用户名: 密码: 验证码:
多层衍射光学元件设计理论及其在混合光学系统中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表面微结构衍射光学元件在现代光学系统中的应用越来越广泛。利用衍射光学元件所具有的波前复振幅调制作用以及独特的衍射色散与温度特性,可以有效地改善传统折射型光学系统的结构与性能。但对波长的依赖性导致衍射光学元件的衍射效率随成像光谱宽度增加,偏离设计波长而下降,非设计级次上的衍射光增强且形成背景杂散光,影响成像质量,限制了衍射光学元件在宽波段成像领域的应用。本论文基于标量衍射模型,从理论与实践两方面对解决衍射光学元件应用于可见波段宽光谱成像系统中的衍射效率等问题进行了探索。
     论文首先在系统研究与总结了衍射光学标量理论、矢量理论与几何光学方法的基础上,根据标量衍射理论采用相位多项式与相位变换函数描述衍射光学元件的特点,利用两种以上具有不同色散特性的基底材料构建多个不同相位高度的单层表面微结构,层叠后得到一种新型的多层衍射光学元件,增加了相位分布函数中的可变因子,实现设计波段内多个设计波长光波的精确闪耀,使得整个波段内各波长光波的等效相位调制等于或接近2π的整数倍,从而提高整个设计波段的衍射效率,有效限制了非设计级次衍射杂散光的影响。对于可见光0.4~0.8πm波段,双层衍射光学元件的理论衍射效率可以达到96%以上。进一步深入研究了多层衍射光学元件的色散特性与温度特性,扩展了多层结构的各种形态,并对多层二元光学元件的制作误差对衍射效率的影响进行了分析。提出了利用系统调制传递函数MTF评价多层衍射光学元件衍射效率的方法,试验结果表明该方法切实可行。
     深入分析了多层衍射光学元件对于系统能量效率的分配作用,给出了采用多层衍射光学元件设计光学系统的流程和方法,设计制作了一个双层衍射光学元件,利用这种新型的多层衍射光学元件对原有复消色差长焦距物镜系统进行了改进,替代大口径萤石透镜消除系统的二级光谱,简化了系统的体积与重量,降低了制作成本,完成系统的性能测试,结果表明衍射效率在整个设计波段内以较高的数值平均分布。
     讨论了曲面基底表面微结构衍射光学元件的设计方法,利用球面基底提供主要的光焦度,表面衍射微结构实现非球面度的相位补偿,以现有工艺条件下的最小加工线宽作为求取最佳球面基底的选择判据,实现光学系统全球面化。探讨了曲面衍射光学元件的制作工艺,提出了曲面直角坐标-极坐标复合激光直写系统方案,并完成曲面匀胶,准焦探测,初始位置精确定位等功能试验,为实现曲面多层衍射光学元件的研制提供技术基础。
     多层衍射光学元件除了具有传统单层衍射光学元件的优点外,扩展了衍射光学元件在宽波段领域的应用,避免了单层衍射光学元件衍射效率随成像光谱宽度
    增加而下降的问题,使混合光学系统摆脱了衍射杂散光的影响,改进成像质量。
Diffractive optical elements (DOEs) have been shown to be very popular in a wide variety of applications for its features such as the effects of wavefront complex amplitude modulation to balance axial aberrations, wavelength dispersion to correct the chromatic aberration, athermal property and considerable reduction in the apparent size, weight and number of elements of the optical system. But only the rays in the design order are useful, while one beam of incident light was diffracted into different orders by DOE. Though we can make all of the rays at design wavelength concentrated on the design order, which means the diffraction efficiency is 100%, the diffraction efficiency will falls as the light wavelength deviates from the design one, unexpected diffracted light in the other orders increases and becomes stray light. Based on scalar diffraction theory, much works focus on the improvement of diffraction efficiency of DOE in wide spectrum application in this dissertation.
    Firstly, the theory of diffraction optics such as scalar diffraction theory, vector diffraction theory and geometric optical model are studied in detail and summarized. And the method of microstructure DOE based on sphere as substitute for aspheric surface was clearly described. Spherical surface takes the main focusing power and diffractive profile compensates the phase difference from aspheric surface to reference sphere. The reference wavelength and the minimum feature size were introduced into the limiting condition to make the minimum distance between DOE rings greater than the minimum feature size. With this method all the lens surfaces of optical systems can be fabricated in sphere. We proved the rationality in theory and simulated on computer to illuminate the feasibility of this method.
    Secondly, according to the characteristics of using phase polynomial and phase transform function to describe DOE in scalar theory, a new type of diffractive optical element with stratified multi-layer surface microstructure was introduced in this dissertation. More than two types of materials with different dispersion characters are taken into the construction of multi-layer DOE to increase the number of variable factors in the phase distribution function. The phase difference is or nearly be integer times of 2π to each wavelengths of design waveband. The diffraction efficiencies of the whole waveband are improved and the influence of stray lights of non-design diffractive orders is decreased. For example, in the visual band from 0.4~0.8μm, the diffraction efficiency of two layer DOE are greater than 96%.
    Finally, a long focal-length objective lens was designed and manufactured with a two-layer DOE used for large aperture fluorite lens for apochromatic. The performance of this hybrid optical system was tested. And the manufacture techniques of spherical DOE are discussed.
引文
[1] W.B. Veldkamp, "Overview of Micro optics past, present, and future", SPIE, Vol. 1544, pp287~299(1991).
    [2] H.O. Sankur and M. E. Motamedi, "Micro-optics development in the past decade", SPIE, Vol.4179, pp30~55(2000).
    [3] W. Ehrfeld, U Ehrfeld, "Progress and profit through microtechnologies-commercial applications of MEMS-MOEMS" ,SPIE, Vol.4557, pp1~10(2001).
    [4] 杨国光,沈亦兵,侯西云,《微光学技术及其发展》,红外与激光工程Vol.30,No.4,pp235~240(2001).
    [5] R. Voelkel, M. Eisner, K. J. Weible, "Micro-optics: manufacturing and characterization", SPIE, Vol.5965,pp1~9(2005).
    [6] Revital Shechter, Yaakov Amitai, and Asher A. Friesem. "Compact wavelength division multiplexers and demultiplexers" [J]. Applied Optics, 2002, 41(7): 1256~1261
    [7] Hiroyuki Tsuda and Hirokazu Takenouchi. "Photonic encoder and decoder for optical code-division multiplexing with time-to-space converters and angle-multiplexed holograms"[J]. Applied Optics, 2002, 41(2): 290~297
    [8] Xuegong Deng, Dechang An, Feng Zhao, et al. "Temperature sensitivity of passive holographic wavelength-division multiplexers-demultiplexers" [J]. Applied Optics, 2000, 39(23): 4047~4057
    [9] Ching-Chu Huang, B. Keith Jerkins, Charles B. Kuznia. "Space-Variant Interconnections Based on Diffractive Optical Elements for Neural Networks:Architectures and Cross-Talk Reduction" [J]. Applied Optics, 1998, 37(5): 889~911
    [10] Hironori Sasaki, Kyoko Kotani, Hiroshi Wada, et al. "Scalability analysis of diffractive optical element-based free-space photonic circuits for eroptoelectronic chip interconnections" [J]. Applied Optics, 2001, 40(11): 1843~1855
    [11] Ichiro Fujieda, Osamu Mikami, and Atsushi Ozawa. "Active optical interconnect based on liquid-crystal grating" [J]. Applied Optics, 2003, 42(8):1520~1525
    [12] Yi Li, Xinjian Yi, Jianhua Hao. "Design and fabrication of microlens arrays for infrared focal plane arrays" [C]. SPIE, 1998,3545:210~213
    [13] Bouchra Harchaoui, Nicolas Guerineau, Marcel Caes, et al. "Modulation transfer function measurement of an infrared focal plane array using a nondiffracting array generator" [C]. SPIE; 2000, 4130:218~225
    [14] Carnina londono and Peter P. Clark. "Design of achromatized hybrid diffractive lens systems", SPIE, 1990,1354:30~37
    [15] Zhisheng Yun, Yee Loy Lam, Yan Zhou, et al. "Eyepiece design with refractive-diffractive hybrid elements", SPIE, 2000,4093:474~480
    [16] Y.Nevo, D. Nir, S. Wachtel, "Use of diffractive elements to improve IR optical systems", SPIE, 2003,4820:744~750
    [17] Chandra Shakher, Shashi Prakash, Daya Nand, et al. "Collimation testing with circular gratings"[J]. Applied Optics, 2001,40(8): 1175~1179
    [18] Michael H. Ayliffe, Marc Chateauneuf, David R. Rolston, et al. "Six-degrees-of-freedom alignment of two-dimensional array components by use of off-axis linear Fresnel zone plates" [J]. Applied Optics, 2001, 40(35):6515~6526
    [19] C. Bill Chen, Ronald G. Hegg, W. Todd Johnson, et al. "Visible-band test bed projector with a replicated diffractive optical element" [J]. Applied Optics, 1999,38(34): 7105~7111
    [20] Chong-Min Chang and Han-Ping D. Shieh. "Design of illumination and projection optics for projectors with single digital micromirror devices" [J]. Applied Optics, 2000, 39(19): 3202~3208
    [21] G. Michael Morris, Daniel R. Raguin, Markus Rossi, et al. "Diffractive optics technology for projection displays" [C]. SPIE, 1996, 2650:112~119
    [22] H. Toshiyoshi, "MEMS for micro optics-from fiber optic communication to display", SPIE, 2005,6050:1~6
    [23] Volker Sturm, Hans-George Treush, Peter Loosen, "Cylindrical microlenses for collimating high-power diode lasers", SPIE. Vol.3097, 717~725(1997)
    [24] 周海宪,王永年,程云芳,等译.《微光学元件、系统和应用》[M].北京:国防工业出版社.2002.7~13.
    [25] L.N. Hazra, "Diffractive optical elements-past, present, and future" , SPIE, Vol.3729, pp198~211(1999).
    [26] "Special issue for diffractive optics: design, fabrication and application", Appl. Opt. Vol.32,No.14(1993)
    [27] T.J. Mchugh and D. A. Zweig, "Recent advances in binary optics", SPIE, Vol.1052, pp85~90(1989).
    [28] Swanson, "Binary optics technology : the theory and design of multi-level diffractive optical element", Technical Report, 1989, No.854, Lincoln Laboratory, MIT
    [29] 金国蕃,严瑛白,邬敏贤,《二元光学》,北京:国防工业出版社,1998
    [30] W.B. Veldkamp, T. J. McHugh. "Binary optics" [J]. Scientific American, 1992, 266(5): 92~97
    [31] R. H. Czichy, D. B. Doyle and J. M. Mayor, "Hybrid optics for space applications-Design, manufacture and test", SPIE, Vol.1780,pp333~344(1992)
    [32] T. Stone and N. George, "Hybrid Diffractive-Refractive Lenses and Achromates" , Appl. Opt., 1988, 27(14), 2960
    [33] D.A. Buralli and G. M. Morris, "Design of a wide field diffractive landscape lens", Appl. Opt., 1989, 28(18), 3950
    [34] A.P. Wood, "Design of infrared hybrid refractive-diffractive lens", Appl. Opt., 1992, 31(13), 2253~2258
    [35] J.M. Sasian and R. A. Chipman, "Staircase lens: a binary and diffractive field curvature corrector", Appl. Opt., 1993, 32(14), 60~66
    [36] D. R. shafer, "Unusual binary-optics telescope design", Annual Meeting of OSA, Toronto,1993(11).
    [37] 钟锡华,《现代光学基础》,北京大学出版社,2003,P.36.
    [38] D.A. Pommet, M. G. Moharam, E. B. Grann, "Limits of scalar diffraction theory for diffractive phase elements", JOSA, Vol(11),1994, 1827-1834
    [39] J. Turunen, M. Kuittinen, F. Wyrowski, "Diffractive optics: electromagnetic approach", Progress in Optics, Vol(11),2000
    [40] V. Kettunen, M. Kuittinen, J. Turunen, "Effects of abrupt surface-profile transitions in nonparaxial diffractive optics", JOSA, Vol(18), 2001, 1257-1260
    [41] T. Vallius, V. Kettunen, M. Kuittinen, J. Turunen, "Step-discontinuity approach for non-paraxial diffractive optics", JMO, Vol(48), 2001, 1195~1210
    [42] J.W. Goodman, Fourier Optics, McGraw-Hill, 1996, Chapter 3
    [43] E. Noponen, J. Turunen, A. Vasara, "Parametric optimization of multilevel diffractive optical elements by electromagnetic theory", Appl. Opt. Vol(31), 1992, 5910~5912
    [44] M. Born, E. Wolf, "Principles of Optics, 7th ed", Cambridge University Press, Cambridge, 1999.
    [45] E. Wolf, E. W. Marchand, "Comparison of the Kirchhoff and the Rayleigh-Sommerfekd theories of diffraction at an aperture", JOSA, Vol.54(5), pp.587-594(1964.3)
    [46] J. Turunen, F. Wyrowski, "Diffractive optics for industrial and commercial applications", Akademie Verlag, 1997.
    [47] F. Gori, "Collett wolf sources and multimode lasers", Opt. Commun. Vol(34), pp301-305(1980)
    [48] Juan Liu, Ben-yuan Gu, "Laser beam shaping with polarization-selective diffractive phase elements", Applied Optics, 2000, 39(18): 3089~3092
    [49] Myung Soo Kiril, Clark C. Guest, "Simulated annealing algorithm for binary phase only filters in pattern classification", Applied Optics, 1990, 28(8):1203~1208
    [50] Shizhuo Yin, Mingzhe Lu, Chulung Chen, et al. "Design of a bipolar composite filter by a simulated annealing algorithm", Optics Letters, 1995, 20(12):1409~1411
    [51] T. Vallius, V. Kettunen, M. Kuittinen, "Step discontinuity approach for non paraxial diffractive optics", J. Mod. Opt. Vol(48), pp1195-1210(2001)
    [52] Gabriel Cormier, Roger Boudreau, Sylvain Theriault, "Real-coded genetic algorithm for Bragg grating parameter synthesis", JOSAB, Vol(18), pp1771-1776,(2001)
    [53] Gia-Wei Chern, Lon A. Wang, "Design of binary long-period fiber grating filters by the inverse-scattering method with genetic algorithm optimization", JOSA, Vol(19), pp772-780(2002)
    [54] Guangya Zhou, Yixin Chen, Zongguang Wang, et al. "Genetic local search algorithm for optimization design of diffractive optical elements", Applied Optics, Vol(38), pp4281-4290(1999)
    [55] E. A. Sziklas,A. E. Siegman, "Mode calculations in unstable resonators with flowing saturable gain: fast fourier transform method", Appl.Opt. Vol(14), pp1874-1889(1975)
    [56] R. W. Gerchberg, W. O. Saxton. "Phase determination from image and diffraction plane pictures in the electron microscope", Optik, Vol.34(3): pp.275-284(1971)
    [57] R. W. Gerchberg, W. O. Saxton, "A practical algorithm for the determination of phase from image and diffraction plane pictures", Optik, Vol.35(2): pp.237-246(1972)
    [58] Liu Juan, Dong Bizhen, Gu Benyuan, et al. "Generation of polarized patterns with the use of polarization selective diffractive phase elements", Optik, 1999, 110(7),pp.337-339
    [59] Liu Juan, Dong Bizhen, Gu Benyuan. "Polarization-selective diffractive phase lement for implementing polarization mode selecting, color demuldplexing, and spatial focusing simultaneously", Optik, 2000,111(2): pp.49-52
    [60] Liu Rong, Dong Bizhen, Zhang Yan, et al. "Expriments of diffractive phase elements capble of realizing desired functions in rotationally symmetric optical system", Optik, 1999,110(3): pp.118-122
    [61] Rao Xuejun, Ling Ning, et al. "Application of Hartmann-Shack Sensor in Aspheric Process". Acta Optica Sinica( 光学学报 ), Vol.22(4): pp491-494(2002)
    [62] S. Axel, B. George, H. Thomas, et al. "Precision optical asphere fabrication by plasma jet chemical etching (PJCE) and ion beam figuring". SPIE, Vol.4451: pp242-248(2001)
    [63] R. Neureuther and K. Zaki, "Numerical methods for the analysis of scattering from nonplanar and periodic structures," Alta.Freq. Vol.38,pp 282-285(1969).
    [64] N. Neviere, R. Petit, and M. Cadilhac, "About the theory of optical grating coupler-waveguide systems," Opt. Commun. Vol.9, pp48-53(1973).
    [65] R. Petit, Electromagnetic Theory of Gratings, (Springer-Verlag,Berlin, 1980). [66] D. Maystre, ed., Selected Papers on Diffraction Gratings, SPIE MS83,(SPIE, Bellingham, 1993).
    [67] B. Lichtenberg, N. C. Gallagher. "Finite element approach for the numerical analysis and modeling of diffractive and scattering objects". Proc. SPIE, Vol.2152, pp.2-13 (1994)
    [68] L. B. Chtenberg, M. C. Gallagher. "Numerical modeling of diffractive device using the finite element method". Opt. Eng. Vol.33, pp3518-3526(1994)
    [69] D. W. Prather, M. S. Mirotznik, J. N. Mait. "Design of subwavelength diffractive optical elements using a hybrid finite element-boundary element method". SPIE, Vol.2689, pp14-23(1996)
    [70] Bi-Zhen Dong, Jia-Sheng Ye, and Ben-Yuan Gu. "Analysis of focal performances of cylindrical microlenses made of anisotropically dielectric material based on rigorous diffraction theory". Proc. SPIE, Vol.4935, pp.156-163 (2002)
    [71] D. W. Prather, M. S. Mirotznik, J. N. Mait. "Boundary integral methods applied to the analysis of diffractive optical elements". JOSA, Vol. 14(1), pp.34-43(1997)
    [72] D. W. Prather, J. N. Mait, M. S. Mirotznik. "Vector-based synthesis of finite aperiodic subwavelength diffractive optical elements". JOSA. Vol. 15(6), pp. 1599-1607(1998)
    [73] J. M. Bendickson, E. N. Glytsis, T. K. Gaylord, et al. "Modeling considerations for rigorous boundary element method analysis of diffractive optical elements". JOSA, Vol. 18(7), pp. 1495-1506(2001)
    [74] M. G. Moharam, T. K. Gaylord. "Rigorous coupled-wave analysis of planar-grating diffraction". JOSA, Vol. 71(7), pp.811-818(1981)
    
    [75] M. G. Moharam, T. K. Gaylord. "Diffraction analysis of dielectric-relief gratings". JOSA, Vol. 72(10), pp. 1385-1392(1982).
    [76] M. G. Moharam, E. B. Grann, D. A. Pommet, el al. "Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings" JOSA. Vol. 12(5), pp.l068-1076(1995).
    [77] E. N. Glytsis, T. K. Gaylord. "Three-dimensional (vector) Rigorous coupled-wave analysis of anisotropic gratings diffraction". JOSA, Vol. 7(8):, pp.1399-1420(1990)
    [78] P. Song and G. M. Morris. "Efficient implementation of the rigorous coupled-wave analysis for surface-relief gratings". JOSA, Vol. 12(5), pp.1087-1096(1995)
    [79] W. Nakagawa, R. C. Tyan, P. C. Sun, et al. "Ultra shot pulse propagation in near-field periodic diffractive structures by rigorous coupled-wave analysis". JOSA, Vol. 18(5), pp.1072-1081(2001)
    [80] F. G. Kaspar. "Diffraction by thick periodically stratified grating with complex dielectric Constant". JOSA, Vol. 63(1), pp.37~45(1973)
    [81] J.R. Andrewartha, C. H. Derrick, R. C. Mcphedran. "A general modal theory for reflection gratings". Optica Acta, Vol. 28(11), pp.1501~1516(1981)
    [82] M. M. Jiang, T. Tamir, S. Z. Zhang. "Modal theory of diffraction by multilayered gratings containing dielectric and metallic components". JOSA, Vol. 18(4), pp.807~820(2001)
    [83] J.S. Martinez, O. M. Mendez, F. C. Rivas. "Rigorous theory of the diffraction of Gaussian beams by finite gratings: TE polarization". JOSA, Vol. 20(5), pp.827~835(2003)
    [84] K.S. Yee. "Numerical solution of initial boundary value problems involving Maxwell's Equations in isotropic media". IEEE Trans. Antennas. Propagat Vol. 14, pp.302-307(1966)
    [85] C. B. Burckhardt. "Diffraction of a plane wave at a sinusoidally stratified dielectric grating".. JOSA, Vol. 56(11), pp.1502-1509(1966)
    [86] R. Magnusson and T. K. Gaylord, "Equivalence of multiwave couple-wave theory and modal theory for period-media diffraction," JOSA, Vol. 68, pp. 1777-1779(1978).
    [87] M.G. Moharam, T. K. Gaylord, D. A. Pommet, et al. "Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach". JOSA, Vol. 12 (5), pp.1077~1086(1995)
    [88] N. P. Cotter, T. W. Preist, J. R. Sambles. "Scattering matrix approach to multilayer diffraction". JOSA, Vol. 12(5), pp.1097~1103(1995)
    [89] L. Li. "Multilayer modal method for diffraction gratings of arbitrary profile, depth and permittivity". JOSA, Vol. 10(12), pp.2581-2591(1993)
    [90] 傅克样,王植恒,张大跃,等.《大深度任意剖面形状光栅的模式理论和RTCM递推算法》.中国科学(A),Vol.29(4),pp.356-365(1999)
    [91] D. Ko, J. Sambles. "Scattering Matrix method for propagation of radiation in stratified media: attenuated total reflection studies of liquid crystals". JOSA, Vol. 5(11), pp.1863-1866(1988)
    [92] N. Cotter, T. Presist, J.Sambles. "Scattering-matrix approach to multilayer diffraction". JOSA, Vol. 12(5), pp.1097~1103(1995)
    [93] D.W. Sweeney, G. E. Sommargren. "Harnonic diffractive lenses". Appl. Opt. Vol. 34(14), pp.2469~2475(1995)
    [94] D. Faklis, G. M. Morris. "Spectral properties of multiorder diffractive lenses". Appl. Opt. Vol. 34(14), pp.2462~2469(1995)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700