用户名: 密码: 验证码:
有机膦小分子促进的基于Morita-Baylis-Hillman碳酸酯的调控Domino环化反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机催化的Domino反应具备高效、便捷、环境友好的优点,在构筑复杂、高挑战性分子骨架方面有突出的优势,从而受到广泛关注。其中,有机膦小分子催化的Domino环化反应已经迅速发展成为构筑环状化合物的重要平台之一。这些环状化合物在药物分子、农药化学、香精香料、染料工业中有着极其重要的应用。在本论文第一章系统总结有机膦催化的Domino反应所涉及的多种原料和反应模式基础上,我们发现Morita-Baylis-Hillman (MBH)碳酸酯在有机膦催化Domino环化反应中反应类型单一(仅1,3-偶极环加成反应)。通过对以往有机膦催化Domino环化反应等相关研究的详细分析,我们认为经过有效控制调节可使MBH碳酸酯成为灵活、多样化的“有机分子构筑砌块”,用于复杂、有挑战性以及重要应用的核心分子骨架构筑。因此我们选定有机膦小分子促进的基于MBH碳酸酯的调控Domino反应作为本论文的研究重点。
     1.我们采用位阻控制策略成功抑制了MBH碳酸酯在有机膦催化下传统的1,3-偶极环加成的进行。首次发现在有机膦催化下MBH碳酸酯可以用作1,1-偶极合成子,并将这一发现成功用于[1+4]环加成反应,成功的合成了一系列反式-2,3-苯并二氢呋喃类化合物。这类化合物不仅在药物分子和生物活性分子中广泛存在,而且是非常重要的分子骨架。我们为该类化合物的合成提供了高收率、高立体选择性、简便快捷的合成方法。根据以上研究结果,我们预计其它1,1-偶极合成子也可以用于该反应。为此我们又将该策略成功应用于硫叶立德相关反应,成功实现了硫叶立德做为1,1-偶极合成子参与[1+4]偶极环加成反应。该反应不仅成功抑制了动力学产物吖啶的生成,还可以以高收率、高立体选择性、简便快速合成多样化多种取代的反式-2,3-苯并二氢呋喃化合物。我们通过31PNMR跟踪和控制实验等相关研究证实了动力学控制是该反应高立体选择性的决定性因素。
     2.基于上述对MBH碳酸酯的研究,我们提出了有机膦催化调控Domino反应概念。我们选取β,γ-不饱和-α-酮酸酯和MBH碳酸酯为起始原料,在有机膦促进下通过反应底物调控、反应过程调控、催化模式调控等手段成功实现将MBH碳酸酯选择性用作C1合成子、C2合成子和1,3-双负C3合成子,分别选择性构筑二氢呋喃、(2H)吡喃、苯环化合物。在本论文的第四章针对传统交叉偶联、氧化芳基化反应中的诸多缺陷,我们提出了Domino苯环化策略构筑多联苯体系。该策略无过渡金属,底物适用性广泛,是传统金属有机催化交叉偶联策略的有效补充。该反应中,MBH碳酸酯首次作为1,3-双负C3合成子参与苯环化反应,以较高的收率、简便快捷合成一系列官能团化的联苯、多联苯、Heck类型产物。这一系列多联苯体系为进一步衍生化提供重要起始原料平台。我们通过钯催化交叉偶联可以有效构筑结构复杂的、结构不对称的、有挑战性的联苯化合物。这些多联苯体系在发光材料方面和液晶材料有着重要应用。另一方面,该反应还可以用于生物活性分子——[3H]MK-8O1成键抑制剂Arcaine类化合物的合成。在论文第五章我们对苯环化反应机理做了详细的研究,解释了苯环化反应机理。通过调控有机膦催化剂的用量,调控作用模式,在有机膦催化条件下,成功实现MBH碳酸酯作为C1合成子,通过与β,γ-不饱和-α-酮酸酯反应选择性构筑2,3-二氢呋喃;在计量的有机膦试剂条件下成功合成联苯类化合物。我们还通过DFT计算和实验研究详细研究了该反应的调控机理,解释了2,3-二氢呋喃的高立体选择性是由反应平衡控制。第五章我们通过新的催化模式调控,首次以顺序催化的模式巧妙的将有机膦催化和胺催化过程有效结合。在该顺序催化模式下,MBH碳酸酯首次作为C2合成子参与反应。我们不但可以高效构筑具有重要生物活性的(2H)-吡喃骨架,还可以构筑2-氧杂二环[2.2.2]辛-5-烯这一重要高活性抗癌等其他生物活性分子核心骨架。我们还详细研究了反应机理,证实该反应经过了有机膦催化[1+4]成环和胺催化重排两个过程,并用密度泛函理论(DFT)计算,对胺催化过程的机理进行了详细研究,提出了胺的催化过程。
     3.由于Nazarov试剂和2,3-丁二烯酸酯分别在结构和反应活性上类似于β,γ-不饱和-α-酮酸酯和MBH碳酸酯。我们首次研究了有机膦催化下Nazarov试剂2,3-丁二烯酸酯在有机膦催化下的反应,以高收率构筑一系列含环外共轭烯烃的二氢呋喃化合物。该反应中,乙醇既作为反应溶剂又作为有效质子转移催化剂,这对该反应的进行起了决定性作用。我们还首次通过DFT计算和控制实验研究了乙醇对质子转移催化反应机理,证明了乙醇在有机膦催化反应中催化的质子转移作用,对有机膦催化相关反应机理研究有重要指导意义。
     4. MBH和Rauhut-Currier(RC)反应有一定相似性,但是后者受限于反应底物活性不高和难以控制交叉偶联两大挑战很少被用于有机合成,尤其是分子间反应。我们以调控交叉偶联这一核心问题为研究切入点,通过设计合成一系列双官能团有机膦催化剂首次将丙烯醛用于RC Domino反应,并通过一锅三组分三步反应合成功能化环己烯醛化合物。该研究首次将双官能团有机膦催化剂用于RC反应,并通过实验证实该催化剂具有高的催化活性以及对RC Domino反应实现成功调控。我们还对这一反应的不对称催化进行了初步研究,发现手性双官能团有机膦催化剂具有一定的不对称催化效果。这一结果对未来双官能团有机膦催化剂的设计合成,以及对RC反应的研究具有重要的指导意义。
Organocatalysts-promoted domino reactions, with the advantages of high efficiency, convenient operation and environmental-friendly manner, could be used to build up powerful platforms for the synthesis of complex and challenging skeletons and has received great attentions. In particular, phosphine-mediated domino cycloaddition reactions have become one of the most important platforms for the construction of cycles. These reactions are significant in the synthesis of many pharmaceutically active products, natural products, perfumes and dyes. After the carefully illustrating and discussing the diversified starting materials and versatile reactive models of phosphine-mediated domino reaction in the first chapter, we detected that the reactive model of Morita-Baylis-Hillman (MBH) carbonates was quite limited (only1,3-dipolar cycloaddition). Based upon the aforementioned illustration and analysis of phosphine-mediated domino reaction, we deem Morita-Baylis-Hillman carbonates have the potential to be a versatile, elastic "building blocks" for the construction of complex, challenging and core skeleton of organic molecule after efficient control and regulation. Therefore, I paid my attention to investigating phosphine-mediated tunable domino annulation involved with Morita-Baylis-Hillman carbonates during the process of pursuing PhD degree.
     1. The traditional1,3-dipolar cycloaddition model of MBH carbonates was altered by steric hindrance strategy. Instead, the1,1-dipolor synthon was first observed and successfully incorporated into [1+4] cycloaddition reactions for the synthesis of trans-2,3-benzofurans. The2,3-dihydrobenzofuran (DHB) ring-system constitutes not only the core skeletons of a variety of synthetic drugs and biologically active compounds, but also an important skeleton. We successfully developed the efficient method for the construction of trans-2,3-dihydrobenzofurans in high yields and stereoselectivity. Having achieved aforementioned goals, we speculate the reaction might be extended to other1,1-dipolar synthons. Then the steric hinderance strategy-altered [1+4] cycloaddition reactions was successful extended to sulfur ylides for the construction of trans.s-2,3-dihydrofurans and restrained to the kinetic favored acridine derivatives. The method allowed the synthesis of a highly substituted trans-2,3-dihydrobenzofuran skeleton with high yield and excellent chemo-and stereoselectivity. The31P NMR spectroscopy and control experiments indicated that the high diastereoselectivity was controled by the kinetic process rather than thermodynamic equilibrium.
     2. Based upon the aforementioned investigation, we developed the concept of tunable phosphine-mediated domino reaction.β,γ-unsaturated a-keto esters and MBH carbonates was selected as the starting material. In the presence of phosphine, the MBH carbonates can be selectively used as C1synthon, C2synthon and1,3-dianion C3synthon for the construction of2,3-dihydrofurans, pyrans, benzenes, respectively via tuning substrates, reaction process and reactive models. In terms of the challenges associated with cross-coupling oxidative arylation, we developed a novel domino benzannulation reaction strategy for the construction of multi-aryls in moderate to high yields in chapter4. In these reactions, MBH carbonate firstly served as1,3-dianion C3synthon. Diverse aromatic motifs (including Heck-like products) and functional groups can be assembled in multi-aryls molecules in a metal-free manner, which increases the possibility for the structural modulation. This domino benzannulation reaction strategy is complementary to the traditional cross-coupling methods. Combination of these two methods could provide powerful platform in generating multi-aryl complexity, which is especially true for the construction of unsymmetric multi-aryl skeletons. Moreover, this reaction can be used for the synthesis of biologically active molecular arcaine analogues, which acts as inhibitors of [3H]MK-801binding. In chapter5, we carefully investigated and illustrated the mechanism of the phosophine-mediated benzannulation. We have developed a novel strategy to control the product distribution between2,3-dihydrofurans and biaryls from the same starting materials by tuning the cat-or stoichiometric process. By controlling the loading of PR3, Morita-Baylis-Hillman carbonates can be selectively used as C1or C3synthon respectively. DFT calculation and control experiment indicated that the equilibration resulted in the excellent diastereoselectivity of2,3-dihydrofurans. In chapter6, A novel method was developed for the construction of functionalized (2H)-Pyrans and2-oxabicyclo[2.2.2]oct-5-enes via tuning the catalytic active model. These two molecules were core skeleton of widespread compounds. Especially, the later was core skeleton of anticancer active molecules. In this domino process, the catalysts phosphine and secondary amine worked in a sequential manner. Phosphine initiated this domino process via a [4+1] annulation to give2,3-dihydrofurans, which was followed by secondary amine catalyzed rearrangement process. The mechanism of the novel rearrangement process from2,3-dihydrofurans to (2H)-pyran was investigated by DFT calculations and control experiments. Moreover, this is the first time for the MBH carbonates to be served as C2synthon in organic synthesis.
     3. The Nazarov reagent and allenoates were similar with β,γ-unsaturated a-keto esters and MBH carbonates in regard to skeletons and reactive manner, respectively. We firstly investigated the reaction between Nazarov reagents and allenoates and successfully synthesized a variety of conjugated2,3-dihydrofurans. Ethanol was essential to this reaction, which served as not only a solvent but also a proton transfer catalyst. DFT calculation indicated that the essential of alcohol was to catalyze the proton transfer. This work could open up new opportunities for mechanism studies concerning phosphine-mediated domino reaction.
     4. Rauhut-Currier reaction, which is also known as vinylogous Morita-Baylis-Hillman reactions has rarely been investigated due to the lower reactivity of starting materials and lack of selectivity in coupling reaction involving two different activated alkenes. We designed and synthesized a variety of bifunctional phosphine catalyst to incorporate acrolein into cross-rauhut-currier/Michael/Aldol condensation triple domino reaction for the construction of functionalized cyclohexenes. The results proved that the bifunctional phosphine catalysts were efficient to control the RC domino reaction. Asymmetric variant of this reaction was also preliminarily tested with the optically pure bifunctional catalyst. This investigation will shed light on the design of bifunctional catalyst and RC reaction investigation.
引文
[1]Basavaiah, A.; Jaganmohan, A,; Satyanarayana, T. Chem. Rev.2003,103,811.
    [2]For some selected reviews see:a) Lee, D.-H.; Kwon, K.-H.; Yi, C. S. Science 2011,333, 1613. (b) Basavaiah, D.; Reddy, B. S.; Badsara, S. S. Chem. Rev.2010,110,5447. (c) Zhou, J. Chem. Asian. J.2010,5,422.
    [3]For selected recent reviews see:(a)李楠,刘伟军,龚流柱.化学进展 2010,22, 1362-1379. (b) Grossmann, A.; Enders, D. Angew. Chem. Int. Ed.2012,57,314-325. (c) Pellissier, H. Adv. Synth. Catal.2012,354,111.
    [4]Methot, J. L.; Roush, W. R. Adv. Synth. Catal.2004,346,1035.
    [5]For the reviews about phosphine-mediated domino reactions see:(a) Lu, X.; Zhang, C.; Xu, Z. Acc. Chem. Res.2001,34,535. (b) Lu, X.; Du, Y.; Lu, C. Pure. Appl. Chem.2005,77,1985. (c) Nair, V.; Menon, R. S.; Sreekanth, A. R.; Abhilash, N.; Biji, A. T. Acc. Chem. Res.2006,39, 520. (d) Ye, L.W.; Zhou, J.; Tang, Y. Chem. Soc. Rev.2008,37,1140. (e) Cowen, B. J.; Miller, S. J. Chem. Soc. Rev.2009,35,3102. (f) Marinetti, A.; Voituriez, A. Synlett 2010,174. (g) Zhao, Q.-Y.; Lian, Z.; Wei, Y.; Shi, M. Chem. Commun.2012,48,1724. (h) Moyano, A. Rios, R. Chem. Rev.2011,111,4703. (i) Wang, S. X.; Han, X.; Zhong, F.; Wang, Y.; Lu, Y. Synlett, 2011,2766.
    [6]Stewart, I. C.; Bergman, R. G.; Toste, F. D. J. Am. Chem. Soc.2003,125,8696 and the references cited therein.
    [7]For the selected reviews see:Declerck, V.; Martinez, J.; Lamaty. F. Chem. Rev.2009,109,1.
    [8]Aroyan, C. E.; Dermenci, A.; Miller, S. J. Tetrahedron 2009,65,4069.
    [9]Zhao, L.; Wen, M.;Wang, Z.-X. Eur. J. Org. Chem.2012,3587.
    [10]For reviews see:(a) Kwong, C. K.-W.; Fu, M. Y; Lam, C. S.-L.; Toy, P. H. Synthesis 2008, 2307. Selected examples (b) Smith, W. S.; Fu, G. C. J. Am. Chem, Soc.2009,131,14231. (c) Sun, J. W.; Fu, G. C. J. Am. Chem. Soc.2010,132,4568. (d) Li, E. Xie, P.; Yang, L.; Liang, L.; Huang, Y. Chem. Asian. J.2013,8,603.
    [11]For some selected recent examples see:(a) Meng, L.-G.; Cai, P.; Guo, Q.; Xue, S. J. Org. Chem.,2008,73,8491. (b) Gabillet, S.; Lecercle, D.; Loreau, O.; Carboni, M.; Dezard, S.; Gomis, J.-M.; Taran, F. Org. Lett.,2007,9,3925. (c) Sriramurthy, V.; Barcan, G. A.; Kwon, O. J. Am. Chem. Soc.,2007,129,12928. (d) Sriramurthy, V.; Kwon, O. Org. Lett.,2010,12, 1084. (e) Liu, H.; Zhang, Q.; Wang, L.; Tong, X. Chem. Commun.,2010,46,312. (0 Waldmann, H.; Khedkar, V; Duckert, H.; Schurmann, M.; Oppel. I. M.; Kumar, K. Angew. Chem., Int. Ed.,2008,47,6869.
    [12]Morita, K.; Suzuki, Z.; Hirose, H. Bull. Chem. Soc. Jpn.1968,41,2815.
    [13]Du, Y.; Lu, X.; Zhang, C. Angew. Chem.2003,115,1065-1067; Angew. Chem. Int. Ed.2003, 42,1035.
    [14]Du, Y.; Feng, J.; Lu, X. Org. Lett.2005,7,1987.
    [15]Feng, J.; Lu, X.; Kong, A. Tetrahedron 2007,63,6035.
    [16]Zheng, S.; Lu, X. Org. Lett.2009,11,3978.
    [17]Deng, H.-P.; Wei, Y.; Shi, M. Org. Lett.2011,13,3348.
    [18]Zhou, R.; Wang, J.; Song, H.; He, Z. Org. Lett.2011,13,580.
    [19]Zheng, S.; Lu, X. Org. Lett.2008,10,4481.
    [20]Ye, L.-W.; Sun, X.-L.; Wang, Q.-G.; Tang, Y. Angew. Chem.2007,119,6055; Angew. Chem. Int. Ed.2007,46,5951.
    [21]Ye, L.-W.; Han, X.; Sun, X.-L.; Tang, Y. Tetrahedron 2008,64,1487.
    [22]Han, X.; Ye, L.-W.; Sun, X.-L.; Tang, Y. J. Org. Chem.2009,74,3394.
    [23]Wang, Q.-G.; Zhu, S.-F.; Ye, L.-W.; Zhou, C.-Y.; Sun, X.-L.; Tang, Y.; Zhou, Q.-L. Adv. Syn. Catal.2010,352,1914.
    [24]Tan, B.; Candeias, N. R.; Barbas Ⅲ, C. F. J. Am. Chem. Soc.2011,133,4672.
    [25]Zhong, F.; Han, X.; Wang, Y.; Lu., Y Angew. Chem.2011,123,7983-7987; Angew. Chem. Int. Ed.2011,50,7837.
    [26]Zhong, F.; Chen, G.-Y.; Han, X.; Yao, W.; Lu, Y. Org. Lett.2012,14,3764.
    [27]Wang, Y.; Liu, L.; Zhang, T.; Zhong, N.-J.; Wang, D.; Chen, Y.-J. J. Org. Chem.2012,77, 4143.
    [28]Deng, H.-P.; Wei, Y.; Shi, M. Adv. Syn. Catal.2012,354,783.
    [29]Hu, F.; Wei, Y.; Shi, M. Tetrahedron 2012,68,7911.
    [30]Cho, C.-W.; Kong, J.-R.; Krische, M. J. Org. Lett.2004,6,1337.
    [31]Cho, C.-W.; Krische, M. J. Angew. Chem.2004,116,6857; Angew. Chem. Int. Ed.2004,43, 6689.
    [32]For example:Jiang, Y.-Q.; Shi, Y.-L.; Shi, M. J. Am. Chem. Soc.2008,130,7202.
    [33]Zheng, S.; Lu, X. Tetrahedron Lett.2009,50,4532.
    [34]Zhou, R.; Wang, J.; Duan, C.; He, Z. Org. Lett.2012,14,6134.
    [35]Lee, C. G.; Lee, K. Y.; Kim, S. J.; Kim, J. N. Bull. Korean Chem. Soc.2007,28,7190.
    [36]Palmelund, A.; Myers, E. L.; Tai, L. R.; Tisserand, S.; Butts, C. P.; Aggarwal, V. K. Chem. Commun.2007,4128.
    [37]Zhou, R.; Zhang, C.; Song, H.; He, Z. Org. Lett.2010,12,976.
    [38]Xie, P.; Huang, Y.; Chen, R. Org. Lett.2010,12,3768.
    [39]Chen, Z.; Zhang, J.; Chem. Asian. J.2010, 5,1542.
    [40]Tian, J.; Zhou, R.; Song, H.; He, Z. J. Org. Chem.2011,76,2374.
    [41]Zhang, X.-N.; Deng, H.-P.; Huang, L.; Wei, Y.; Shi, M. Chem. Commun.,2012,48,8664.
    [42](a) Coy, E. D.; Jovanovic, L.; Sefkow, M. Org. Lett.2010,12,1976-1979. (b) Bertolini, F.; Pineschi, M. Org. Prep. Proced. Int.2009,41,385-418. (c) Sefkow, M. Synthesis 2003, 2595-2625.
    [43]Leticia, J.-G.; Sergio, G.-M.; Miriam, A.-C.; Manuel, M.-D.; Ignacio, R.-G. Chem.-Eur. J.2007. 13.557-568.
    [44]For selected examples see:(a) Meijs, G. F.; Beckwith, A. L. J. J. Am. Chem. Soc.1986,108, 5890. (b) Boisvert, G.; Giasson, R. Tetrahedron Lett.1992,33,6587. (c) Clive, D. L. J.; Etkin, N.; Joseph, T.; Lown, J. M. J. Org. Chem.1993,55,2442. (d) Rai, R.; Collum, D. B. Tetrahedron Lett.1994,35,6221. (e) Itoh, T.; Ohara, H.; Emoto, S. Tetrahedron Lett.1995,36, 3531. (f) Snider, B. B.; Han, L.; Xie, C. J. Org. Chem.1997,62,6978. (g) Terstiege, I.; Maleczka, R. E. J. Org. Chem.1999,64,342. (h) Vailard, S. E.; Postigo, A.; Rossi, R.A. J. Org. Chem.2002,67,8500. (i) Kurono, N.; Honda, E.; Komatsu, F.; Orito, K.; Tokuda, M. Tetrahedron 2004,60,1191. (j) Lin, H.; Schall, A.; Reiser, O. Synlett,2005,2603. (k) Park, D. Y.; Gowrisankar, S.; Kim, J. N. Bull. Korean Chem. Soc.2005,26,1440.
    [45](a) Kokubo, K.; Harada, K.; Mochizuki, E.; Oshima, T. Tetrahedron Lett.2010,51,955. (b) Engler, T. A.; Iyengar, R. J. Org. Chem.1998,63,1929. (c) Rupprecht, K. M.; Boger, J.; Koogsteen, K.; Nachbar, R. B.; Springer, J. P. J. Org. Chem.1991,56,6180.
    [46](a) Lomberget, T.; Baragona, F.; Fenet, B.; Barret, R. Org. Lett.2006,8,3919. (b) Kuethe, J. T.; Wong, A.; Journet, M.; Davies, I. W. J. Org. Chem.2005,70,3727. (c) Nair, V.; Rajesh, C.; Dhanya, R.; Rath, N. P. Org. Lett.2002,4,953. (d) Apers, S.; Paper, D.; Burgenneister, J.; Baranikova, S.; Dick, S. V.; Lemiere A.; Vlietinck, G.; Pieters, L. J. Nat. Prod.2002,65,718. (e) Benbow, J. W.; Katoch-Rouse, R. J. Org. Chem.2001,66,4965. (f) Engler, T. A.; Letavic, M. A.; Iyengar, R.; LaTessa, K. O.; Reddy, J. P. J. Org. Chem.1999,64,2391. (g) Engler, T. A.; Chai, W.; LaTessa, K. O. J. Org. Chem.1996,61,9297. (h) Engler, T. A.; Combrink, K. D.; Ray, G. E. J. Am. Chem. Soc.1988,110,7931.
    [47](a) Barlugenga, J.; Fananas, F. J.; Sanz, R.; Marcis, C. Chem.-Eur. J.2005.11.5397. (b) Kneisel, F. F.; Monguchi, Y.; Knapp, K. M.; Zipse, H.; Knochel, P. Tetrahedron Lett.2002,43, 4875. (c) Plotkin, M.; Chen, S.; Spoors, P. G. Tetrahedron Lett.2000,41,2269. (d) Nakao, J.; Inoue, R.; Shinokubo, H.; Oshima, K. J. Org. Chem.1997,62,1910.
    [48]For recent transation metal-catalyzed processes, see:(a) Rene, O.; Lapointe, D.; Fagnou, K. Org. Lett.2009, 11,4560. (b) Natori, Y.; Tsutsui, H.; Sato, N.; Nakamura, S.; Nambu, H.; Shiro, M.; Hsshimoto, S. J. Org. Chem.2009,74,4418. (c) zlosek-Pinaud, S M.; Diza, P.; Martinez, J.; Lamaty, F. Tetrahedron 2007,63,3340. (d) Pelly, S. C.; Govender, S.; Fernandes, M. A.; Schmalz, H.-G.; Koning, C. B. J. Org. Chem.2007,72,2857. (e) Grant, V. H.; Liu, B.; Tetrahedron Lett.2005,46,1237. (f) Pan, C.; Ma, Z.; Yu, J.; Zhang, Z.; Hui, A.; Wang, Z. Synlett,2005,1922. (g) Zhang, H.; Ferreira, E. M.; Stoltz, B. M. Angew. Chem. Int. Ed.2004, 43,6144. (h) Kurosawa, W.; Kobayashi, H.; Kan, T.; Fukuyama, T. Tetrahedron 2004,60, 9615. (i) Trost, B. M.; Thiel, O. R.; Tsui, H.-C. J. Am. Chem. Soc.2003,125,13155. (j) Cheung, W.-H.; Zheng, S.-L.; Yu, W.-Y.; Zhou, G.-C.; Che, C.-M. Org. Lett.2003,5,2535. (k) Zheng, S.-L.; Yu, W.-Y.; Xu, M.-X.; Che, C.-M. Tetrahedron Lett.2003,44,1445. (1) Kurosawa, W.; Kan, T.; Fukuyama, T. Synlett,2003,1028. (m) Saito, H.; Oishi, H.; Kitagaki, S.; Nakamura, S.; Anada, M.; Hashimoto, S. Org. Lett.2002,4,3887. (n) Kuwabe, S.-I.; Torraca, K. E.; Buchwald, S. L. J. Am. Chem. Soc.2001,123,12202. (o) Davies, H. M. L. Grazini, M. V. A.; Aouad, E. Org. Lett.2001,3,1475.
    [49]Such as synthesis via benzyne, intramolecular substitutions without metal-catalysts, miscellaneous methods, see selected examples:(a) Shen, Z.; Dong, V. M. Angew. Chem. Int. Ed.2009,48,784. (b) Beltran-Rodil, S.; Pena, D.; Guitan, E. Synlett,2007,1308. (c) Fousteris, M.; Chevrin, C.; Le Bras, J.; Muzart, J. Green Chem.2006,8,522. (d) Liu, G.; Lu, X.; J. Am. Chem. Soc.2006,128,16504.
    [50](a) Meng, X.; Huang, Y.; Chen, R. Org. Lett.2009,11,137. (b) Meng, X.; Zhao, H.; Huang, Y.; Xie, P.; Ma, J.; Chen, R. Org. Lett.2009,11,991.
    [51](a) Coy, E. D.; Jovanovic, L.; Sefkow, M. Org. Lett.2010,12,1976. (b) Bertolini, F.; Pineschi, M.; Org. Prep. Proced. Int.2009,41,385. (c) Sefkow, M. Synthesis 2003,2595.
    [52]For the functions of mutil-aryls see:Akai, S.; Ikawa, T.; Takayanagi, S.; Morikawa, Y.; Mohri, S.; Tsubakiyama, M.; Egi, M.; Wada, Y.; Kita, Y Angew. Chem. Int. Ed.2008,47,7673 and the references cited therein.
    [53]Ball, L. T.; Lloyd-Jones, G. C.; Russell, C. A. Science 2012,337,1644.
    [54]For the recent reviews see:(a) Meijere, A.; Diederich, F.; Metal-Catalyzed Cross-Coupling Reactions (Ed.:A. de Meijere, F. Diederich), Wiley-VCH, Weinheim,2004. (b) McGlacken, G. P.; Bateman, L. M. Chem. Soc. Rev.2009,38,2447. (c) Daugulis, O.; Do, H. Q.; Shabashov, D.; Acc. Chem. Res.2009,42,1074. (d) Alberico, D.; Scott, M. E.; Lautens, M. Chem. Rev.2007, 707,174. (e) Li, B. J.; Yang, Z.-J. Shi, S. D. Synlett 2008,949. (f) Ackermann, L.; Vicente, R.; Kapdi, A. R. Angew. Chem. Int. Ed.2009,48,9792. (g) Littke, A. in Modern Arylation Methods (Ed.:L. Ackermann), Wiley-VCH, Weinheim,2009, pp.25-67. (h) Suzuki, A. Angew. Chem. Int. Ed.2011,50,6722. (i) Corbet, J.-P.; Mignani, G.; Chem. Rev.2006,106,2651
    [55]For reviews of HAS with aryl radicals see:(a) Bolton, R.; Williasms, G. H. Chem. Soc. Rev. 1986,15,261. (b) Bowman, W. R.; Storey, J. M. D. Chem. Soc. Rev.2007,36,1803. (c) Fossey, J.; Lefort, D.; Sorba, J. Free Radicals in Organic Chemistry; Wiley, Chichester,1995; Chap 14, pp 166-180. (d) Studer, A.; Bossart, M. in Radical in Organic Synthesis, Vol.2 (Eds.:P. Renaud, M. P. Sibi), Wiley-VCH:Weinheim,2001, chap.1.4, pp.62-80. The selected recent example see:(e) Yong, G.-P.; She, W.-L.; Zhang, Y.-M.; Li, Y.-Z. Chem. Comm.2011,47, 11766.
    [56](a) Alberico, D.; Scott, M. E.; Lautens, M. Chem. Rev.2007,107,174. (b) McGlacken, G. P.; Bateman, L. M. Chem. Soc. Rev.2009,38,2447. (c) Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010,110,1147. (d) Phipps, R. J.; Gaunt, M. J. Science 2009,323,1593.
    [57]See for examples:(a) Liu, W.; Cao, H.; Zhang, H.; Zhang, H.; Chung, K. H.; He, C.; Wang, H.; Kwong, F. Y.; Lei, A.J. Am. Chem. Soc.2010,132,16737. (b) Sun, C.-L.; Li, H.; Yu, D.-G.; Yu, M.; Zhou, X.; Lu, X. Y.; Huang, K.; Zheng, S. F.; Li, B.-J.; Shi, Z.-J. Nat. Chem.2010,2, 1044. (c) Shirakawa, E.; Itoh, K.; Higashino, T.; Hayashi, T. J. Am. Chem. Soc.2010,132, 15537. (d) Studer, A.; Curran, D. P. Angew. Chem.2011,123,5122. Angew. Chem., Int. Ed. 2011,50,5018. (e) Shirakawa, E.; Hayashi, Y.; Itoh, K.; Watabe, R.; Uchiyama, N.; Konagaya, W.; Masui, S.; Hayashi, T. Angew. Chem.2012,124,222; Angew. Chem. Int. Ed.2012,51,218. (f) Yanagisawa, S.; Itami, K. ChemCatChem.2011,3,827.
    [58]For the reviews see:(a) Saito, S.; Yamamoto, Y. Chem. Rev.2000,100,2901. (b) Dotz, K. H.; Tomuschat, P. Chem. Soc. Rev.1999,28,187. For some selected recent examples see:(c) Langer, P.; Bose, G. Angew. Chem.2003,115,4165;Angew. Chem. Int. Ed.2003, 42,4033. (d) Xi, Z.; Sato, K.; Gao, Y.; Lu, J.; Takahashi, T. J. Am. Chem. Soc.2003,125,9568. (e) Takahashi, T.; Ishikawa, M.; Huo, S. J. Am. Chem. Soc.2002,124,388. (f) Bi, X.; Dong, D.; Liu, Q.; Pan, W.; Zhao, L.; Li, B. J. Am. Chem. Soc.2005,127,4578. (g) Zhou, H.; Xing, Y.; Yao, J.; Chen, J. Org. Lett.2010,12,3674. (h) Narender, T.; Sarkar, S.; Rajendar, K.; Tiwari, S. Org. Lett.2011,13,6140. (i) Zhou, Q.-F.; Yang, F.; Guo, Q.-X.; Xue, S. Synlett.2007,2073. (j) Tejedor, D.; Lopez-Tosco, S.; Gonzalez-Platas, J.; Garcia-Tellado, F. Chem. Eur. J.2011,17, 9571. (k) Tejedor, D.; Mendez-Abt, G.; Cotos, L.; Ramirez, M. A.; Garcia-Tellado, F. Chem. Eur. J.2011,77,3318. (1) Zhou, H.; Xing, Y.; Yao, J.; Lu, Y. J. Org. Chem.2011,76,4582. (m) Dohi, T.; Washimi, N.; Kamitanaka, T.; Fukushima, K.; Kita, Y. Angew. Chem.2011,123, 6266; Angew. Chem. Int. Ed.2011,50,6142.
    [59]For the recent selective examples about tunable domino reaction see:(a) Luna, A. P.; Bonin, M.; Micouin, L.; Husson, H. J. Am. Chem. Soc.2002,124,12098. (b) Doyle, M. P.; Yan, M.; Hu, W.; Gronenberg, L. S. J. Am. Chem. Soc.2003,125,4692. (c) Ma, S.; Zhang, J. J. Am. Chem. Soc.2003,125,12386-. d) Ma, S.; Lu, L.; Zhang, J. J. Am. Chem. Soc.2004,126,9645. (e) Tran, Y. S. Kwon, O. J. Am. Chem. Soc.2007,129,12632. (f) Zhou, J.-L.; Liang, Y.; Deng, C.; Zhou, H.; Wang, Z.; Sun, X.-L.; Zheng, J.-C.; Yu, Z.-X.; Tang, Y. Angew. Chem.2011,123, 8020; Angew. Chem. Int. Ed.2011, 50,7874. (g) Yoshida, K.; Furuta, T.; Kawabata, T. Angew. Chem. Int. Ed.2011,50,4888. (h) Barjau, J.; Schnakenburg, G.; Waldvogel, S. R. Angew. Chem.2011,123,1451. Angew. Chem. Int. Ed.2011,50,14159. (i) Ma, G-N.; Jiang, J.-J.; Shi, M.; Wei, Y Chem. Commun.2009,5496. and the references cited therein.
    [60]See for selected examples:(a) Loebach, J. L.; Bennett, D. M.; Danheiser, R. L. J. Am. Chem Soc.1998,120,9690. (b) Zheng, J.-C.; Zhu, C.-Y.; Sun, X.-L.; Tang, Y.; Dai, L.-X. J. Org. Chem.2008,73,6909. (c) Zhou, R.; Wang, J.; Song, H.; He, Z. Org. Lett.2011,13,580-583.
    [61]For the selected reviews see:(a) Beaudry, C. M.; Malerich, J. P.; Trauner, D. Chem. Rev.2005, 105,4757. (b) Hsung, R. P.; Kurdyumov, A. V.; Sydorenko, N. Eur. J. Org. Chem,2005,23. (c) Tang, Y.; Oppenheimer, J.; Song, Z.; You, L.; Zhang, X.; Hsung, R. P. Tetrahedron 2006,62, 10785.for recent selected examples:(d) Jung, E. J.; Lee, Y. R.; Lee, H.-J. Bull, Korean Chem. Soc,2009,30,2833-2836 and the references therein, (e) Hu, J.; Dong, W.; Wu, X.-Y.; Tong, X. Org. Lett.2012,14,5530-5533.
    [62](a) Duckert, H.; Khedkar, V.; waldmann, H.; Kumar, K. Chem, Eur. J.2011,17,5130. (b) Lee, Y. R.; Kim, D. H.; Shim, J.-J.; Park, J. H.; Cha, J. S.; Lee, C.-S. Bull, Korean Chem. Soc,2002, 23,998. (c) Magiatis, P.; Melliou, E.; Skaltsounis, A.-L.; Mitaku, S.; Leonce, S.; Renard, P.; Pierre, A.; Atassi, G. J. Nat. Prod.,1998,61,982.
    [63]For the selected examples see:(a) Malerich, J. P.; Maimone, T. J.; Elliott, G. I.; Trauner, D. J. Am. Chem. Soc,2005,127,6276. (b) Li, C.; Johnson, R. P.; Porco, J. A. Jr. J. Am. Chem. Soc, 2003,125,5095.
    [64](a) Lee, J. C.; Strobel, G. A.; Lobkovsky, E.; Clardy, J. J. Org. Chem,1996,61,3232. (b) Mehta, G.; Pan, S. C. Org. Lett,2004,6,3985.
    [65](a) Hepworth, J. D. In Comprehensive Heterocyclic Chemistry; A. R. Katritzky, C. W. Rees, A. J. Boulton, A. McKillop, Eds. Pergamon:Oxford, U. K.,1984, Vol.3, p 737. (b) Zhu, Y.; Ganapathy, S.; Liu, R. S. H. J. Org. Chem,1992,57,1110. (c) Menz, H.; Kirsch, S. F. Org. Lett. 2006,3,4795.
    [66](a) Li, C.; Lobkovsky, E.; Porco, J. A. J. Am. Chem. Soc,2000,122,10484. (b) Shoji, M.; Yamaguchi, J.; Kakeya, H.; Osada, H.; Hayashi, Y. Angew. Chem.2002,114,3324. Angew. Chem. Int. Ed.2002,41,3192. (c) Malerich, J. P.; Trauner, D. J. Am. Chem. Soc,2003,125, 9554. (d) Malerich, J. P.; Maimone, T. J.; Elliott, G I.; Trauner, D.J. Am. Chem. Soc,2005,127, 6276. (e) Tambar, U. K.; Kano, T.; Zepernick, J. R; Stoltz, B. M. Tetrahedron 2007,48,345-.
    [67]For selected examples see:(a) Cole, K. P.; Hsung, R. P. Chem. Comun.2005,5784. (b) Kurdyumov, A. V.; Lin, N.; Hsung, R. P.; Gullickson, G. C.; Cole, K. P.; Sydorenko, N.; Swidorski, J. J. Org. Lett.2006,8,191. (c) Hubert, C.; Moreau, J.; Batany, J.; Duboc, A.; Hurvois, J.-P.; Renaud, J.-L. Adv. Synth. Catal.2008,350,40. (d) Pena, J.; Moro, R. F.; Basabe, P.; Marcos, I. S.; Diez, D. RSC Adv.,2012,2,8041.
    [68]For selected recent reviews see:(a) Du, Z.; Shao, Z. Chem. Soc. Rev.2013,42,1337. (b) Wende, R. C.; Schreiner, P. R. Green Chem.2012,14,1821. (c) Loh, C. C. J.; Enders, D.; Chem. Eur. J.2012,18,10212. (d) Albrecht, h.; Jiang, H.; Jorgensen, K. A. Angew. Chem. 2011,123,8642; Angew. Chem. Int. Ed.2011,50,8492. (e) Zhou, J. Chem. Asian. J.2010,5, 422 for some selected recent examples see:(f) Han, Z.-Y.; Chen, D.-F.; Wang, Y.-Y.; Guo, R.; Wang, P.-S.; Gong, L.-Z. J. Am. Chem. Soc,2012,134,6532. (g) Wu, H.; He, Y.-P.; Gong, L.-Z. Adv. Synth. Catal.2012,354,975. (h) Chen, Q.-A.; Chen, M.-W.; Yu, C.-B.; Shi, L.; Wang, D.-S.; Yang, Y.; Zhou, Y.-G J. Am. Chem. Soc,2011,133,16432. (i) Chen, Q.-A.; Wang, D.-S.; Zhou, Y.-G.; Duan, Y.; Fan, H.-J.; Yang, Y.; Zhang, Z. J. Am. Chem. Soc,2011,133,6132. (j) Cai, Q.; Zhao, Z.-A.; You, S.-L. Angew. Chem.2009,121,7564; Angew. Chem. Int. Ed.2009, 48,7428. (k) Lathrop, S. P.; Rovis, T.J.Am. Chem. Soc,2009,131,13628. (1) Jiang, H.; Elsner, P.; Jensen, K. L.; Falcicchio, A.; Marcos, V.; Jorgensen, K. A. Angew. Chem.2009,121,6976; Angew. Chem. Int. Ed.2009,48,6844. (m) Han, Z.-Y.; Xiao, H.; Chen, X.-H.; Gong, L.-Z. J. Am. Chem. Soc,2009,131,9182. (n) Terade, M.; Toda, Y. J. Am. Chem. Soc,2009,131,6354. (o) Belot, S.; Vogt, K. A.; Besnard, C.; Krause, N.; Alexakis, A. Angew. Chem.2009,121, 9085; Angew. Chem. Int. Ed.2009,48,8923. (p) Zhou, J.; List, B. J. Am. Chem. Soc,2007,129, 7498. (q) Huang, Y.; Walji, A. M.; Larsen, C. H.; MacMillan, D. W. C. J. Am. Chem. Soc,2005, 127,15051. (r) Sorimachi, K.; Terada, M. J. Am. Chem. Soc,2008,130,14452-.
    [69]Fan, Y. C.; Kwon, O. Org. Lett,2012,14,3264.
    [70](a) Lipshutz, B. H. Chem. Rev.1986,86,795. (b) Fraga, B. M. Nat. Prod. Rep.1992,9,217. (c) Michael, J. P. Nat. Prod. Rep.2002,17,603. (d) Koert, U.; Sein, M.; Wagner, H. Chem. Eur. J. 1997,3,1170; e) Perron, F.; Albizati, K. F. Chem. Rev.1989,89,1617.
    [71]For selected recent examples for the construction of 2,3-digydrofurans see:(a) Zheng, J.-C.; Zhu, Y.-C.; Sun, X.-L.; Tang, Y.; Dai, L.-X. J. Org. Chem.2008,73,6909. (b) Chen, Z.; Zhang, J. Chem. Asian J.2010,5,1542. (c) Liu, C.-R.; Zhu, B.-H.; Zheng, J.-C.; Sun, X.-L.; Xie, Z.; Tang, Y. Chem. Commun.2011,47,1342. (d) Calter, M. A.; Phillips, R. M.; Flaschenriem, C. J. Am. Chem. Soc.2005,127,14566. (e) Calter, M. A.; Zhu, C. Org. Lett.2002,4,205. (f) Zhang, Y; Raines, A. J.; Flowers, R. A. Org. Lett.2003,5,2363. (g) Parra, A.; Uria, U.; Besselievre, F.; Merino, E.; Rueping, M. Org. Lett.2010,12,5680. (h) Fan, L.-P.; Li, P.; Li, X.-S.; Xu, D.-C.; Ge, M.-M.; Zhu, W.-D.; Xie, J.-W. J. Org. Chem.2010,75.8716. (i) Wang, Q.-F.; Hou, H.; Hui, L.; Yan, C. G. J. Org. Chem.2009,74,7403. (j) Zhong, C.; Liao, T.; Tuguldur, O.; Shi, X. Org. Lett.2010,12,2064.
    [72]For general review on domino reaction, see for example:(a) Enders, D.; Grondal, C.; Hiittl, M. R. Angew. Chem., Int. Ed.2007,46,1570. (b) Tietze, L. F.; Brasche, G.; Gericke, K.; Domino Reactions in Organic Synthesis, Wiley-VCH, Weinheim,2006. (c) Guo, H.-C.; Ma, J.-A. Angew. Chem., Int. Ed.2006,45,354. (d) Tietze, L. F. Chem. Rev.1996,96,115. (e) Tietze, L. F.; Beifuss, U. Angew. Chem., Int. Ed.1993,32,131. For selected examples see:(f) Zu, L.; Wang, J.; Li, H.; Xie, H.; Jiang, W.; Wang, W. J. Am. Chem. Soc.2007,129,1036. (g) Baran, P. S.; Maimone, T. J.; Richter, J. M. Nature 2007,446,404.
    [73](a) Zhang, R.; Liang, Y.; Zhou, G.; Wang, K.; Dong, D. J. Org. Chem.2008,73,8089. (b) Chuang, C.-P.; Chen, K.-P.; Hsu, Y.-L.; Tsai, A.-I.; Liu, S.-T. Tetrahedron 2008,64,7511. (c) Barfoot, C. W.; Burns, A. R.; Edwards, M. G.; Kenworthy, M. N.; Ahmed, M.; Shanahan, S. E.; Taylor, R. J. K. Org. Lett.2008,10,353.
    [74](a) Burns, A. R.; McAllister, G D.; Shanahan, S. E.; Taylor, R. J. K. Angew. Chem., Int. Ed. 2010,49,5574. (b) Bugni, T. S.; Janso, J. E.; Williamson, R. T.; Feng, X.; Bernan, V. S.; Greenstein, M.; Carter, G T.; Maiese, W. M.; Ireland, C. M. J. Nat. Prod.2004,67,1396.
    [75]For the selected examples see: a) Wei, Q.; Gong, L.-Z. Org. Lett.2010.12.1008. (b) Cabrera, S.; Aleman, J.; Bolze, P.; Bertelsen, S.; Jorgensen, K. A. Angew. Chem., Int. Ed.2008,47, 121.(c) Zhu, M.-K.; Wei, Q.; Gong, L.-Z. Adv. Synth. Catal.2008,350,1281. (d) Caron, P.-Y.; Deslongchamps, P. Org. Lett.2010.12.508. (e) Hoashi, Y.; Yabuta, T.; Takemoto, Y. Tetrahedron Lett.2004,45,9185. (f) Lepage, O.; Deslongchamps, P. J. Org. Chem.2003,68, 2183. (g) Lepage, O.; Stone, C.; Deslongchamps, P. Org. Lett.2002.4.1091. (h) Mcgarraugh, P. G.; Jones, J. H.; Brenner-Moyer, S. E. J. Org. Chem.2011,76,6309. (i) Mcgarraugh, P. G..; Brenner, S. E. Org. Lett.2009.11.5654. (j) Hoashi, Y.; Yabuta, T.; Yuan, P.; Miyabe, H.; Takemoto, Y Tetrahedron.2006,62,365. (k) Pena, J.; Anton, A. B.; Moro, R. F.; Marcos, I. S.; Garrido, N. M.; Diez, D. Tetrahedron 2008,67,8331. (1) Yang, Z.; Shannon, D.; Truong, V.-L.; Deslongchamps, P. Org. Lett.2002.4.4693. (m) Lepage, O.; Stone, C.; Deslongchamps, P. Org. Lett.2002.4.1091. (n) Lepage, O.; Deslongchamps, P. J. Org. Chem.2003,68,2183. o) Rottger, S.; Waldmann, H. Eur. J. Org. Chem.2006,2093. (n) Trost, B. M.; Jiang, C. Org. Lett. 2003.5.1563. (o) Benetti, S.; Carli, S.; Risi, C. D.; Pollini, G. P.; Veronese, A. C.; Zanirato, V. Synlett.2008,2609.
    [76]a) The DFT calculations were carried out by using the Gaussian 03 program (Frisch, M. J.; et al. Gaussian03; revision E.01 ed.; Gaussian, Inc.: Wallingford, CT, 2004). Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Jr., T. V; Kudin, K. N.; Burant, J. C.; Millam, J.M.; Iyengar, S. S.; Tomasi, J.; Barone, V; Mennucci, B.; M. Cossi, G.; Scahnani; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; E.Knox, J.; Hratchian, H. P.; Cross, J. B.; Bakken, V; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y; Morokuma, K.; Voth, G, A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V.G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y; Nanayakkara, A.; Challacombe, M.; Gill, P M. W.; Johnson, B.; Chen, W; Wong, M. W.; Gonzalez, C.; J. A. Pople; Gaussian 03, Revision E. 01; Gaussian, Inc., Wallingford, CT, 2004.
    [77]For general review on domino reaction, see for example: (a) Enders, D.; Grondal, C.; Hiittl, M. R. Angew. Chem. Int. Ed. 2007, 46, 1570. (b) Tietze, L. F.; Brasche, G.; Gericke, K.; Domino Reactions in Organic Synthesis, Wiley-VCH, Weinheim, 2006. (c) Guo, H.-C.; Ma, J.-A. Angew. Chem. Int. Ed. 2006, 45, 354. (d) Tietze, L. F. Chem. Rev. 1996, 96,115. (e) Tietze, L. A; Beifuss, U. Angew. Chem. Int. Ed. 1993, 32, 131.
    [78]Zhou, J.; List, B. J. Am. Chem. Soc. 2007,129, 7498.
    [79]Evans, C. A.; Miller, S. J. J. Am. Chem. Soc. 2003, 125, 12394.
    [80]Enders, D.; Huttl, M. R. M.; Grondal, C.; Raabe, G. Nature 2006, 441, 861.
    [81]For selected examples see: a) Zu, L.; Wang, J.; Li, H.; Me, H.; Jiang, W.; Wang, W. J. Am. Chem. Soc. 2007, 129, 1036. (b) Baran, P S.; Maimone, T. J.; Richter, J. M. Nature 2007, 446, 404.
    [82]Rauhut, M. M.; Currier, H. (American Cyanamid Co.), U. S. Patent 3,074,999,1963; Chem, Abstr. 1963, 58, 1124a.
    [83]For general review on RC reaction, see for example: (a) Aroyan, C. E.; Dermenci, A.; Miller, S. J. Tetrahedron 2009, 65, 4069. (b) Methot, J. L.; Roush. W. R. Adv. Synth. Catal. 2004, 346, 1035. (c) McClure, J. D. J. Org. Chem. 1970, 35, 3045.
    [84]Wang, L.-C.; Luis, A. L.; Agapiou, K.; Jang, H.-Y; Krische, M. J. J. Am. Chem. Soc. 2002, 124, 2402.
    [85]Frank, S. A.; Mergott, D. J.; Roush, W. R. J. Am. Chem. Soc. 2002,124, 2404.
    [86](a) Brown, P M.; Kappel, N.; Murphy, P. J. Tetrahedron Lett. 2002, 43, 8707. (b) Jellerichs, B. G.; Kong, J.- R. Krische, M. J. J. Am. Chem. Soc. 2003, 125, 7758. (c) Couturier, M.; M6nard, F.; Ragan, J. A.; Riou, M.; Dauphin, E.; Andresen, B. M.; Ghosh, A.; Dupont-Gaudet, K.; Girardin, M. Org. Lett. 2004, 6, 1857. (d) Luis, A. L.; Krische, M. J.; Synthesis 2004,2579. (e) Krafft, M. E.; Haxell, T. F. N. J. Am. Chem. Soc.2005,127,10168. (f) Thalji, R. K.; Roush, W. R. J. Am. Chem. Soc.2005,127,16778. (g) Krafft, M. E.; Seibert, K. A.; Haxell, T. F. N.; Hirosawa, C.; Chem. Commun.2005,5772. (h) Krafft, M. E.; Seibert, K. A. Synlett 2006,3334. i) Krafft, M. E.; Haxell, T. F. N.; Seibert, K. A.; Abboud, K. A. J. Am. Chem. Soc.2006,128,4174. (j) Krafft, M. E.; Wright, J. A. Chem. Commun.2006,2977. (k) Aroyan, C. E.; Miller, S. J. J. Am. Chem. Soc.2007,129,256. (1) Seidel, F.; Gladysz, J. A. Synlett 2007,986. (m) Brown, P. M.; Kappel, N.; Murphy, P. J.; Hursthouse, M. B. Tetrahedron 2007,63,1100. (n) Seidel, F. O.; Gladysz, J. A.; Adv. Syn. Catal.2008,350, 2443. (o) Marques-Lopez, E.; Herrera, R. P.; Marks, T. Jacobs, W. C. Daniel Konning, R. M. de Figueiredo, Christmann, M. Org. Lett.2009,11,4116. (p) Aroyan, C. E.; Dermenci, A.; Miller, S. J. J. Org. Chem.2010,75,5784. (q) Qiao, Y.; Kumar, S.; Malachowski, W. P. Tetrahedron Lett.2010,51,2636.
    [87](a) Mergott, D. J.; Frank, S. A.; Roush, W. R. Org. Lett.2002,4,3157. (b) Methot, J. L. Roush, W. R. Org. Lett.2003,5,4223. (c) Winbush, S. M.; Mergott, D. J.; Roush, W. R. J. Org. Chem.2008,73,1818. (d) Mergott, D. J.; Frank, S. A.; Roush, W. R. Proc. Natl. Acad. Sci. USA 2004,101,11955. (e) Stark, L. M.; Pekari, K.; Sorensen, E. J. Proc. Natl. Acad. Sci. USA 2004,101,12064. (f) Methot, J. L.; Roush, W. R. Org. Lett.2003,5,4223. (g) Agapiou, K.; Krische, M. J. Org. Lett.2003,5,1737. (h) Webber, P.; Krische, M. J. J. Org. Chem. 2008,73,9379.
    [88](a) McDougal, N. T.; Schaus, S. E.; Angew. Chem.2006,118,3189; Angew. Chem. Int. Ed. 2006,45,3117. (b) Wang, J.; Xie, H.; Li, H.; Zu, L.; Wang, W. Angew. Chem.2008,120, 4245; Angew. Chem. Int. Ed.2008,47,4177. (c) Yao, W.; Wu, Y.; Wang, G.; Zhang, Y.; Ma, C. Angew. Chem.2009,121,9893; Angew. Chem. Int. Ed.2009,48,9713.
    [89]官家乐,高原,高鸿慈.中国医药学杂志,2001,21,443.
    [90](a) Rios, I. G.; Rosas-Hernandez, A.; Martin, E. Molecules 2011,16,970. (b) Fernandez-Perez, H.; Etayo, P.; Panossian, A.; Vidal-Ferran, A. Chem. Rev.,2011,111,2119. and the references theirin.
    [91]Zhu, G.; Chen, Z.; Jiang, Q.; Xiao, D.; Cao, P.; Zhang, X. J. Am. Chem. Soc.1997,119,3836.
    [92]For the selective examples see:(a) Ojima, I.; Clos, N.; Bastos, C. Tetrahedron 1989,45,6901. (b) Noyori, R.; Kitamura, M. In Modern Synthetic Methods; Scheffold, R., Ed.; Springer-Verlag:Berlin Heidelberg,1989; Vol.5, p 115. (c) Brunner, H. Synthesis 1988,645. (d) Enders, D.; Grondal, C.; Huttl, M. R. Angew. Chem., Int. Ed.2007,46,1570. (e) Lu, L.-Q,; Zhang, J.; Li, F.; Cheng, Y.; An, J.; Chen, J.-R.; Xiao, W.-J. Angew. Chem., Int. Ed. 2010,49,4495. (f) Enders, D.; Huttl, M. R. M.; Grondal, C.; Raabe, G. Nature 2006,441, 861. (g) Baran, P. S.; Maimone, T. J.; Richter, J. M. Nature 2007,446,404. (h) Filloux, C. M.; Lathrop, S. P.; Rovis, T. Proc. Natl. Acad. Sci. USA 2010,107,20666.
    [93](a) Shibasaki, M.; Yoshikawa, N.; Chem., Rev.2002,102,2209.
    [94]For the selective examples see:(a) Ojima, I.; Clos, N.; Bastos, C. Tetrahedron 1989,45,6901. (b) Noyori, R.; Kitamura, M. In Modern Synthetic Methods; Scheffold, R., Ed.; Springer-Verlag:Berlin Heidelberg,1989; Vol.5, p115. (c) Brunner, H. Synthesis 1988,645. (d) Enders, D.; Grondal, C.; Huttl, M. R. Angew. Chem., Int. Ed.2007,46,1570. (e) Lu, L.-Q.; Zhang, J.; Li, F.; Cheng, Y.; An, J.; Chen, J.-R.; Xiao, W.-J. Angew. Chem., Int. Ed. 2010,49,4495. (f) Enders, D.; Huttl, M. R. M.; Grondal, C.; Raabe, G Nature 2006,441, 861. (g) Baran, P. S.; Maimone, T. J.; Richter, J. M. Nature 2007,446,404. (h) Filloux, C. M.; Lathrop, S. P.; Rovis, T. Proc. Natl. Acad. Sci. USA 2010,707,20666.
    [95](a) Sawamura, M.; Ito, Y. Chem. Rev.1992,92,857. (b) Steinhagen, H.; Helmchen, G Angew. Chem., Int. Ed.1996,35,2339. (c) Beuken, E. K.; Feringa, B. L. Tetrahedron 1998,54,12985. (d) Rowlands, G J. Tetrahedron 2001,57,1865.
    [96]林国强,陈耀全,李月明,陈新滋《手性合成-不对称反应及其应用(第三版)》
    [97]Marcelli, T.; Maarseveen, H.; Hiemstra, H. Angew. Chem., Int. Ed.2006,45,7496.
    [98](a) Wei, Y; Shi, M. Acc. Chem. Res.2010,43,1005 and the references cited therein, (b) Matsui, K.; Takizawa, S.; Sasai, H.; J. Am. Chem. Soc.2005,127,3680. (c) Matsui, K.; Tanaka, K.; Horii, A.; Takizawa, S.; Sasai, H. Tetrahedron:Asymmetry 2006,17,578. (d) Takizawa, S.; Inoue, N.; Hirata, S.; Sasai, H. Angew. Chem. Int. Ed.2010,49,9725. (e) Buskens, P.; Klankermayer, J.; Leitner, W. J. Am. Chem. Soc.2005,127,16762.
    [99]Gammon, J. J.; Gessner, V. H.; Barker, G R.; Granander, J.; Whitwood, A. C.; Strohmann, C.; O'Brien, P.; Kelly, B. J. Am. Chem. Soc.2010,132,13922.
    [100]Muci, A. R.; Campos, K. R.; Evans, D. A. J. Am. Chem. Soc.1995,117,9075.
    [101]Lipkowitz, K. B.; D'Hue, C. A.; Sakamoto, T.; Stack. J. N. J. Am. Chem. Soc.2002,124, 14255.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700