用户名: 密码: 验证码:
文昌鱼(Branchiostoma belcheri)体内细菌清除机制及免疫致敏作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
文昌鱼属于脊索动物门,头索动物亚门,是与脊椎动物亲缘关系最接近的无脊椎动物,一直被认为是研究脊椎动物起源和进化的模式生物。近年来,人们开始在文昌鱼中探索免疫系统的起源和进化。本文通过细菌感染文昌鱼,研究了文昌鱼清除体内细菌的免疫机制,并通过荧光实时定量PCR技术对文昌鱼的补体关键基因表达模式以及是否存在免疫致敏作用作了研究。
     首先,通过用绿色荧光蛋白标记的大肠杆菌感染文昌鱼,将文昌鱼切成小段把体液涂抹于载玻片上,在荧光显微镜下观察体液中细菌,证明文昌鱼能有效清除入侵的异源微生物。这是在头索动物中关于体内细菌清除的首次报道。血细胞的吞噬作用被认为是无脊椎动物清除细菌的最重要途径。我们通过组织切片法在文昌鱼体内寻找包含大肠杆菌的细胞,至少在2 000条文昌鱼中都没有发现任何吞噬有大肠杆菌的细胞,表明文昌鱼既使具有自由循环的巨噬细胞,也不是其清除入侵大肠杆菌的主要因素。而体液可能是清除细菌的主要成分,为了确定文昌鱼体液中哪些成分参与了细菌清除作用,我们通过体外杀菌来分析。提取文昌鱼体液,把细菌加入其中,然后于不同时间取样涂布平板,进行菌落计数。发现体液对大肠杆菌具有较强的杀灭活性。通过特异性抗体抑制发现补体和溶菌酶是参与文昌鱼体液杀菌作用的重要体液因子。相比之下,补体较溶菌酶作用更强。为进一步确定哪些补体激活途径参与了文昌鱼体液的杀菌作用,通过分别抑制特定的补体途径,进而比较体液杀菌活性变化的方法,发现主要是通过替代途径激活参与细菌清除作用。Western blot结果显示大肠杆菌感染后,文昌鱼体液中C3和溶菌酶水平均有明显升高,进一步证明,补体和溶菌酶确实是参与文昌鱼体内细菌清除的主要因子。
     其次,用大肠杆菌和鳗弧菌持续感染文昌鱼,在感染后的不同时间段取材,分别提取去肠鱼和肠组织的RNA,运用荧光实时定量PCR技术研究补体系统关键基因的表达模式。研究发现文昌鱼对大肠杆菌和弧菌两种革兰氏阴性菌的反应性基本一致,补体基因的表达规律非常类似。两种细菌感染文昌鱼后,与正常对照组相比,Bf、C3及C6三基因都存在不同程度的上调。大肠杆菌感染后,肠中的表达在3 h就达到最高值,而去肠鱼中的表达在感染后的6 h达到峰值。鳗弧菌感染后,肠中的表达在6 h时上调最为显著,而去肠鱼中的表达在感染后的12 h达到最高。这表示这些基因在文昌鱼感染的急性阶段可能发挥重要作用。有趣的是,MASP在感染后表达降低,这可能是细菌逃避机体补体系统杀伤,维护自身的一种机制。Bf、C3及C6三基因在肠中的总体表达水平,均高于在去肠鱼中的表达,达到峰值的时间均比在去肠鱼中的提前。MASP在感染后,肠中表达的下调倍数也比在去肠鱼中的高。这说明文昌鱼的消化系统可能是参与免疫的重要的器官,在清除外来微生物的免疫应答中起着重要作用。
     最后,分别用大肠杆菌和鳗弧菌对文昌鱼进行二次感染或交叉感染,运用real time RT-PCR技术对补体四个基因的表达模式进行分析,以研究文昌鱼的免疫系统是否具有免疫致敏作用。发现用同一种细菌二次感染后补体基因Bf、C3和C6的表达上调均比首次感染后显著,达到峰值的时间都明显提前,而且表达水平能较长时间维持在一个较高的水平。同样,在两种细菌交叉感染实验中,二次感染后基因表达上调明显,但与同种细菌感染两次相比,基因的上调倍数还是略低。所有这些特点与脊椎动物的免疫致敏作用类似,证明文昌鱼免疫系统可能存在免疫致敏作用。
     总之,本实验表明缺乏自由循环的血细胞的文昌鱼能够有效清除入侵的大肠杆菌。补体和溶菌酶是参与体内细菌清除的主要因子,但补体的作用较溶菌酶更强。这是关于文昌鱼清除体内细菌机制及其相关因子的首次报道。通过荧光实时定量PCR技术证明文昌鱼存在免疫致敏作用,这在头索动物中亦属首次报道。
Amphioxus or lancelet, a cephalochordate, has long been regarded as the living invertebrate most closely related to the proximate invertebrate ancestor of vertebrates. Previously, amphioxus is widely used as the model organism for studying evolution and development. Recently, it has been used to explore the origin and evolution of immune system. This paper, deals with the bacterial clearance and immunological priming in amphioxus Branchiostoma belcheri.
     First, amphioxus was challenged with E.coli with transgenic green fluorescent protein (GFP) gene, and the numbers of E. coli in the humoral fluids were counted under a fluorescence microscope. Results indicated that amphioxus B. belcheri was able to efficiently clear the invading bacteria like E. coli from its humoral fluids. Phagocytosis by blood cells is regarded as an important way to remove bacteria in invertebrates. To find out the major elements responsible for the clearance of infected invaders, tissue sections were tested to search for the cells which may engulf E. coli in amphioxus. Not a single haemocyte-like cell has ever been seen among at least 2 000 samples examined, suggesting that free circulating macrophages not the main elements for the elimination of invading bacterium E. coli in amphioxus. Then the humoral fluids were tested for screening the factors attributable to the removal of invaders in amphioxus. The findings suggest that the humoral fluids can readily lyse the bacterium E. coli in vitro. The complement and lysozyme are both involved in the elimination in vivo of the invading bacterium in amphioxus, but the complement appears playing a stronger role than the lysozyme. Pre-incubation of amphioxus humoral fluids with the specific antibodies and inhibitor, results showed that the complement operating via the alternative pathway. Western blot showed that both C3αand lysozyme levels increase with the challenge with E. coli. This was further showed the complement and lysozyme were both involved in the elimination in vivo of the invading bacterium in amphioxus.
     Quantitative real-time PCR was employed to quantify the complement key gene expression in the gut and gut-free body of B. belcheri challenge with E.coli and V.anguillarum. Results showed that the patterns of the gene expression were similar after challenge with the both bacteria. Compared with the controls, Bf, C3 and C6 genes showed a similar up-regulation profile after infection. Their expression in the gut peaked at 3 h, while the expression in the gut-free body reached the highest levels at 6 h after E.coli challenge. Similarly, the expression of the genes in the gut maximized at 6 h, while their expression in the gut-free body reached maximum at 12 h after V.anguillarum challenge. The results indicated that the complement components play an important role in the acute phase of infection. In contrast, MASP expression decreased markedly after infection. This may be due to the bacterial counter-measure to avoid the activation of the complment. All these indicate that amphioxus digestive system rich in mucosa may be the major immune tissue responding to bacterial challenge and play an important role in the immune response.
     Finally, amphioxus was re-infected with E.coli and V.anguillarum in different ways, and quantitative real-time PCR was employed to study if there is immunological memory or priming in amphioxus Branchiostoma belcheri. Results indicated that the expression of Bf, C3 and C6 genes were significantly up-regulated and peaked earlier after secondary infection with the same bacteria. What’s more, the gene expression kept at high levels for a longer time compared with the primary infection. In contrast, the expression levels of the genes in the animals infected with the different bacterium were lower than those in the animals infected with the same bacterium. These properties appear bearing resemblance to the immunological priming in vertebrate, suggesting the presence of some immunological priming in amphioxus.
     In summary, this study demonstrates that the circulating haemocyte-free amphioxus is able to eliminate invading bacteria like E. coli efficiently, both the complement and lysozyme are the main factors acting in concert to eliminate the invaders in vivo. Also, amphioxus appears to have immunological primed ability, the first such data in the protochordates.
引文
Abbas AK, Lichtman AH. Innate immunity. Cellular and molecular immunology. 5th ed. Saunder: An Imprint of Elservier Science, 2003, 275~297
    Abi-Rached L, Gilles A, Shiina T, et al. Evidence of en bloc duplication in vertebrate genomes. Nature, 2002, 31(1): 100~105
    Adachi K, Hirata T, Nagai K, et al. Purification and characterization of prophenoloxidase from kuruma pramn Penaeus japonicus. Fishries science, 1999, 65(6): 919~925
    Aderson RS. Hemocyte-derived reactive oxygen intermediate production in four bivalve mollusks. Dev Comp Immunol, 1994, 18: 89~96
    Agrason G. Lectins as defence molecules in vertebrates and invertebrates. Fish Shellfish Immunology, 1996, 6: 277~289
    Ahmed R, Gray D. Immunological memory and protective immunity: understanding their relation. Science, 1996, 272(5258): 54~60
    Akira S, Takeda K. Toll-like receptor signaling. Nat Rev Immunol, 2004, 4(7): 499~511
    Al-Sharif WZ, Sunyer JQ, Lambris JD, et al. Sea urchin coelomocytes specifically express a homologue of the complement component C3. The Journal of Immunology, 1997, 160: 2983~2997
    Andersson K, Stainer H. Strucutre and properties of protein P4 the major bacteria-inducible protein in pupae of Hyalophora cecropia. Insect Biochem, 1987, 17: 133~140
    Arala-Chaves M, Sequeira T. Is there any kind of adaptive immunity in invertebrates?. Aquaculture, 2000, 191(6): 247~258
    Armstrong PB, Quiley JP. Anα-macroglobulin-like activity in the blood of cheliverate and mandibulate arthropods. J Exp Zool, 1985, 236: 1~9
    Azumi K, De Santis R, De Tomaso A, et al. Genomic analysis of immunity in aurochordate and the emergence of the vertebrate immune system: "Waiting for Godot". Immunogenetics, 2003, 55: 570~581
    Basu S, Mandal C, Allen AK. Chemical-modification studies of a unique sialic acid-binding lectin from the snail Achatina fulica. Involvement of tryptophan and histidine residues in biological activity. J Biochem, 1988, 254(1): 195~202
    Bayne CJ, Moore MN. Hemolymph functions in Mytilus californianus: the cytochemistry ofhemocytes and their response to foreign implants and hemolymph factors in phagocytosis. J Invertebr Pathol, 1979, 34: 1~20
    Bessin Y, Saint N, Marri L, et al. Antibacterial activity and pore-forming properties of ceratotoxins: a mechanism of action based on the barrel stave model. Biochim Biophys Acta, 2004, 1667(2): 148~156
    Bettencourt R, Lanz-Mendoza H, Lindquist KR, et al. Cell adhesion properties of hemolin, an insect immune protein in the Ig superfamily. Eur J Biochem, 1997, 25: 630~637
    Borges JC, Jensch-Junior BE, Garrido PA, et al. Phagocytic amoebocyte subpopulations in the perivisceral coelom of the sea urchin Lytechinus variegatus (Lamarck, 1816). J Exp Zoolog A Comp Exp Biol, 2005, 303(3): 241~248
    Boshra H, Li J, Sunyer JO. Recent advances on the complement system in teleost fish. Fish Shellfish Immunol, 2006, 20: 239~262
    Bradford MM. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976, 72: 248~254
    Byers VS, Sercarz EE. X-Y-Z scheme of immunocyte maturation. V. Paralysis of memory cells. J Exp Med, 1968, 128(4): 715~728
    Cheng RV, Cail A. A electron microscope study of the fate of bacteria phagocytized granulocytes of Crassostrea virginica. In: Cooper EL ed. Contemporary Topics in Immunology, Vol.4. New York, London: Plenum. 25~35
    Cheng RV, Cali A. An electron microscope study of the fate of bacteria phagocytized granulocytes of Crassostrea virginica. In: Cooper E.L. ed. Contemporary Topics in immunology. Vol.4. New York, London:Plenum, 1974. 25~35
    Cheng TC, Butler MS. Experimentally induced elevations in acid phosphatase activity in hemolymph of Biomphalaria glabrata (Mollusca). J Invertbr Pathol, 1979, 34: 119~124
    Cheng TC, Rodick GE, Foley DA. Release of lysozyme from hemolymth cell of Mercenaria mericenaria during phagocytosis. J Invertbr Pathol, 1975, 25: 261~265
    Cheng TC. Aminopeptidase and lysozyme activity levels and serum protein concentrations in Biomphalaria glabrata (Mollusca) challenged with bacteria. J Invertbr Pathol, 1978, 32: 297~302
    Cheng TC. Beta-glucuronidase in serum and hemolymph cells of Mercenaria mericenariacells andCrassostrea virginica (Mollusca Pelecypoda). J Invertbr Pathol, 1976, 27: 125~128
    Clark KD, Pech LL, Strand MR. Isolation and identification of a plasmocyte-spreading peotide from the hemolymph of the lepidopteran insect Pseudoplusia includens. J Biol Chem, 1997, 272: 23440~23447
    Cooper EL, Kvellb K, Engelmann P, et al. Still waiting for the toll?. Immunol Lett, 2006, 104(2): 18~28
    Cooper MD, Alder MN. The Evolution of Adaptive Immune Systems. Cell, 2006,124(2): 815~822
    Coteur G, Warnau M, Jangouxm, et al. Reactive oxygen species(ROS) production by amoebocytes of Asterias rubens ( Echinodermata). Fish Shellfish Immunol, 2002, 12(3): 187~200
    Cramer EB. Cell biology of phagocyte migration from the bone marrow, out of the bloodstream, and across organ epithelia. In: Gallin J I, Goldstein I M, Snyderman R, eds. Inflammation: basic principles and clinical correlates. New York, N.Y: Raven Press, Ltd.; 1992. 341~352
    Dahl MR, Thiel S, Willis AC, et al. Mannan-binging lectin associated serine protease 3 (MASP-3)-A new component of the lectin pathway of complement activation. Immunopharmacology, 2000, 49: 79~79
    DiGuiseppi J, Fridovich I. The toxicology of molecular oxygen. Crit Rev Toxicol, 1984, 12(4):315~42
    Dodds AW, Law SKA. The phylogeny and evolution of the thioester bond-containing proteins C3, C4 andα-macroglobulin. Immunological Reviews, 1998, 166: 15~26
    Du JC, Xie XJ, Chen HP, et al. Macrophage migration inhibitory factor (MIF) in Chinese amphioxus as a molecular marker of immune evolution during the transition of invertebrate/vertebrate. Dev Comp Immunol, 2004, 28: 961~971
    Du JC, Yu YH, Tu HB, et al. New insights on macrophage migration inhibitory factor: Based on molecular and functional analysis of its homologue of Chinese amphioxus. Mol Immunol, 2006, 43: 2083~2088
    Eliseikina MG, Magarlamov TY. Coelomocyte morphology in the holothurians Apostichopus japonicus (Aspidochirota: Stichopodi-dae) and Cucumaria japonica (Dendrochirota: Cucumariidae). Russian Journal of Marine Biology, 2002, 28 (3): 197~202
    Ellison RT, Giehl TJ. Killing of gram-negative bacteria by lactoferrin and lysozyme. Clin Invest,1991, 88: 1080~1091
    Elsbach P, Weiss J. Oxygen-independent antimicrobial systems of phagocytes. In: Gallin J I, Goldstein I M, Snyderman R, eds. Inflammation: basic principles and clinical correlates. New York, N.Y: Raven Press, Ltd.; 1992. 603~636
    EndoY, Takahashi M, Nakao M, et al. Two lineages of mannose-binding lectin-associated serine protease (MASP) in vertebrates. The Journal of Immunology, 1998, 161: 4924~4930
    Enghild JJ, Thogersen IB, Salvesen D, et al.α-macroglobulin from Limunas polyphemus exhits proteinase inhibitory activity and participates in a hemolytic system. Biochemistry, 1990, 29: 10070~10080
    Faulhaber LM, Karp RD. A diphasic immune response against bacteria in the American cockroach. Immunology, 1992, 75(2): 378~381
    Finley JH. The Complete Writings of Thucydides: The Peloponnesian War. Modern Library. New York, 1951.
    Fisher WS, Dinuzzo AR. Agglutination of bacteria and erythrocytes by serum from six species of marine molluscs. J Invertebr Pathol, 1991, 57(3): 380~394
    Foley DA, Cheng TC. Interaction of mollusks and foreign substances: the morphology and behavior of hemolymph cells of the American oyster, Crassostrea virginica, in vitro. J Invertebr Pathol, 1972, 19: 383~394
    Frank SA. Immunology and Evolution of Infectious Disease, Princeton University Press, Princeton, NJ, 2002.
    Fujii N, Minetti T, Casa T, et al. Isolation, cDNA cloning and characterization of an 18 kDa hemagglutinin and amebocyte aggregation factor from Lymus polyphemus. J Biol Chem, 1992, 267: 22452~22459
    Fujimoto S , Toshimori-Tsuda T , Kishimoto K, et al. Protein purification, cDNA cloning and gene expression of lysozyme from erisilkworm, Samia cynthia ricini. Comp Biochem and Physio Part B, 2001, 128: 709~718
    Funayama N, Nakatsukasa M, Kuraku S, et al. Isolation of Ef silicatein and Ef lectin as molecular markers for sclerocytes and cells involved in innate immunity in the freshwater sponge Ephydatia fluviatilis. Zoolog Sci, 2005, 22(10): 1113~22
    Garate M, Cao Z, Bateman E, et al. Cloning and characterization of a novel mannose-bindingprotein of Acanthamoeba. J Biol Chem, 2004, 279(28): 29849~29856
    Giordano A, Tramice A, Andreotti G, et al. Enzymatic syntheses and selective hydrolysis of O-beta-D-galactopyranosides using a marine mollusc beta~galactosidase. Bioorg Med Chem Lett, 2005, 15(1): 139~43
    Gollasgalvan T, Hernandezlopez J, Vargasalbores F. Prophenoloxidase from brown shrimp (Panaeus californiensis) hemocytes. Comparative biochemisty and physiology biochemisty molecular biology, 1999,122(1): 77~82
    Gonazalez SF, Buonmann K, Nielsen ME. Complement expression in common carp(Cyprinus carpio L.)during infection with Ichthyophthirius multifiliis. Developmental and Comparative Immunology, 2007, 31: 576~586
    Goto R, Muramoto K, Yamazaki M, et al. Purification and characterization of an agglutinin of the soft coral Sinularia species. Developmental and Comparative Immunology, 1992, 16: 9~17
    Gruden-Movsesijan A, Petrovic M, Sofronic-Milosavljevic L. Interaction of mannan-binding lectin with Trichinella spiralis glycoproteins, a possible innate immune mechanism. Parasite Immunol, 2003, 25(11-12): 545~552
    Hartland BJ, Timoney JF. In vivo clearance of enteric bactetia from the hemalymph of the hard clam and the american oyster. Applied and Environmental Microbiology, 1979, 37: 517~520
    Hatakeyama T, Kohzaki H, Nagatomo H, et al. Purification and characterization of four super dependent lectines from the marine invertebrate, Cucumariaechinata. J Biochim Todyo, 1994, 116(1): 209~214
    Haug T, Kjuul AK, Styrvold OB, et al. Antibacterial activity in Strongylocentrotus droebachiensis(Echinoidea), Cucumaria frondosa (Holothuroidea), and Asterias rubens (Asteroidea). J Invertebr Pathol, 2002, 81(2): 94~102
    He Y, Tang B, Zhang S, et al. Molecular and immunochemical demonstration of a novel member of Bf/C2 homolog in amphioxus Branchiostoma belcheri: Implications for involvement of hepatic caecum in acute phase response. Fish and Shelfish Immunology, 2008, doi: 10.1016/j.fsi.2008.03.004.
    Hermes-Lima M, Storey JM, Storey KB. Antioxidant defenses and metabolic depression. The hypothesis of preparation for oxidative stress in land snails. Comp Biochem Physiol BBiochem Mol Biol, 1998, 120(3): 437~448
    Hoek RM, Smit AB, Frings H, et al. A new Ig-superfamily member, molluscan defence molecule (MDM) from Lynnea stagnalis, is down-regulated during parasitosis. Eur J Immunol, 1996, 26: 939~944
    Hoffmann JA, Reichhart JM. Drosophila innate immunity: an evolutionary perspective. Nat Immunol, 2002, 3(2): 121~126
    Hoffmann JA. The immune response of Drosophila. Nature, 2003, 426(6962): 33~38
    Huang CC, Song YL. Maternal transmission of immunity to white spot syndrome associated virus (WSSD) in shrimp (Penaeus monodon). Dev Comp Immunol, 1999, 23: 545~552
    Huang GH, Liu H, Han Y, et al. Profile of acute immune response in Chinese amphioxus upon Staphylococcus aureus and Vibrio parahaemolyticus infection. Developmental and Comparative Immunology, 2007, 31: 1013~23
    Huffman JE, Tripp MR. Cell types and hydrolytic enzymes of soft shell clam (Mya arenaria) hemocytes. J Invertebr Pathol, 37: 181~187
    Imhoof B, Schmid-Hempel P. Colony success of the bumble bee, Bombus terrestris, in relation to infections by two protozoan parasites, Crithidia bombi and Nosema bombi. Ins Soc, 1999, 46: 233~238
    Ito T, Mastutan IT, Mor IK, et al. Phagocytosis and hydrogen peroxide production by phagocytes of the sea urchin Strongylocentrotus mudus. Dev Comp Immunol, 1992, 16: 287~294
    Iwaki D, Kawabata S, Miura Y, et al. Molecular cloning of limulus alpha-2-macroglobulin. Eur J Biochem, 1996, 242: 822~831
    Janeway CA, Medzhitov R. Innate immune recognition. Annu Rev Immunol, 2002, 20: 197~216 Janeway CA, Travers P, Walport M, et al. Immunobiology: The Immune System in Health and Disease. Current Biology Publications, London, 1999.
    Jerne NK. The natural selection theory of antibody formation. Proc Natl Acad Sci, 1955, 41(11): 849~856
    Ji X, Azumi K, Sasaki M, et al. Ancient origin of the complement lectin pathway revealed by molecular cloning of mannan-binding protein-associated serine protease from a urochordate: the Japanese ascidian, Halocynthia roretzi. Proc Natl Acad Sci USA, 1997, 94: 6340~6345
    Ji X, Namikawa-Yamada C, Nakanishi M, et al. Molecular cloning of complement factor B from asolitary ascidian: unique combination of domains implicating ancient exon shufflings. Immunopharmacology, 2000, 49: 43~43
    Johanson PT. The coelomic elements of sea urchins(Strongylocentrotus):Ⅲ. In vitro reaction to bacteria. J Invert Pathol, 1969, 13: 42~62
    Johansson MW, Lind MI , Holmblad T, et al. Peroxinectin, a novel cell adhesion protein from crayfish blood. Biochem Biophys Res Commun, 1995, 216: 1079~1087
    Johansson MW. Cell adhesion molecules in invertebrate immunity. Dev Comp Immunol, 1999, 23: 303~315
    Jolle`s P, Jolle`s J. What’s new in lysozyme research? Mol Cell Biochem, 1984, 63: 165~189
    Kapitonov VV, Jurka J. RAG1 core and V(D)J recombination signal sequences were derived from transib transposons. PLoS Biol, 2005, 3(6): 0998~1011
    Karp RD, Rheins LA. Induction of specific humoral immunity to soluble proteins in the American cockroach (Periplaneta americana).2. Nature of the secondary response, Dev Comp Immunol, 1980, 4: 629~639
    Kern RA, Kingkade MJ, Kern SF, et al. Characterization of the action of lysozyme on Staphylococcus aureus and on Micrococcus lysodeikticus. Bacteriol, 1951, 61: 171~178
    Kishore U, Reid K BM. C1q: structure, function, and receptors. Immunopharmacology, 2000, 49: 159~170
    Klein J. Are invertebrates capable of anticipatory immune responses?. Scand J Immunol, 1989, 29(5): 499~505
    Klein J. Homology between immune responses in vertebrates and invertebrates: does it exist? Scand J Immunol, 1997, 46: 558~564
    Kuo MM, Lane RS, Giclas PC. A comparative study of mammalian and reptilian alternative pathway of complement-mediated killing of Lyme disease spirochete (Borrelia burgdoferi). Parasitol, 2000, 86: 1223~1228
    Kurtz J, Franz K. Innate defence: Evidence for memory in invertebrate immunity. Nature, 2003, 425(6953): 37~38
    Kurtz J. Specific memory within innate immune systems. Trends Immunol, 2005, 26(4): 186~192
    Lachmann PJ, Hobart MJ. The genetics of the complement system. Ciba Found Symp, 1979, 27-29(66): 231~250
    Ladendor NE, Kanost MR. Bacteria-induced protein P4 (hemolin) from Manduca Sexta: a member of the immunoglobulin superfamily which can inhibit hemocyte aggregation. Arch Insect Biochem Physiol, 1991, 18: 285~300
    Lanz-Mendoza H, Bettencourt R, Fabbri M, et al. Regulation of the insect immune response: the effect of hemolin on cellular immune mechanisms. Cell Immunol, 1996, 169: 47~54
    Larson KG, Roberson BS, Hetrick FM. Effect of environmental pollutants on chemiluminescence of hemocytes from the American oyster Crassostrea virginica. Dis Aquar Org, 1989, 6: 131~136
    Lemaitre B, Kromermetzger E, Michaut L, et al. A recessive mutation, immune deficiency (Imd), defines 2 distinct control pathways in the Drosophila host defense. Proc Natl Acad Sci, 1995, 92(21): 9465~9469
    Lemaitre B, Reichhart JM, Hoffmann JA. Drosophila host defense: differential induction of antimicrobial peptide genes after infection by various classes of microorganisms. Proc Natl Acad Sci USA, 1997, 94: 14614~14619
    Li ZM, Zhang SC, Wang CF, et al. Complement-mediated killing of Vibrio species by the humoral fluids of amphioxus Branchiostoma belcheri: Implications for a dual role of O-antigens in the resistance to bactericidal activity. Fish Shellfish Immunology, 2008, 24: 215~222
    Liang YJ, Zhang SC, Lun LM, et al.Presence and localization of antithrombin and its regulation after acute lipopolysaccharide exposure in amphioxus with implications for the origin of vertebrate liver. Cell Tissue Res, 2006, 323: 537~541
    Liang YJ, Zhang SC. Demonstration of the plasminogen-like protein in amphioxus with implications for the origin of vertebrate liver. Acta Zoologica, 2006, 87: 141~145
    Little TJ, O’Connor B, Colegrave N, et al. Maternal transfer of strain-specific immunity in an invertebrate. Curr Biol, 2003, 13(6): 489~492
    Liu M, Zhang SC, Liu ZH, et al. Characterization, organization and expression of AmphiLysC, an acidic c-type lysozyme gene in amphioxus Branchiostoma belcheri tsingtauense. Gene, 2005, 367: 110~7
    Lori AC, David AR, Paul SG, et al. The sea urchin comp lement homologue, SpC3, functions as an op sonin. Journal of Experimental Biology, 2004, 207: 2147~2155
    Martinez RJ, Carroll SF. Sequential metabolic expressions of the lethal process in humanserum-treated Escherichia coli: role of lysozyme. Infect Immun, 1980, 28: 735~745
    McKenzie ANJ, Preston TM. Biological characteristics of Calliphora vomitoria agglutinin. Developmental and Comparative Immunology, 1992, 16: 85~93
    Mendoza HL, Fayeb I. Physiological aspects of the immunoglobulin superfamily in invertebrates. Dev Comp Immunol, 1999, 23: 359~374
    Middlebrooks BL, Lee YM, Li M, et al. Effects of repeated immunization and wound trauma on changes in hemolymph agglutinin levels in brown shrimp (penaeus aztecus). Annuals of the New York Academy of Science, 1994, 72: 358~360
    Minguillon C, Ferrier DE, Cebrian C, et al. Gene duplications in the prototypical cephalochordate amphioxus. Gene, 2002, 287: 121~128
    Moller PC, Philpott CW. The circulatory system of amphioxus (Branchiostoma floridae). I. Morphology of the major vessels of the pharyngeal area. J Morphol, 1973, 139: 389~406
    Moore MN, Lowe DM. The cytology and cytochemistry of hemocytes of Mytilus edulis and their response to experimentally injected carbon particles. J Invertebr Pathol, 1977, 19: 18~30
    Moret Y, Schmid-Hempel P. Immune defence in bumblebee offspring. Nature, 2001, 414: 506
    Moret Y, Siva-Jothy MT. Adaptive innate immunity? Responsivemode prophylaxis in the mealworm beetle, Tenebrio molitor. Proc R Soc, 2003, 270(1532): 2475~2480
    Morgan BP. Physiology and pathophysiolgy of complement: progress and trends. Crit Rev Clin Lab Science, 1995, 32: 265~298
    Moullac G, Soyez C, Saulnier D, et al. Effect of hypoxic stress on the immune response and the resistance to vibriosis of the shrimp Penaeus stylirostris. Fish and Shellfish Immunology, 1998, 8(8): 621~629
    Muller WE, Rinkevich B. Invertebrate immunology. Berlin Tokyo: Springer, 1996, 235~247
    Nagai T, Mutsuro J, Kimura M, et al. A novel truncated isoform of the mannose-binding lectin associated serine protease(MASP) from the common carp(Cyprinus carpio). Immunogenetics, 2000, 51: 193~200
    Nakamura M, Mori K, Inooka S, et al. In vivo production of hydrogen peroxide by the amoebocyte of the scallop Patinopecten yessoensis(Jay). Dev Comp Immunol, 1985, 9: 407~417
    Nilsen IW, Overbo K, Sandsdalen E, et al. Protein purification and gene isolation of chlamysin, acold~active lysozyme-like enzyme with antibacterial activity. FEBS Lett, 1999, 464 (3): 153~158
    Nonaka M, Azumi K, Ji X, et al. Opsonic complement component C3 in the solitary Ascidian, Halocynthia roretzi. The Journal of Immunology, 1999, 162: 387~391
    Nonaka M, Fujii T, Kaidoh T, et al. Purification of a lamprey complement protein homologous to the third component of the mammalian complement system. The Journal of Immunology, 1984, 133: 3242~3249
    Nonaka M, Kimura A. Genomic view of the evolution of the complement system. Immunogenetics, 2006, 58: 701~713
    Nonaka M, Takahashi M, Sasaki M. Molecuar cloning of a lamprey homologue of the mammalian MHC classЩgene, complement factor B. The Journal of Immunology, 1994, 152: 2263~2269
    Nonaka M, Takahashi M. Complete complementary DNA sequence of the third component of complement of lamprey, Implication for the evolution of thioester containing proteins. The Journal of Immunology, 1992, 148: 3290~3295
    Olafsen JA, Fletcher TC, Grant PT. Agglutinin activity in Pacific oyster (Crassostrea gigas) hemolymph following in vivo Vibrio anguillarum challenge. Developmental and Comparative Immunology, 1992, 16: 123~138
    Olafsen JA, Fletcher TC, Grant PT. Agglutinin activity in Pacific oyster (Crassostrea gigas) hemolymph following in vivo Vibrio anguillarum challenge. Developmental and Comparative Immunology, 1992, 16: 123~138
    Ourth DD, Narra MB, Chung KT. Isolation of mannose-binding C-type lectin from Heliothis virescens pupae. Biochem Biophys Res Commun, 2005, 335(4): 1085~1089
    Ozeki Y, Matsui T, Suzuki M, et al. Amino acid sequence and molecular characterization of a D-Galactoside-specific lectin purified from sea urchin (Anthocidaris crassispina) eggs. Biochemistry, 1991, 30: 2391~2394
    Ozeki Y, Tazawa E, Matsui T. D-galactoside-specific lectins from the body wall of an echiuroid (Urechis unicinctus) and two annelids (Neanthes japonica and Marphysa sanguinea). Comp Biochem Physiol, 1997, 118B: 1~6
    Pancer Z, Amemiya CT, Ehrhardt GR, et al. Somatic diversification of variable lymphocytereceptors in the agnathan sea lamprey. Nature, 2004, 430(6996): 174~180
    Pang QX, Zhang SC, Liu XM, et al. Humoral immune responses of amphioxus Branchiostoma belcheri to challenge with Escherichia coli. Fish Shellfish Immunology, 2006, 2: 139~145
    Pang QX, Zhang SC, Shi XD, et al. Purication and characterization of prophenoloxidase in the humoral fluid of amphioxus Branchiostoma belcheri tsingtauense. Fish Shellfish Immunology, 2005, 19: 139~148
    Pasquier LD. The immune system of invertebrates and vertebrates. Comp Biochem Phys, 2001, 129(7): 1~15
    Pauley GB, Granger GA, Krassner SM. Characterization of a natural agglutinin present in the hemolymph of the California sea hare, Aplysia californica. J Invertebr Pathol, 1971, 18 (2): 207~218
    Ratcliffe NA, Rowley AF, Fitzgerald SW, et al. Invertebrate immunity: basic concepts and recent advances. International Review of Cytology, 1985, 97: 183~350
    Ratcllffe NA, Rowley AF. Invertebrate blood cells. New York: Academic Press, New York, 1981, 513~526
    Ravindranath MH, Higa HH, Cooper EL, et al. Purification and characterization of an O-acetylsialic acid-specific lectin from a marine crab Cancer antennarius. J Biol Chem, 1985, 260(15): 8850~8856
    Rhodes CP, Ratcliffe NA, Rowley AF. Presence of coelomocytes in the primitive chordate amphioxus (Branchiostoma lanceolatum). Science, 1982, 217: 263~265
    Richard HC, Eleftherianos I, Reynolds SE. A nemato symbiont sheds light on invertebrate immunity. Trends Parasitol, 2007, 23(11): 514~517
    Robertson M. Innate immunity. Curr Biol, 1998, 8: R595~R597
    Rock FL, Hardiman G, Timans JC, et al. A family of human receptors structurally related to Drosophila Toll. Proc Natl Acad SciUSA, 1998, 95: 588~593
    Sadd BM, Schmid-Hempel P. Insect Immunity Shows Specificity in Protection upon Secondary Pathogen Exposure. Curr Biol, 2006, 16(6): 1206~1210
    Sahoo PK, Pillai BR, Mohanty J, et al. In vivo humoral and cellular reactions, and fate of injected bacteria Aeromoas hydrophila in freshwater prawn Macrobrachium rosenbergii. Fish Shellfish Immunol, 2007, 23: 327~340
    Salzet M. Vertebrate innate immunity resembles a mosaic of invertebrate immune responses, Trends Immunol. 200, 22: 285~288
    Sasaki H, Aketa K. Purification and distribution of a lectin in sea urchin (anthocidaris crassispina) egg before and after fertilization. Experimental Cell Research, 1981, 135: 15~19
    Schmidt O, Faye I, Lindstroèm Dinettz I, et al. Specific recognition by insect hemolin. Comp Dev Immunol, 1993, 17: 195~200
    Schulenburg H , Boehnisch C, Michiels NK. How do invertebrates generate a highly specific innate immune response? Mol Immunol, 2007, 44(5): 3338~3344
    Shin SW, Park SS, Park DS, et al. Isolation and characterization of immune-related genes from the fall webworm, Hyphantria cunea, using PCR-based dierential display and subtractive cloning. Insect Biochem Mol Biol, 1998, 28: 827~837
    Silva JRMC, Peckl. Induced in vitro phagocytosis of the Antarctic starfish Odontaster validus (Koehler 1906) at 0℃. Polar Biology, 2000, 23(4): 225~230
    Sliva JRMC, Mendes EG, Mariano M. Wound repair in the amphioxus (Branchiostoma platae), an animal deprived of inflammatory phagocytes. J Invertebr Pathol, 1995, 65: 147~151
    Smith LC, Azumi K, Nonaka M. Complement systems in invertebrates. The ancient alternative and lectin pathways. Immunopharmacology, 1999, 42: 107~120
    Smith LC, Clow LA, Terwlliger DP. The ancestral complement system in sea urchins. Immunological Reviews, 2001, 180: 16~34
    Smith LC, Shih CS, Dachenhausen SG.. Coelomocytes express SpBf, a homologue of factor B, the second component in the sea urchin complement system. The Journal of Immunology, 1998, 161(12): 6784~6793
    Soderhall K, Smith VJ, Johansson MW. Exocytosis and uptake of bacteria by isolated haemocyte populations of two crustaceans: evidence for cellular cooperation in the defence reactions of arthropods. Cell Tissue Res, 1986, 245: 43~49
    Song HH, Chang HJ, Her CH, et al. Phenoloxidase activity of hemocytes derived from Penaeus monodon and Macrobrachium rosebergii. Journal of invertebrate pathology, 1998, 71: 26~33
    Song L, Takamune K, Sugawara Y, et al. cDNA cloning of a mannose-binding lectin-associated serine protease (MASP) gene from hagfish (Eptatretus burgeri). Zoolog Sci, 2005, 22(8):897~904
    Sottrup-Jensen L, Stepanik TM, Klistensen T et al. Common evolutionary origin of α2-macroglobulin and complement components C3 and C4. Pro Natl Acad Sci USA, 1985, 82: 9~13
    Sritunyalucksana K, Cerenius L, Soderhall K. Molecular cloning and characterization of prophenoloxidase in the black tiger shrimp, Penaeus monodon . Dev Comp Immunol, 1999, 23: 179~186
    Stover CM, Thiel S, Lynch NJ, et al. The rat and mouse homologues of MASP-2 and MAP-19 components of the lectin activation pathway of complement. The Journal of Immunology, 1999, 163: 6848~6859
    Sunyer JQ, Tort L. Natural hemolytic and bactericidal activities of sea bream Sparus aurata serum are affected by the alternative complement pathway. Vet Immunol Immunopathol, 1995, 45: 333~345
    Suzuki MM, Satoh N, Nonaka M. C6-Like and C3-Like Molecules from the Cephalochordate, Amphioxus, Suggest a Cytolytic Complement System in Invertebrates. J Mol Evol, 2002, 54: 671~679
    Thiel S, Vorup-Jensen T, Stover CM, et al. A second serine protease associated with mannan-binding lectin that activates complement. Nature, 1997, 386: 506~510
    Turner MW. Mannose-binding lectin: the pluripotent molecule of the innate immune system. Immunol. Today, 1996, 17: 532~540
    Vande Braak CBT, Botterblom MHA, Taverne N, et al. The roles of haemocytes and the lymphoid organ in the clearance of injected Vibrio bacteria in Penaeus monodon shrimp. Fish Shellfish Immunol, 2002, 13: 293~309
    Vasta GR, Quesenberry M, Ahmed H, et al. C-type lectins and galectins mediate innate and adaptive immune functions: their roles in the complement activation pathway. Developmental and Comparative Immunology, 1999, 23: 401~420
    Wang CF, Zhang SC, Lu Y, et al. Presence and induction by bacteria of D-galactoside-specific lectins in the humoral fluids of amphioxus Branchiostoma belcheri tsingtauense. Inflammopharmacology, 2002, 9(3): 241~248
    Ward LN, Bej AK. Detection of Vibrio parahaemolyticus in shellfish by use of multiplexed real-time PCR with TaqMan fluorescent probes. Appl Environ Microbiol, 2006, 72(3): 2031~42
    Wiens M, Koziol C, Batel R, et al. Phenylalanine hydroxylase from the sponge Geodia cydonium: implication for alorecognition and evolution of anomatic amino acid hydroxylases. Developmental and Comparative Immunology, 1998, 22(5-6): 469~478
    Witteveldt J, Cifuentes CC, Vlak JM, et al. Protection of Penaeus monodon against white spot syndrome virus by oral vaccination. J Virol, 2004, 78(4): 2057~2061
    Wright S D. Receptors for complement and the biology of phagocytosis. In: Gallin J I, Goldstein I M, Snyderman R, eds. Inflammation: basic principles and clinical correlates. New York, N.Y: Raven Press, Ltd.; 1992. 477~495
    Xing J, Chia F-S. Opsonin-like molecule found in coelomic fluid of sea cucumber, Holothuria leucospilota. Marine Biology, 2000, 136: 979~986
    Yano T. The nonspecific immune system: Humoral defence. In The Fish Immune system: Organism, Pathogen and Environment (G. Iwama, & T. Nakanishi, eds). San Diego: Academic Press. 1996. 105~157
    Yeaton RW. Invertebrate lectins: I. Occurrence. Developmental and Comparative Immunology, 1981, 5(3): 391~402
    Yoshizaki FY, Ikawa S, Satake M, et al. Structure and the evolutionary implication of the triplicated complement factor B genes of a urochordate ascidian, Ciona intestinalis. Immunogenetics, 2005, 56(12): 930~42
    Zavalova LL, Yudina TG, Artamonova II, et al. Antibacterial non-glycosidase activity of invertebrate destabilase-lysozyme and of its helical amphipathic peptides. Chemotherapy, 2006, 52(3):158~60
    Zenteno R, Vazquez L, Sierra C, et al. Chemical characterization of the lectin from the freshwater prawn Macrobrachium rosenbergii(De Man) byMALDI-TOF. Comp Biochem Physiol Part B, 2000, 127: 243~250
    Zhang SC, Wang CF, Wang YJ, et al. Presence and characterization of complement-like activity in the amphioxus Branchiostoma belcheri tsingtauense. Zoolog Sci, 2003, 20: 1207~1214
    Zhang SM, Adema CM, Kepler TB, et al. Diversification of Ig superfamily genes in aninvertebrate. Science, 2004, 305(5681): 251~254
    Zhang YL, Wang SY, Peng XX. Identification of a type of human IgG-like protein in shrimp Penaeus vannamei by mass spectrometry. J Exp Mar Biol Ecol, 2004, 301: 39~54
    Zhu Y, Ng PM, Wang L, et al. Diversity in lectins enables immune recognition and differentiation of wide spectrum of pathogens. Int Immunol, 2006, 18(2): 1671~1680
    Zhu Y, Thangamani S, Bow H, et al. The ancient origin of the complement system. The EMBO Journal, 2005, 24: 382~394
    Zinkernagel RM, Bachmann MF, Kundig TM, et al. On immunological memory [J]. Annu Rev Immunol, 1996, 14(6): 333~367
    Zinkernagel RM, Doherty PC. Restriction of in vitro T cell mediated cytotoxicity in lymphocytic choriomeningitis within a syngeneic or semiallogeneic system. Nature, 1974, 248(450): 701~702
    丁美丽,林林,李光友,等.有机污染对中国对虾体内外环境影响的研究.海洋与湖沼,1997,28(1):7~11
    高健,李跃华.甲壳类的体液免疫因子及其环境作用.水产养殖,1992,6:21~23
    高键.甲壳类动物的体液免疫因子及其环境作用.水产养殖,1992,6:139~144
    江红,李清漪.软体动物凝集素.生物化学杂志,1996,12(3):353~358
    李太武等. 1995.皱纹盘鲍稚鲍死因及脓疱病的综合分析与防治.
    李霞,王斌,刘静等.虾夷马粪海胆体腔细胞的细胞类型及功能.中国水产科学,2003,10(5):381~385
    刘树青,江晓路,牟海津,等.免疫多糖对中国对虾血清溶菌酶、磷酸酶和过氧化物酶的作用.海洋与湖沼,1999,30(5):278~283
    孟凡伦等.甲壳动物中酚氧化酶原激活系统研究评价.海洋与湖沼,1999,30(1):110~115
    牟海津,江晓路,刘树青,等.双壳贝类血清中凝集素凝集性能初步研究-对脊椎动物血细胞的凝集作用.青岛海洋大学学报,1999,29(2):249~254
    孙晓阳,毛炳宇,张红卫.文昌鱼体表粘液凝集素的初步研究.山东大学学报(自然科学版),2000,35(2):220~223
    王长法,张士璀,王勇军.补体系统的进化.海洋科学,2004,28(8):55~58
    王克夷,许强.凝集素和毒素.生物化学与生物物理学报,2000,32(3):201~205
    徐海圣,徐步进.甲壳动物细胞及体液免疫机理的研究进展.大连水产学院学报,2001,16(1):49~56
    于善谦,王洪海,朱乃硕,等.免疫学导论.北京:高等教育出版社,1999. 68~87
    张峰,李光友.贝类血细胞活性氧体内防御作用的研究进展.海洋科学,1999,2:16~19

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700