrich A B, Chabu I E, Cardoso J R. Eddy-current brake analysis using analytic and FEM calculations-Part I:theory [C]//IEEE International Electric Machines and Drive Conference, 2001:454-457
    [5]何仁,衣丰艳,刘成晔.车用缓速器结构参数对制动力矩的影响分析[J].农业机械学报,2005,36(9):21-24
    [6]Um Y, Torii S, Ebihara D, et al. The study on the measuring method of the eddy current on the eddy current brake [C]//Ninth International Conference on Electrical Machines and Drives,1999: 228-231
    [7]Um Y, Torii S, Ebihara D, et al. Characteristic of eddy current on the secondary of eddy current brake[C]//Electric Machines and Drives Conference Record,1997:MC1/11.1-MC1/11.3
    [8]邹继斌,刘宝廷,崔淑梅,等.磁路与磁场[M].哈尔滨:哈尔滨工业大学出版社,1998
    [9]易敬曾.磁场计算与磁路设计[M].成都:成都电讯工程学报出版社,1987
    [10]林其壬,赵佑民.磁路设计原理[M].北京:机械工业出版社,1987
    [11]张红辉,廖昌荣,陈伟民,等.磁流变阻尼器磁路设计及磁饱和有限元分析[J].功能材料与器件学报,2004,10(4):493497
    [12]唐任远.现代永磁电机理论与设计[M].北京:机械工业出版社,1997
    [13]左俊业,王兴盛.感应子式涡流测功机-涡流制动器的设计[J].大电机技术,1987,(5):21-30
    [14]孙为民,张跃明,吴兵波.电涡流缓速器制动力矩计算的新方法[J].现代机械,2005,(4):21-22
    [15]Wouterse J H. Critical torque and speed of eddy current brake with widely separated soft iron poles[J]. IEE Proceedings-B,1991,138 (4):153-158
    [16]Gay S E, Ehsani M. Parametric Analysis of Eddy-Current Brake Performance with by 3D Finite Element Analysis[J]. IEEE Transactions on Magnetics,2006,42 (2):319-328
    [17]王勇.场路结合并考虑耦合的磁力机械分析与设计方法研究[D].合肥:合肥工业大学,2006
    [18]金守强.电磁场边值问题的解法及其特点[J].沈阳工业大学学报,2001,23(2):130-131
    [19]胡之光.电机电磁场的分析与计算[M].北京:机械工业出版社,1981
    [20]Bigeon J, Sabonnadiere J C. Analysis of an electromagnetic brake[J]. IEEE Journal of Electric Machines and Power Systems,1985,10:285-297
    [21]Gay S E, Ehsani M. Analysis and Experimental Testing of a Permanent Magnet Eddy-Current Brake[C]//Vehicle Power and Propulsion,2005 IEEE Conference,2005:756-765
    [22]刘瑞芳.基于电磁场数值计算的永磁电机性能分析方法研究[D].南京:东南大学,2002
    [23]Sakamoto H, Araki K, Ishida A, et al. Design of permanent magnet type compact ECB retarder[J]. SAE Paper,973228:508-513
    [24]Wang Jiabin, Jewell G W, Howe D. A general framework for the analysis and design of tubular linear permanent magnet machines[J]. IEEE Transactions on Magnetics,1999,35(3):1986-2000
    [25]何仁,赵万忠,牛润新.车用永磁式缓速器制动力矩的计算方法[J].交通运输工程学报,2006,6(4):62-65
    [26]胡业发,周祖德,江征风.磁力轴承的基础理论与应用[M].北京:机械工业出版社,2006:
    [27]黄亦其.车用永磁式缓速器关键技术研究[D].南京:南京农业大学,2008
    [28]马如宇.新型耐高温磁力联轴器的研制[D].镇江:江苏大学,2001
    [1]刘瑞芳.基于电磁场数值计算的永磁电机性能分析方法研究[D].南京:东南大学,2005
    [2]孙敏,孙亲锡,叶齐政.工程电磁场基础[M].北京:科学出版社,2001
    [3]Song Zhiming, Xie Dexin, Hou Chengqian. The Finite Element Solution of Transient Axisymmetrical Nonlinear Eddy-Current Field Problems[J]. IEEE Transactions on Magnetics, 1985,21 (6):2303-2306
    [4]颜威利,扬庆新,汪友华.电气工程电磁场数值分析[M].北京:机械工业出版社,2005
    [5]Gay S E, Ehsani M. Parametric analysis of eddy-current brake performance with by 3D finite element analysis[J]. IEEE Transactions on Magnetics,2006,42 (2):319-328
    [6]王勇.场路结合并考虑耦合的磁力机械分析与设计方法研究[D].合肥:合肥工业大学,2006
    [7]Mi Chunting, Slemon Gordon R, Bonert Richard. Modeling of iron losses of permanent-magnet synchronous motors [J]. IEEE Transactions on Magnetics,2003,39 (3):734-741
    [8]Chen Jianyi, Nayar Chemmangot V, Xu Longya. Design and finite-element analysis of an outer-rotor permanent-magnet generator for directly coupled wind turbines[J]. IEEE Transactions on Magnetics,2000,36 (5):3802-3809
    [9]孙明礼,胡仁喜,崔海蓉.ANSYS10.0电磁学有限元分析实例指导教程[M].北京:机械工业出版,2007
    [10]阎照文.ANSYS10.0工程电磁分析技术与实例详解[M].北京:中国水利水电出版,2006
    [11]孔繁余,陈刚,曹卫东,等.磁力泵磁性联轴器的磁场数值计算[J].机械工程学报,2006,42(11):213-218
    [12]杨杰伟.基于MEMS工艺的轴向磁化永磁微电机结构优化及性能分析[D].长春:中国科学院长春光学精密机械与物理研究所,2006
    [13]宋后定,陈培林.永磁材料及其应用[M].北京:机械工业出版社,1984
    [14]杨杰伟,吴一辉,贾宏光,等.轴向磁化永磁微电机磁场分析及设计方法研究[J].光学精密工程,2006,14(1):83-88
    [15]张红辉,廖昌荣,陈伟民,等.磁流变阻尼器磁路设计及磁饱和有限元分析[J].功能材料与器件学报,2004,10(4):493-49
    [16]Sakamoto H, Araki K, Ishida A, et al. Design of permanent magnet type compact ECB retarder[J]. SAE Paper,973228,1997:508-513
    [17]何仁,牛润新.车用永磁式缓速器设计中漏磁影响因素分析[J].农业机械学报,2007,38(8):44-48
    [18]Ogawa M, Fukada T, Asano M, et al. Reduction of leakage flux for performance improvement of permanent magnet retarder[C]//Proceedings of the Thirtieth Academic Speech Conference on Magnetism,2006:261
    [1]姚海.永磁轴承力学特性的研究[D].杭州:浙江工业大学,2004
    [2]Gay S E, Ehsani M. Analysis and experimental testing of a permanent magnet eddy-current brake [C]//Vehicle Power and Propulsion,2005 IEEE Conference,2005:756-765
    [3]徐晓美.基于磁力弹簧的非公路车辆驾驶员座椅悬架系统研究[D].南京:南京农业大学,2006
    [4]唐任远.现代永磁电机-理论与设计[M].北京:机械工业出版社,2005
    [5]刘瑞芳.基于电磁场数值计算的永磁电机性能分析方法研究[D].南京:东南大学,2002
    [6]全定策.磁力轴承结构设计及其转子结构特性分析[D].武汉:武汉理工大学,2004
    [7]Makoto Ogawa, Shin Kobayashi. Evaluation technique for retarder using the scale down model[J]. Isuzu Technical Journal,1999, (101):50-55
    [8]Noguchi Y, Miyahara M, Imanishi K. Creep-fatigue life prediction for permanent magnet type eddy current retarder[C]//The Eighth International Fatigue Congress,2002,5:3101-3108
    [9]Heald M A, Magnetic braking:Improved theory[J]. American Journal of Physics,1988,56(6): 521-522
    [10]马如宇.新型耐高温磁力联轴器的研制[D].镇江:江苏理工大学,2001
    [11]朱德明,严仰光.表贴式永磁电机的两种充磁方式[J].南京航空航天大学学报,2006,38(3):304-308
    [12]Dubois M R, Polinder H, Ferreira J A. Varying magnetization orientation for permanent magnet volume reduction in machines[J]. IEEE Transactions on Magnetics,2003,39 (3):1793-1799
    [13]Jang Seok-Myeong, Lee Sung-Ho. Comparison of three types of permanent magnet linear eddy-current brakes according to magnetization pattern[J]. IEEE Transactions on Magnetics,2003, 39 (5):3004-3006
    [14]Lee C K, Kwon B I, Kim B T, et al. Analysis of magnetization of magnet in the rotor of line start permanent magnet motor[J]. IEEE Transactions on Magnetics,2003,39 (3):1499-1502
    [15]林岩.钕铁硼永磁电机防高温失磁技术的研究[D].沈阳:沈阳工业大学,2006
    [16]张存山.永磁无刷牵引电机电磁性能研究[D].北京:北京交通大学,2006
    [17]Um Y, Torii S, Ebihara D, et al. The study on the measuring method of the eddy current on the eddy current brake[C]//Electrical Machines and Drives, Ninth International Conference,1999:228-231
    [18]刘生.盘式涡流制动器中的涡流测量[J].起重冶金电机,1990:36-43
    [19]Um Y, Torii S, Ebihara D, et al. Characteristic of eddy current on the secondary of eddy current brake[C]//Electric Machines and Drives Conference Record, IEEE International,1997: MC1/11.1-MC1/11.3
    [20]孙人钟,叶方军,顾幸生.基于PLS方法的催化重整装置氧含量软测量模型[J].系统仿真学报,2003,15(11):1622-1624
    [21]Del Villar R G, Thibault J, DeI Villar R. Development of a softsensor for particle size monitoring[J]. Minerals Engineering,1996,9(1):55-72
    [22]缪希仁,张培铭.基于软测量的电磁电器动态过程测试技术[J].电工技术学报,2002,117(1):73-76
    [23]黄凤良.软测量思想与软测量技术[J].计量学报,2004,25(3):284-288
    [24]朱学峰.软测量技术及其应用[J].华南理工大学学报(自然科学版),2002,30(11):61-67
    [25]陈棣湘.常导型高速磁浮列车电磁系统的研究[D].长沙:国防科学技术大学,2005
    [26]俞金寿,刘爱伦,张克进.软测量技术及其在石油化工中的应用[M].北京:化学工业出版社,2000
    [27]Wu H J, Lin Z Y, Guo S L. Application of artificial neural network in predicting resources and environment[J]. Resource and Environment in the Yangtze Basin,2000,9(2):237-241
    [28]仝卫国,杨耀权,金秀章.基于RBF神经网络的气体流量软测量模型研究[J].中国电机工程学报,2006,26(1):66-69
    [29]Xiong Zhihua, Wang Xiong, Xu Yongmao. Nonlinear software sensor modeling using multiple neural network[J]. Control and Decision,2000,15 (2):173-176
    [30]王勇.棉花收获机器人视觉系统的研究[D].南京:南京农业大学,2007
    [31]祁国强,刘载文,崔莉凤.基于RBF人工神经网络的生活污水处理软测量方法[J].北京工商大学学报(自然科学版),2004,22(3)36-38
    [32]宫唤春.RBF神经网络软测量技术在汽油机CO排放中的应用[J].拖拉机与农用运输车,2007,34(5):48-49
    [1]Gay S E, Ehsani M. Parametric Analysis of Eddy-Current Brake Performance with by 3D Finite Element Analysis[J]. IEEE Transactions on Magnetics,2006,42 (2):319-328
    [2]Takahashi N, Natsumeda M, Muramatsu K. Optimization of permanent magnet type of retarder using 3-D finite element method and direct search method[J]. IEEE Transactions on Magnetics, 1998,34 (5):2996-2999
    [3]#12
    [4]何仁,衣丰艳,刘成晔.车用缓速器结构参数对制动力矩的影响分析[J].农业机械学报,2005,36(9):21-24
    [5]汤沛,何仁.车用转筒式电涡流缓速器结构参数研究[J].拖拉机与农用运输车,2008,35(3):24-25
    [6]牛润新,何仁.永磁式缓速器的稳健性设计[J].江苏大学学报(自然科学版),2006,27(6),493-496
    [7]方开泰.均匀设计—数论方法在试验设计的应用[J].应用数学学报,1980,3(4):363-372
    [8]刘永才.均匀设计及其应用[J].战术导弹技术,2002,(1):58-61
    [9]方开泰.均匀设计与均匀设计表[M].北京:科学出版社,1994
    [10]方开泰.均匀试验设计的理论、方法和应用[J].数理统计与管理,2004,23(3):69-80
    [11]孙裕晶,马成林,张勇智.基于均匀设计的精密排种器结构优化方法[J].吉林大学学报:工学版,2004,34(4):569-572
    [12]方开泰,马长兴著.正交与均匀试验设计[M].北京:科学技术出版社,2001
    [13]Tang Ming, Li Jiukun, Chan Ling-Yau. Application of uniform design in the formation of cement mixtures [J]. Quality engineering,2004,16 (3):461-474
    [14]袁锐.精密播种机开沟器对种子触土后位移的控制及部件的研究[D].长春:吉林大学,2006:
    [15]夏之宁,谌其亭,穆小静,等.正交设计与均匀设计的初步比较[J].重庆大学学报,1999,22(5):112-117
    [16]张里千.关于正交试验与均匀设计的比较[J].数理统计与管理,1995,14(1):25-29
    [17]姚钟尧.回归分析法在均匀设计数据分析中的地位[J].特种橡胶制品,1998,19(2):3541
    [18]Wang Zhaojing, Luo Dianhui, Ena Cai. Optimization of polysaccharides extraction from gynostemma pentaphyllum makino using uniform design [J]. Carbohydrate Polymers,2007,69 (2):311-317
    [19]王兆军.均匀设计在参数设计中的应用[J].南开大学学报,2000,33(2):57-60
    [20]徐秀兰,阎伟,刘正刚,等.均匀设计试验法在内燃机试验中的应用[J].农业工程学报,1998,(4):150-153
    [21]袁月明.气吸式水稻芽种直播排种器的理论及试验研究[D].长春:吉林大学,2005
    [22]单素灵.复合肥防结块剂的配制及应用研究[D].北京:北京理工大学,2007
    [23]李久坤,吴黎明,孙洪波.均匀设计模型的优化[J].沈阳建筑工程学院学报,1997,(4):210-212
    [24]李凤艳,赵天波.乳化蜡型家具地板去污上光剂的设计与优化[J].北京石油化工学院学报,2000,8(1):24-28
    [1]马健,陈荫三,余强,等.缓行器对汽车制动稳定性影响评价[J].交通运输工程学报,2002,2(1):105-109
    [2]何仁,何建清.装用电涡流缓速器的汽车制动性能分析[J].江苏大学学报:自然科学版,2004,25(1):29-32
    [3]Gay S E, Ehsani M. Optimized design of an integrated eddy-current and friction brake for automotive applications[C]//Vehicle Power and Propulsion,2005 IEEE Conference,2005: 290-294
    [4]赵迎生,何仁,王永涛.电涡流缓速器对车辆制动稳定性的影响分析[J].农业机械学报,2007,38(9):16-22
    [5]余志生.汽车理论[M].北京:机械工业出版社,2003
    [6]马建,陈荫三,余强,等.缓行器在汽车高速行驶状态下的应用研究[J].中国公路学报,1999,12(3):105-111
    [7]余强.客车下坡持续制动性能研究[D].西安:西安公路交通大学,2000
    [8]Khan P M, Halbe V G, Rajakumar K, et al. Development and evaluation of exhaust brake systems for light commercial Vehicle[J]. SAE Paper No.2005-26-063,717-721
    [9]孙旭光.牵引—制动型液力变矩器制动性能及控制系统研究[D].北京:北京理工大学,2000
    [10]Japanese Automobile Standard. JASO C455-83. Exhaust retarder road test procedure[S]. Tokyo: The Society of Automotive Engineers of Japan,1983

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700