用户名: 密码: 验证码:
直线电机轮轨交通气隙及轨道平顺性对系统动力响应影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
直线电机轮轨交通采用直线感应电机牵引,轮轨系统支撑与导向。直线电机与感应板之间的气隙(简称为气隙)对行车动力性能具有重要影响,其值必须保证在毫米级的精度范围内,通常为8至12mm。线路平顺性、特别是感应板高度变化等均会对气隙大小产生影响,从而影响直线电机牵引效率及行车安全性。因此,直线电机与感应板气隙变化规律以及线路平顺性对其的影响等问题的研究对直线电机轮轨交通系统线路轨道结构设计及养护维修等具有重要理论意义和工程实用价值。
     本研究从广州地铁四号线直线电机与感应板气隙和轨道不平顺检测分析入手,首先分析了静、动态气隙变化规律、统计特性以及轨道不平顺状况。其次,利用所建的动力学模型依次分析了直线地段和曲线地段气隙以及轨道不平顺对系统动力响应的影响。最后,在实测轨道不平顺基础上,探讨了直线电机轮轨交通站台与列车间空隙的合理取值。本研究旨在加深对直线电机轮轨交通系统磁轨气隙变化规律以及其对系统动力响应影响的认识,从而为直线电机轮轨交通线路的轨道结构设计和养护维修等提供理论依据和参考。
     本文主要的研究内容包括:
     (1)在广州地铁四号线直线电机与感应板气隙静态检测的基础上,分析了四号线感应板高度的变化规律及引起的原因。
     (2)在广州地铁四号线直线电机与感应板气隙动态检测的基础上,分析得到了气隙动态变化规律、分布特征以及频率特性等。并与静态检测结果进行了对比分析,提出了动静结合的检测方法。
     (3)对广州地铁四号线轨道不平顺检测数据进行了分析,得到了直线电机轮轨交通轨道不平顺特征。结果显示,四号线轨道整体轨道平顺性状况良好,特别是高低不平顺控制的较好,其峰值均没有超过I级管理限值12mm,因而能很大程度上减小轨道平顺性对气隙的影响。与美国轨道六级谱的对比表明,四号线轨道不平顺峰值和美国五级谱相当,而区段整体轨道不平顺质量指数要优于美国六级谱。
     (4)应用所建模型分析得到了直线地段垂向电磁力和轨道不平顺对系统动力响应的影响规律。并对随机不平顺激励下,系统动力响应的频率分布特性规律进行了分析。结果表明,垂向电磁力对轨道结构振动位移和车体加速度影响较小,对轨道结构振动加速度具有较大影响,对轮轨垂向力的最大影响在10kN以内。提出了直线电机轮轨交通高低不平顺极限值应控制在12mmm内。轨道高低不平顺保养限值宜控制在4mm以内,此时气隙变化可控制在±2mm内,从而保证直线电机的具有较高的工作效率。
     (5)应用所建模型分析了直线电机车辆曲线通过动力性能,得到了曲线地段气隙变化规律、直线电机车辆曲线通过动力特性以及线路平顺性对行车动力性能的影响规律。并提出了曲线地段直线电机与感应板气隙变化的解析公式,可用于分析线路曲线参数对气隙变化的影响。
     (6)应用所建模型分析了不同线路状态、不同运行速度等条件下车辆各方向运动情况,以直线地段和曲线地段车体动态偏移量为基础,研究了站台与车辆间空隙的合理取值。结果表明:直线地段车站站台和车辆气隙可取为75-80mm,较目前采用的1OOmm,可以减少20-25mm。曲线地段车辆限界值至少可以比目前采用的限界值减小15mm左右。曲线地段站台半径宜取为1000m。与传统的车辆限界计算方法相比,本方法能更为准确地反映车体的最大动态横移量,从而为确定站台与车体间空隙的合理取值奠定基础。
:The linear metro vehicle is powered by linear induction motors (LIMs), supported and oriented by wheels. The propulsion and braking of vehicles are provided by the vehicle-borne LIMs which interact, through an air gap, with the LIM reaction plate (RP) fixed on the track system and runs parallel to the running rails. The efficient function of a LIM requires the air gap between the LIM and its RP to be maintained a certain proper distance, normally ranging from 8mm and 12mm. Track irregularities and the variety of the height of the RP have great influence on the air gap between LIM and RP. Therefore, an investigation into the alteration characteristics of the air gap and the track irregularity condition of an operating linear metro line, and an analysis of the vehicle-track system vibration, based on the measured data is of great significance.
     In this study, Firstly, the static and dynamic alteration characteristics, statistical characteristics and the track irregularity condition are analyzed, based on the air gap and track irregularity measured Guangzhou Metro Line 4. Then, by means of the dynamic model developed in the research, the effects of the air gap and track irregularity on the dynamic responses of the LIM vehicle-track system are examined. Finally, the reasonable gap between the carriage and platform edge of linear metro station is discussed.
     The main contents of the presented paper are as follows.
     (1) Based on the static measured data of the height of the RP of Guangzhou Metro Line 4, the alteration characteristics of the RP are obtained and the resulting reason is discussed.
     (2) Based on the dynamic measured data of the air gap between LIM and RP of Guangzhou Metro Line 4, the alteration characteristics, statistical characteristics and frequency domain characteristics of the air gap are obtained. Compared with the static measured data, a measuring method combining the static and dynamic measuring method for the air gap are proposed.
     (3) Based on the measured data of track irregularities of Guangzhou Metro Line 4, the track irregularity status and quality are obtained. The results show that, the track irregularity is maintained on good condition. All the peaks of the geometric vertical irregularities are under the limit value of Grade one (12mm), which demonstrates the changing caused by track irregularities can be effectively controlled. The comparison of the track irregular profiles of Guangzhou Metro Line 4 and of FRA Track Classes 4,5 and 6 shows that, the track irregular peak of Guangzhou Metro Line 4 is close to that of FRA Track Classes 5, and the Track Quality Index (TQI) of f Guangzhou Metro Line 4 is better than that of FRA Track Classes 6.
     (4) By means of the dynamic model, the effects of the air gap and track irregularity on the dynamic responses of straight sections are examined, and the frequency domain characteristics of vehicle-track vibration are analyzed. The results show that, the vertical electromagnetic force has little influence on the vibration displacement of track structures and car body acceleration, however has great influence on the vibration acceleration of track structures, and the influence of the vertical electromagnetic force on wheel/track force is within 10kN. The limit value of the vertical irregular peak is proposed. From a security point of view, the vertical irregular peak should be control under 12mm, and for the work efficiency of LIM motor the value should be control under 4mm.
     (5) By means of the dynamic model, the effects of the air gap and track irregularity on the dynamic responses of curved sections and the curving performance of LIM vehicle are examined. Based on the analysis, a Theoretical formula of the alteration of the air gap is presented, which can be used to analyze the effects of alignment parameters on the air gap.
     (6) By means of the dynamic model, the reasonable gap between the carriage and platform edge of linear metro station is discussed. The results show that, in the straight section, the present gap applied in Guangzhou Line 4 can be reduced about 20-25 mm, set as 75-80mm; in the curved section, the present gap can be reduced about 15 mm and the curve radius on curved platform should be 1000m. the proposed method for computing vehicle gauge can accurately evaluate the dynamic lateral movement of the vehicle, which provide a more reliable basis for selecting the reasonable gap between the vehicle and platform accordingly.
引文
[1]魏庆朝,冯雅薇等.直线电机交通模式及技术经济特性.都市快轨交通,2004,1(17):48-53.
    [2]施仲衡,魏庆朝等.降低地铁造价及工程建设管理若干问题的研究.北京交通大学,2003.
    [3]施仲衡.建设资源节约型、环境友好型城市轨道交通.都市快轨交通,2006,19(3):1-2.
    [4]范瑜.直线电机及其在城市轨道交通中的应用.都市快轨交通,2006.1.1-6.
    [5]山田一.直线电机及其应用技术(中译本).长沙:湖南科学技术出版社,1978.
    [6]Matsumoto, Akira. Research & Development of linear motor driven metro system. Japanese Railway Engineering,1988,107:8-11.
    [7]Horiuchi T, Fujimura N, Murai Y. Outline of Tokyo subway line No.12 linear motor driven electric subway car. Proceeding of the 15th International Conference on Megnetically Leviated Systems and Linear Drives,1998.
    [8]Tajiri M, Yoshida M. Linear motor driven car of the Kaigan line, kobe municipal subway.Proceeding of the 15th International Conference on Megnetically Leviated Systems and Linear Drives,1998.
    [9]Teralka S. Adoption of linear motor propulsion system for subway. Proceeding of the 15th International Conference on Megnetically Leviated Systems and Linear Drives,1998.
    [10]Horiuchi T, Fujimura N, Murai Y. Outline of Tokyo subway line No.12 linear motor driven electric subway car. Proceeding of the 15th International Conference on Megnetically Leviated Systems and Linear Drives,1998.
    [11]施翃,魏庆朝.日本城市轨道交通应用系统模式.都市快轨交通,2004,17(5):54-59.
    [12]杨中平.日本直线电机地铁的发展.都市快轨交通,2006,1.11-15.
    [13]Gieras, Jacek F. Light rail systems with linear induction motors. Elektron,1996,13(1):13-15.
    [14]Vancouver Skytrain-a proven success story. Japan railway & transport review,1998,6:44-45.
    [15]Eisuke Isobe, Jinko Cho et al. Linear Metro Transport Systems for the 21st Century. Hitachi Review,1999,48(3):144-148.
    [16]Gieras, Jacek F. Light rail systems with linear induction motors. Elektron,1996,13(1):13-15.
    [17]Ian R.Graham, Operating experience at skytrain, Vancouver, Canada, Background for star2000 forum. Berlin,2000.
    [18]Stewart, Lecia, Le, Rick. Extending Vancouver's Automated Transit System into the New Millennium.Proceedings of the International Conference on Automated People Movers,2001, 7:233-258.
    [19]张全福,翁梦熊.采用线性电机车辆的温哥华空中列车系统综合评价.铁道车辆,1996,34(7):34-38.
    [20]魏庆朝,王英杰.空中列车及大温哥华地区综合交通系统.都市快轨交通,2006,1.7-10.
    [21]北京交通大学,北京城建设计研究总院城市轨道交通研究中心.直线电机系统在首都机场线应用.北京:2003.
    [22]张建根.广州市轨道交通采用直线电机系统的必要性及技术特点.现代城市轨道交通,2004.5.
    [23]刘智成.直线电机运载技术在广州地铁的应用.世界轨道交通,2005,3:52-55.
    [24]施翃.直线电机运载系统在重庆轨道交通1号线的应用研究.都市快轨交通,2006,19(1):59-63.
    [25]冯雅薇.直线电机轨道交通车辆/轨道动力相互作用研究.北京交通大学博士论文,2006.
    [26]Wallace, Alan K. Function of the reaction rail in the development of a LIM propulsion system for urban transit. IEEE Transactions on Industry Applications,1984, IA-20(4):942-947.
    [27]Lu, Changan. A New Coupled-circuit Model of a Linear Induction Motor and Its Application to Steady-state, Transient, Dynamic and Control Studies. Canada:Queen's University,1994.
    [28]Higuchi Tsuyoshi,Nonaka Sakutaro, Ando Masahiro. On the design of high-efficiency linear induction motors for linear metro. Electrical Engineering in Japan,2001 137(2):36-43.
    [29]杨远贵.磁浮列车直线电机电磁计算软件及反应轨特性的研究.大连铁道学院硕士论文,1996.
    [30]阎贯虹.直线电机在磁浮列车上的应用研究.西南交通大学硕士论文,1995
    [31]易萍虎.单边直线感应电机电磁场和性能的研究.西南交通大学博士论文,1996
    [32]上官璇峰,汪旭东,焦留成,张恒仁.单边型直线感应电机法向力的研究.焦作工学院学报,1997,16(3):70-72.
    [33]周海涛,耿明.吉隆坡MARK Ⅱ直线电机车辆的感应板设计与安装工艺.机车电传动,2004,6:52-54.
    [34]庞绍煌,耿明.直线电机在轨道车辆运用中的三维分析.电力机车与城轨车辆,2004,27(1):31-33.
    [35]M J Fatemi. Resilient cross-tie track for a transit guideway. Ph.D. Thesis. Queen's University, Canada,1993.
    [36]Fatemi, M.J., Green, M.F.& Campbell, T.I. Dynamic analysis of resilient crosstie track for transit system. Journal of Transportation Engineering 1996,122(2):173-180.
    [37]Joshua P. Keatley, B.Sc.E.P.eng.Design analysis and testing of cross-tie trackwork a rapid transit system. Queen's University,2002.
    [38]冯雅薇,魏庆朝.直线电机地铁车轨系统动力响应分析工程力学,2006,23(12):159-164.
    [39]冯雅薇,魏庆朝等,直线电机地铁车辆-轨道垂向耦合动力学模型.北京交通大学学报,2006,1:51-54.
    [40]Yawei Feng,Qingchao Wei, Liang Gao, Jin Shi.Dynamic simulation of vehicle-track coupling vibrations for linear metro system.ISEV2005 international conference,2005.
    [41]陈晶文,夏禾,郭薇薇.直线电机列车-高架桥系统动力相互作用分析.都市快轨交通,2006,1:44-49.
    [42]Yawei FENG, Qingchao WEI, Liang Gao, Jin Shi.Vertical-lateral Model of vehicle-track coupling system for linear metro system. ICMEM2005 international conference,2005,10.
    [43]Vehiclekalman GP, IRANI D, Simpson AU. Electric Propulsion System For Linear Induciton Motor Test,1969,807-17.
    [44]Dannan, John H.; Day, Ron N.; Kalman, Gabor P.Linear Induciton Motor Propulsion System For High-Speed Ground Vehicles. Proceedings of the IEEE,1973,61(5):621-630.
    [45]Chi.C.C, D'Sena.G.O. High-speed dynamic performance of the linear induction motor reseach vehicle.1975,11.
    [46]Hobbs, A. E. W, Pearce, T. G Lateral dynamics of the linear induction motor test vehicleJournal of Dynamic Systems, Measurement and Control,1974,96(6).
    [47]May, C.; Gray, L. W. Vehicle structure for the intermediate capacity transit system vehicles. Institution of Mechanical Engineers Conference Publications,1985:23-27.
    [48]Matsumoto, Akira. Research & Development of linear motor driven metro system.. Japanese Railway Engineering,1988,107:8-11.
    [49]Rumsey,Wallace, Jeffries.Propulsion and control consideration fro and intermediate capacity transit system. IEEE Industry Applications Society Annual Meeting,1981,274-277.
    [50]Fortin, Clement Joseph Adelard. Dynamic curving Simulation of forced-steering rail vehicles. Queen's University At Kingston,Canada,1985.
    [51]Campbell, Van Dalen, Grans. Cross-tie track on guideway structures. Queen's Univ., Kingston, Canada,1989.
    [52]Moucessian, Campbell, Van Dalen, Fatemi. A steel cross-tie for direct fixation track. Proc. Transport, Canada,1992.
    [53]刘友梅,杨颖.城轨交通的一种新模式—直线电机驱动地铁车辆.电力机车与城轨车辆,2003,(4):4-7.
    [54]俞展猷.直线电机在城市轨道交通中的应用.中国铁路,2003,4:46-47.
    [55]施翃,魏庆朝.新型城市轨道交通模式—直线电机地铁系统.地铁与轻轨,2003,4.
    [56]时瑾,魏庆朝等.直线电机地铁线路设计关键技术.中国铁道科学,2005,25(2):130-133.
    [57]魏庆朝,蔡昌俊,龙许友.直线电机轮轨交通概论.北京:中国科学技术出版社,2010.
    [58]梁青槐.刘智成.赵金顺.直线电机轮轨交通线路与限界.北京:中国科学技术出版社,2010.
    [59]夏禾郭薇薇陶毕莲.直线电机轮轨交通高架结构.北京:中国科学技术出版社,2010.
    [60]高亮许有全刘浪静.直线电机轮轨交通轨道.北京:中国科学技术出版社,2010.
    [61]郑琼林.赵佳.樊嘉峰.直线电机轮轨交通牵引传动系统.北京:中国科学技术出版社,2010.
    [62]范瑜等.国外直线电机轮轨交通.北京:中国科学技术出版社,2001.
    [63]郝海龙.直线电机车辆动力学仿真研究.北京交通大学硕十论文,2005.
    [64]张勇.基于ADAMS/Rail的直线电机车辆线路动力响应研究.北京交通大学硕士论文,2006.
    [65]王可丽.直线电机地铁运载系统轨道关键技术的研究.北京交通大学硕士论文.2005.
    [66]翟婉明.车辆-轨道耦合动力学(第二版).中国铁道出版社,2001.
    [67]练松良.轨道动力学.同济大学出版社,2003.
    [68]刘学毅,王平.轮轨空间耦合振动分析模型及其应用.铁道学报,1998.20(3):102-108.
    [69]王平.道岔区轮轨系统动力学的研究.西南交通大学博士论文,1997.
    [70]李成辉.轨道结构振动理论与应用研究.西南交通大学博士论文,1996.
    [71]雷晓燕.轨道力学与工程新方法.中国铁道出版社,2002.
    [72]曾庆元,郭向荣.列车桥梁时变系统振动分析理论及应用.中国铁道出版社,1999.
    [73]夏禾.车辆与结构动力相互作用.科学出版社,2002.
    [74]吴定俊.轨道不平顺速度项对车桥动力响应的影响分析.铁道学报,2006.34(4):494-498.
    [75]蔡成标.高速铁路列车-线路-桥梁耦合振动理论及应用研究.西南交通大学博士论文.2004.
    [76]李小珍.高速铁路列车-桥梁系统耦合振动理论及应用研究.西南交通大学博士论文2000.
    [77]高芒芒.高速铁路列车-线路-桥梁耦合振动及列车走行性研究.铁道科学研究院博士论文,2001.
    [78]赵春发.磁浮车辆系统动力学.西南交通大学博十论文,2002.
    [79]时瑾.高速常导磁浮车辆线路动力响应研究.北京交通大学博士论文.2006.
    [80]郭薇薇,夏禾.直线电机列车作用下高架桥的动力响应分析.中国铁道科学,2007,28(4):55-60.
    [81]廖利.直线电机轮轨交通系统车辆—道岔空间耦合动力学特性的研究.北京交通大学博士论文.2009.
    [82]赵金顺.直线电机轮轨交通系统线路设计参数及匹配研究.北京交通大学博士论文.2007.
    [83]龙许友,魏庆朝,赵金顺.直线电机地铁车辆曲线通过建模与仿真.系统仿真学报,2007,19(13):3105-3107,3114.
    [84]Long Xuyou, Wei Qingchao, Wang Yingjie. Dynamic Analysis of Linear Metro Vehicle on Curved Track. Proceedings of International Conference on Mechanical Engineering and Mechanics (ICMEM2007),2007,979-983.
    [85]龙许友,魏庆朝,时瑾.直线电机轮轨交通线路最小平曲线半径研究.北京交通大学学报,2009,33(4):1 10-114.
    [86]广州轨道交通四号线列车直线电机与感应板间隙测量研究,2009.
    [87]李芾,傅茂海,黄运华.径向转向架机理及其动力学特性研究.中国铁道科学.2002,23(5):46-51.
    [88]V.K. Garg, R. V. Dukkipati著,沈利人译.铁道车辆系统动力学.成都:西南交通大学出版社,1998.
    [89]张定贤.机车车辆轨道系统动力学.北京:中国铁道出版社,1996.
    [90]王福天.车辆系统动力学.北京:中国铁道出版社,1994.
    [91]詹斐生.机车动力学.北京:中国铁道出版社,1990.
    [92]王开文.车轮接触点迹线及轮对接触几何参数的计算.西南交通大学学报,1984,19(1):89-98.
    [93]王开云.车辆与轨道的横向相互作用分析.成都:西南交通大学,2000.
    [94]Kuo C.M., Huang C.H. and Chen Y.Y.. Vibration characteristics of floating slab track. Journal of sound and vibration.2008,317:1017-1034.
    [95]Bell C. E., Horak D., Hedrick J. K..Stability and Curving Mechanics of Rail Vehicles. Journal of Dynamic Systems, Measurement, and Control.1981,103:181-190.
    [96]GB 50157-2003.地铁设计规范.北京:中国计划出版社,2004.
    [97]CJJ 96-2003.地铁限界标准.北京:中国建筑工业出版社,2004.
    [98]王锋,余惠林,赵晓华,等.关于地铁车站站台限界的探讨.铁道标准设计,2009,(2):81-82.
    [99]倪昌,王建.关于站台建筑限界的探讨.都市快轨交通,2006,19(6):15-18.
    [100]倪昌.轨道交通限界分类及其应用.都市快轨交通,2008,21(2):7-9.
    [101]欧阳全裕,王志培,姜传治.地铁曲线车站站台建筑限界计算研讨.城市轨道交通研究,2007,(5):17-20.
    [102]吴永芳.站台与列车间空隙缩小试验分析.都市快轨交通,2006,19(4):4446.
    [103]梁青槐,孔令洋.直线电机轨道交通限界.都市快轨交通,2006,19(2):42-55.
    [104]GB5599-85,铁道车辆动力学性能评定和试验鉴定规范.
    [105]TB/T2369-1993,铁道机车动力学性能试验鉴定方法及评定标准.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700