用户名: 密码: 验证码:
SLE相关候选基因FCRL3,SLAM的SNP分析及其功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人类基因组计划的完成,有关个体遗传变异与疾病的关系日益受到重视,单核苷酸多态性(SNP)是人类基因组中遗传学变异最常见的一种类型,也是决定不同个体临床表型多样性的重要因素。因此对复杂性疾病进行SNP研究对于临床上早期诊断、预防和治疗这类疾病有重要意义。
     SLE是一种典型的自身免疫疾病,其主要病理生理学过程为大量自身抗体产生,补体激活,免疫复合物的沉积从而导致组织和器官的损伤。尽管SLE的发病机制目前并不十分清楚,但是现已达成共识:SLE是遗传因素和环境因素共同作用的结果,其遗传学模式非常复杂,多个基因参与其发病机制。目前已有研究表明Fc受体样基因3(FCRL3)及信号转导淋巴细胞激活分子(SLAM)基因参与了SLE的发病机制。然而,这两个基因多态性位点与中国人群SLE的易感性尚未有研究。我们选择上述两个基因作为候选基因,拟在中国SLE人群中筛查其SNP分布及频率,并对阳性关联SNP位点的生物学意义进行初步实验研究。本研究收集了248名SLE患者及278名正常对照,采用PCR-限制性片段长度多态性(RFLP)在中国SLE人群对FCRL3基因4个SNPs (-169A/G, -110C/T, +358C/G及+1381C/T)及SLAM基因4个SNPs (-262A/T, -188A/G, -112C/T及+116A/C)进行了病例-对照研究。等位基因频率直接由基因型计算,Hardy-Weinberg平衡由χ2检验检测,以p>0.05为符合Hardy-Weinberg平衡,两组间的差异由列联表χ2检测,通过LDA软件检测连锁不平衡,PHASE软件分析单倍型。对发现的与SLE相关的SLAM基因5’非翻译区两种单倍型(-262A-188G,-262T-188A)进行了初步的功能研究,即通过荧光素酶报告基因实验分析不同单倍型转录调控功能是否具有差异,电泳迁移率实验(EMSA)体外分析不同等位的寡核苷酸结合核蛋白的能力,并通过在不同基因型SLE患者中检测SLAM基因mRNA及蛋白的表达,分析SLAM基因启动子区不同单倍型对SLAM基因转录及表达的影响。
     研究主要结果如下:
     1. FCLR3基因4个SNP位点(-169A/G, -110C/T, +358C/G和+1381C/T)在病例组和对照组中的基因型频率分布无明显差异(p值分别为0.227,0.444,0.412,0.167),ACCC、GTGT、GCGT这三种主要的单倍型在正常对照及SLE患者中分布无显著差异(p值分别为0.943,0.084,0.387),FCRL3基因4个SNP位点等位基因分布频率与SLE患者ANA无相关性(p>0.05)。
     2.在248名SLE患者及278名正常对照采用PCR-RFLP对SLAM基因4个SNP位点(-262A/T,-188A/G,-112C/T,+116A/C)进行分型,结果发现-262A/T,-188A/G等位频率分布在SLE患者及正常对照中存在显著差异(p值分别为0.0003,0.002),对-262A/T及-188A/G进行连锁不平衡分析提示,两个位点存在连锁(D’=0.6443)。非条件Logistic回归分析显示-262A-188G及-262T-188A在SLE病例组及正常对照中分布有显著性差异(p值分别为0.002,0.003),这两种单倍型可能与系统性红斑狼疮的发病相关,且-262A-188G单倍型发生SLE的危险性显著增加(OR=1.478, 95%CI=1.152-1.897)。3.通过定点突变的方法成功构建了含有四种不同单倍型的pGL3-Basic重组质粒,采用双荧光素酶报告系统对荧光素酶表达量进行检测。与pGL3-Basic空载体相比,这四种单倍型片段重组pGL3-Basic载体荧光素酶活性明显增强,提示-415到+4这个片段具有启动子功能。但不同单倍型片段启动子活性存在差异,在HeLa细胞中及Jurkat细胞中,单倍型-262A-188G荧光素酶表达量显著高于单倍型-262T-188A、单倍型-262T-188G及单倍型-262A-188A。
     4.分别合成含-262A,-262T及-188A,-188G等位的探针进行EMSA实验。结果显示-262A,-262T等位探针与核蛋白均产生一条结合带,且结合量无明显差异。-188G、-188A等位寡核苷酸与Jurkat细胞及PBMC核蛋白能形成一条结合带,但-188G等位与核蛋白的结合量高于-188A等位(约2.55倍),说明这两个等位探针与核蛋白结合的能力存在差异,-188G等位与核蛋白的结合能力强于-188A等位,推测-188G等位的变异可能增加了该等位核酸序列与转录因子的结合能力。
     5. PHA体外刺激后,不同基因型的SLE患者SLAM基因mRNA及蛋白表达量存在差异,与疾病关联的单倍型-262AA-188GG SLE患者SLAM基因mRNA表达显著高于其余单倍型SLE患者(p<0.01),而蛋白表达高于单倍型为-262A/T-188A/G的SLE患者(p<0.05),提示不同单倍型可能影响SLE患者SLAM基因mRNA及蛋白表达,而与疾病关联的单倍型-262A-188G可能增加了SLE患者SLAM基因mRNA及蛋白的表达。
     综上所述:本研究通过在中国SLE人群进行病例-对照研究,发现FCRL3基因多态性与中国汉族人群SLE无相关性。SLAM基因-262A/T,-188A/G多态性与中国人群SLE发病相关,这两位位点存在连锁,单倍型-262A-188G能显著增强启动子功能,单倍型为-262AA-188GG的SLE患者SLAM基因mRNA及蛋白表达的显著增加,-188G等位变异可能增强了与转录因子结合的能力,这可能是-262A-188G单倍型转录活性增强的活性的原因之一。因此,SLAM基因单倍型-262A-188G可能通过上调SLAM基因的表达增加了SLE发病的危险因素。
With the completion of the human genome project, attention is now rapidly shifting towards the study of individual genetic variation. The most abundant source of genetic variation in the human genome is represented by single nucleotide polymorphisms (SNPs), which can account for heritable inter-individual differences in complex phenotypes. Identification of SNPs that contribute to susceptibility to comples diseases will provide highly accurate diagnostic information that will facilitate early diagnosis, prevention, and treatment of human diseases.
     Systemic lupus erythematosus(SLE) is a prototypic systemic autoimmune disease characterized by a diverse array of autoantibody production, complement activation, immune complex deposition, and tissue and organ damage. Although the etiopathogenesis of SLE remains unclear, SLE has long been appreciated to be a complex interlay of genetic and environmental factors. The complex patterns of inheritance in SLE suggest that multiple genes contribute to the etiology. Several studies have shown that the Fc receptor-like 3 (FCRL3) and signaling lymphocytic activation molecule (SLAM) genes play important role in the pathogenesis of SLE. However, the importance between their genetic polymorphisms and SLE has not been studied in Chinese population. In this study, we investigated the occurrence of polymorphisms within the FCRL3 and SLAM gene, and further validated the biological functions of positive associated SNP loci.
     We analyzed four SNPs (-169A/G, -110C/T, +358C/G and +1381C/T) of FCRL3 gene and four SNPs (-262A/T, -188A/G, -112C/T and +116A/C) of SLAM gene in a case–control cohort composed of 248 SLE patients and 278 healthy controls using the PCR-RFLP assay. The case-control association studies were analyzed usingχ2 tests for Hardy–Weinberg equilibrium. And 2×2 and 2×3 contingency tables for allele and genotype frequencies were conducted respectively. For the haplotype analysis, pairwise linkage disequilibrium measures were investigated by using linkage disequilibrium analyzer(LDA), haplotype frequencies were estimated and calculated using the PHASE package. To further validate the biological functions of positive associated SNP loci, the functions of the haplotypes(-262A-188T,-262T-188A) in the 5’untranslated region of the SLAM gene in patients with SLE were studied. The promoter activities of the haplotypes on the SLAM gene were evaluated with the dual-luciferase reporter system. EMSA was used for identify nulear protein binding ability between the alleles of -262A/T and -188A/G in SLAM gene.
     The mRNA and protein expression of SLAM on the peripheral blood monocyte cells of SLE patients with different genotypes were determined by real-time PCR and flow cytometry respectively.
     The main results and conclusions were summarized as follows:
     1. Analysis of allelic frequencies revealed no significant difference between SLE patients and control subjects for the FCRL3 gene polymorphisms. We also inferred three common haplotypes (ACCC、GTGT、GCGT) and found no significant difference of haplotype frequencies between SLE patients and controls. The associations of FCRL3 with SLE patients with antinuclear antibody(ANA) were examined, we did not detect any association of FCRL3 genotype with ANA in the SLE patients. These results suggested that genetic variations in FCRL3 were not associated with SLE in Chinese population.
     2. We evaluated the -262A/T,-188A/G,-112C/T and +116A/C polymorphisms of SLAM gene for associations with SLE in a case-control study. The -262A/T and -188A/G polymorphisms were associated with susceptibility of SLE(p=0.0003,0.002), analysis showed that the two SNPs were in linkage disequilibrium(D’=0.6443). The -262A-188G and -262T-188A haplotypes were associated with SLE(p=0.002,0.003), the -262A-188G haplotype might increase the risk for developing SLE(OR=1.478, 95%CI=1.152-1.897).
     3. The four different haplotype DNA of SLAM gene were cloned into a luciferase expression plasmid(pGL3-Basic) respectively, then the different vectors were transfected into HeLa cells and Jurkat cells, the reporter activities were measured by using dual luciferase reporter assay. The results showed increased luciferase expression of the four haplotypes, however, the luciferase expression of the -262A-188G haplotype was significant greater than the other three haplotype. This suggested that -262A-188G can significantly increase the expression level of the reporter gene.
     4. EMSA showed that there were no different abilities of nuclear protein binding between the two alleles of -262A/T. However, the intensity of binding band was higher for the -188G allele than for the -188A allele. The -188A/G polymorphism altered the binding affinity of nuclear protein.
     5. In response to phytohemagglutinin(PHA) stimulation, the SLAM mRNA expressions on PBMC of SLE patients were significantly higher in -262AA-188GG homozygous genotype compared with individuals heterozygous and homozygous with other genotypes(p<0.01). The SLAM protein expressions on T cells of SLE patients were significantly higher in -262AA-188GG homozygous genotypes compared with -262A/T-188A/G heterozygous(p<0.05).
     In conclusion: we find that FCRL3 polymorphisms are not associated with susceptibility to SLE in Chinese population. The -262A/T and -188A/G polymorphisms of SLAM gene are associated with susceptibility of SLE. The haplotype -262A-188G can significantly increase the expression level of the reporter gene. The expression level of mRNA and protein expression of SLAM is significantly higher in SLE patients with -262AA-188GG haplotype. The -188A/G polymorphism alters the binding affinity of nuclear protein. These findings suggest that the -262A-188G haplotype in the SLAM gene promoter contributes to risk of the occurrence SLE by increasing expression of SLAM.
引文
1. D'Cruz DP, Khamashta MA, Hughes GR. Systemic lupus erythematosus. Lancet 2007;369(9561):587-96.
    2. Rioux JD, Abbas AK. Paths to understanding the genetic basis of autoimmune disease. Nature 2005;435(7042):584-9.
    3. Crispin JC, Kyttaris V, Juang YT, Tsokos GC. Systemic lupus erythematosus: new molecular targets. Ann Rheum Dis 2007;66 Suppl 3:iii65-9.
    4. Sestak AL, Nath SK, Sawalha AH, Harley JB. Current status of lupus genetics. Arthritis Res Ther 2007;9(3):210.
    5. Croker JA, Kimberly RP. Genetics of susceptibility and severity in systemic lupus erythematosus. Curr Opin Rheumatol 2005;17(5):529-37.
    6. Shastry BS. SNP alleles in human disease and evolution. J Hum Genet 2002;47(11):561-6.
    7. Vignal A, Milan D, SanCristobal M, Eggen A. A review on SNP and other types of molecular markers and their use in animal genetics. Genet Sel Evol 2002;34(3):275-305.
    8.曾长青.国际人类基因组单体型图计划.生物学通报.2004;39(2):1-2
    9. Second Phase of HapMap project completed. Pharmacogenomics 2007;8(11):1489-91.
    10.钟英强,朱兆华.人类基因组单体型图在人类常见病相关性基因研究中的应用与展望.国际内科学杂志.2007;34(4):243-46
    11. Sestak AL, Nath SK, Harley JB. Genetics of systemic lupus erythematosus: how far have we come? Rheum Dis Clin North Am 2005;31(2):223-44
    12. Lai E. Application of SNP technologies in medicine: lessons learned and future challenges. Genome Res 2001;11(6):927-9.
    13. Harley JB, Kelly JA, Kaufman KM. Unraveling the genetics of systemic lupus erythematosus. Springer Semin Immunopathol 2006;28(2):119-30.
    14. Fong KY, Boey ML. The genetics of systemic lupus erythematosus. Ann Acad Med Singapore 1998;27(1):42-6.
    15. Thorburn CM, Prokunina-Olsson L, Sterba KA, Lum RF, Seldin MF, Alarcon-Riquelme ME, Criswell LA. Association of PDCD1 genetic variation with risk and clinical manifestations of systemic lupus erythematosus in a multiethnic cohort. Genes Immun2007;8:279-287.
    16. Begovich AB, Carlton VE, Honigberg LA, Schrodi SJ, Chokkalingam AP, Alexander HC, et al. A missense single-nucleotide polymorphism in a gene encoding a protein tyrosine phosphatase (PTPN22) is associated with rheumatoid arthritis. Am J Hum Genet 2004;75(2):330-7.
    17. Alansari A, Gul A, Inanc M, et al. Fc receptor gamma subunit polymorphisms and systemic lupus erythematosus. Saudi Med J 2004;25(10):1445-8.
    18. Gough SC, Walker LS, Sansom DM. CTLA4 gene polymorphism and autoimmunity. Immunol Rev 2005;204:102-15.
    19. Rahman A, Isenberg DA. Systemic lupus erythematosus. N Engl J Med 2008;358(9):929-39.
    20. Kochi Y, Yamada R, Suzuki A, et al. A functional variant in FCRL3, encoding Fc receptor-like 3, is associated with rheumatoid arthritis and several autoimmunities. Nat Genet 2005;37(5):478-85.
    21. Veillette A, Cruz-Munoz ME, Zhong MC. SLAM family receptors and SAP-related adaptors: matters arising. Trends Immunol 2006;27(5):228-34.
    22. Gregersen PK, Behrens TW. Genetics of autoimmune diseases--disorders of immune homeostasis. Nat Rev Genet 2006;7(12):917-28.
    23. Hochberg MC. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 1997;40(9):1725.
    24. Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 1988;16(3):1215.
    25. Pourzand C, Cerutti P. Genotypic mutation analysis by RFLP/PCR. Mutat Res 1993;288(1):113-21.
    26. Xu J, Wiesch DG, Meyers DA. Genetics of complex human diseases: genome screening, association studies and fine mapping. Clin Exp Allergy 1998;28 Suppl 5:1-5; discussion 26-8.
    27.严卫丽,顾东风.复杂疾病关联研究中的若干问题.遗传学报.2004;31(5):533-537
    28. Burmeister M. Basic concepts in the study of diseases with complex genetics. Biol Psychiatry 1999;45(5):522-32.
    29.郜艳晖,姜庆五.遗传流行病学研究中的几种设计.中华流行病学杂志. 2004; 25(1): 74-77
    30. Cardon LR, Bell JI. Association study designs for complex diseases. Nat Rev Genet 2001;2(2):91-9.
    31. Miller I, Hatzivassiliou G, Cattoretti G, Mendelsohn C, Dalla-Favera R. IRTAs: a new family of immunoglobulinlike receptors differentially expressed in B cells. Blood 2002;99(8):2662-9.
    32. Kyogoku C, Dijstelbloem HM, Tsuchiya N, et al. Fcgamma receptor gene polymorphisms in Japanese patients with systemic lupus erythematosus: contribution of FCGR2B to genetic susceptibility. Arthritis Rheum 2002;46(5):1242-54.
    33. Chistiakov DA, Chistiakov AP. Is FCRL3 a new general autoimmunity gene? Hum Immunol 2007;68(5):375-83.
    34. Ikari K, Momohara S, Nakamura T, et al. Supportive evidence for a genetic association of the FCRL3 promoter polymorphism with rheumatoid arthritis. Ann Rheum Dis 2006;65(5):671-3.
    35. Shirasawa S. [Susceptibility genes for the development of autoimmune thyroid disease]. Nippon Rinsho 2006;64(12):2208-14.
    36. Hu X, Chang M, Saiki RK, et al. The functional -169T-->C single-nucleotide polymorphism in FCRL3 is not associated with rheumatoid arthritis in white North Americans. Arthritis Rheum 2006;54(3):1022-5.
    37. Turunen JA, Wessman M, Kilpikari R, Parkkonen M, Forsblom C, Groop PH. The functional variant -169C/T in the FCRL3 gene does not increase susceptibility to Type 1 diabetes. Diabet Med 2006;23(8):925-7.
    38. Schafer N, Blaumeiser B, Becker T, et al. Investigation of the functional variant c.-169T > C of the Fc receptor-like 3 (FCRL3) gene in alopecia areata. Int J Immunogenet 2006;33(6):393-5.
    39. Eyre S, Bowes J, Potter C, Worthington J, Barton A. Association of the FCRL3 gene with rheumatoid arthritis: a further example of population specificity? Arthritis Res Ther 2006;8(4):R117.
    40. Choi CB, Kang CP, Seong SS, Bae SC, Kang C. The -169C/T polymorphism in FCRL3 is not associated with susceptibility to rheumatoid arthritis or systemic lupus erythematosus in a case-control study of Koreans. Arthritis Rheum 2006;54(12):3838-41.
    41. Umemura T, Ota M, Yoshizawa K, et al. Lack of association between FCRL3 andFcgammaRII polymorphisms in Japanese type 1 autoimmune hepatitis. Clin Immunol 2007;122(3):338-42.
    42. Martinez A, Sanchez E, Valdivia A, et al. Epistatic interaction between FCRL3 and NFkappaB1 genes in Spanish patients with rheumatoid arthritis. Ann Rheum Dis 2006;65(9):1188-91.
    43. Martinez A, Nunez C, Martin MC, et al. Epistatic interaction between FCRL3 and MHC in Spanish patients with IBD. Tissue Antigens 2007;69(4):313-7.
    44. Mori M, Yamada R, Kobayashi K, Kawaida R, Yamamoto K. Ethnic differences in allele frequency of autoimmune-disease-associated SNPs. J Hum Genet 2005;50(5):264-6.
    45. Gregersen PK, Lee HS, Batliwalla F, Begovich AB. PTPN22: setting thresholds for autoimmunity. Semin Immunol 2006;18(4):214-23.
    46. Ikari K, Momohara S, Inoue E, et al. Haplotype analysis revealed no association between the PTPN22 gene and RA in a Japanese population. Rheumatology (Oxford) 2006;45(11):1345-8.
    47. Ray D, Tomar N, Gupta N, Goswami R. Protein tyrosine phosphatase non-receptor type
    22 (PTPN22) gene R620W variant and sporadic idiopathic hypoparathyroidism in Asian Indians. Int J Immunogenet 2006;33(4):237-40.
    48. Rueda B, Reddy MV, Gonzalez-Gay MA, et al. Analysis of IRF5 gene functional polymorphisms in rheumatoid arthritis. Arthritis Rheum 2006;54(12):3815-9.
    49. Veillette A, Latour S. The SLAM family of immune-cell receptors. Curr Opin Immunol 2003;15(3):277-85.
    50. Ma CS, Nichols KE, Tangye SG. Regulation of cellular and humoral immune responses by the SLAM and SAP families of molecules. Annu Rev Immunol 2007;25:337-79.
    51. Veillette A. Immune regulation by SLAM family receptors and SAP-related adaptors. Nat Rev Immunol 2006;6(1):56-66.
    52. Komori H, Furukawa H, Mori S, et al. A signal adaptor SLAM-associated protein regulates spontaneous autoimmunity and Fas-dependent lymphoproliferation in MRL-Faslpr lupus mice. J Immunol 2006;176(1):395-400.
    53. Hron JD, Caplan L, Gerth AJ, Schwartzberg PL, Peng SL. SH2D1A regulates T-dependent humoral autoimmunity. J Exp Med 2004;200(2):261-6.
    54. Chan AY, Westcott JM, Mooney JM, Wakeland EK, Schatzle JD. The role of SAP andthe SLAM family in autoimmunity. Curr Opin Immunol 2006;18(6):656-64.
    55. Stambrook P. Haplotypes, SNPs and disease. Mutat Res 2004;554(1-2):407-15.
    56. Crawford DC, Nickerson DA. Definition and clinical importance of haplotypes. Annu Rev Med 2005;56:303-20.
    57. Lin MT, Storer B, Martin PJ, et al. Relation of an interleukin-10 promoter polymorphism to graft-versus-host disease and survival after hematopoietic-cell transplantation. N Engl J Med 2003;349(23):2201-10.
    58. Stengard JH, Clark AG, Weiss KM, et al. Contributions of 18 additional DNA sequence variations in the gene encoding apolipoprotein E to explaining variation in quantitative measures of lipid metabolism. Am J Hum Genet 2002;71(3):501-17.
    59. Wandstrat AE, Nguyen C, Limaye N, et al. Association of extensive polymorphisms in the SLAM/CD2 gene cluster with murine lupus. Immunity 2004;21(6):769-80.
    60. Chabchoub G, Petit-Teixeira E, Maalej A, et al. Lack of association between signaling lymphocytic activation molecule family member 1 gene and rheumatoid arthritis in the French and Tunisian populations. Ann Rheum Dis 2006;65(11):1538-9.
    61. Ladiges W, Kemp C, Packenham J, Velazquez J. Human gene variation: from SNPs to phenotypes. Mutat Res 2004;545(1-2):131-9.
    62. Ponomarenko JV, Merkulova TI, Orlova GV, et al. rSNP_Guide, a database system for analysis of transcription factor binding to DNA with variations: application to genome annotation. Nucleic Acids Res 2003;31(1):118-21.
    63. Buckland PR. The importance and identification of regulatory polymorphisms and their mechanisms of action. Biochim Biophys Acta 2006;1762(1):17-28.
    64. Stepanova M, Tiazhelova T, Skoblov M, Baranova A. Potential regulatory SNPs in promoters of human genes: a systematic approach. Mol Cell Probes 2006;20(6):348-58.
    65. Himes SR, Shannon MF. Assays for transcriptional activity based on the luciferase reporter gene. Methods Mol Biol 2000;130:165-74.
    66. Nguyen VT, Morange M, Bensaude O. Firefly luciferase luminescence assays using scintillation counters for quantitation in transfected mammalian cells. Anal Biochem 1988;171(2):404-8.
    67. Annicotte JS, Schoonjans K, Haby C, Auwerx J. An E-box in pGL3 reporter vectors precludes their use for the study of sterol regulatory element-binding proteins. Biotechniques 2001;31(5):993-4, 996.
    68. Brasier AR, Ron D. Luciferase reporter gene assay in mammalian cells. Methods Enzymol 1992;216:386-97.
    69. Ge L, Rudolph P. Simultaneous introduction of multiple mutations using overlap extension PCR. Biotechniques 1997;22(1):28-30.
    70. Aiyar A, Xiang Y, Leis J. Site-directed mutagenesis using overlap extension PCR. Methods Mol Biol 1996;57:177-91.
    71.张浩,毛秉智.定点突变技术的研究进展.免疫学杂志.2000;16(4):S108-S110
    72. Nikcevic G, Kovacevic-Grujicic N, Stevanovic M. Improved transfection efficiency of cultured human cells. Cell Biol Int 2003;27(9):735-7.
    73. Abraham RT, Weiss A. Jurkat T cells and development of the T-cell receptor signalling paradigm. Nat Rev Immunol 2004;4(4):301-8.
    74. Knight JC. Functional implications of genetic variation in non-coding DNA for disease susceptibility and gene regulation. Clin Sci (Lond) 2003;104(5):493-501.
    75. Alarcon-Riquelme ME. The genetics of systemic lupus erythematosus: understanding how SNPs confer disease susceptibility. Springer Semin Immunopathol 2006;28(2):109-17.
    76. Pedersen AG, Baldi P, Chauvin Y, Brunak S. The biology of eukaryotic promoter prediction--a review. Comput Chem 1999;23(3-4):191-207.
    77. Morse RH. Transcription factor access to promoter elements. J Cell Biochem 2007;102(3):560-70.
    78. Wingender E, Dietze P, Karas H, Knuppel R. TRANSFAC: a database on transcription factors and their DNA binding sites. Nucleic Acids Res 1996;24(1):238-41.
    79. Orchard K, May GE. An EMSA-based method for determining the molecular weight of a protein--DNA complex. Nucleic Acids Res 1993;21(14):3335-6.
    80. Novak U, Paradiso L. Identification of proteins in DNA-protein complexes after blotting of EMSA gels. Biotechniques 1995;19(1):54-5.
    81. Dyer RB, Herzog NK. Immunodepletion EMSA: a novel method to identify proteins in a protein-DNA complex. Nucleic Acids Res 1995;23(16):3345-6.
    82.华东,李敏俐,王进科.两种化学发光电泳迁移率变动分析技术的比较.生物医学工程研究.2007;26(2):111-5.
    83. Rodgers JT, Patel P, Hennes JL, Bolognia SL, Mascotti DP. Use of biotin-labeled nucleic acids for protein purification and agarose-based chemiluminescentelectromobility shift assays. Anal Biochem 2000;277(2):254-9.
    84. Knuppel R, Dietze P, Lehnberg W, Frech K, Wingender E. TRANSFAC retrieval program: a network model database of eukaryotic transcription regulating sequences and proteins. J Comput Biol 1994;1(3):191-8.
    85.刘天婵,余应年.生物信息学在基因转录调控研究中的应用.中国病理生理杂志. 2004;20(4):668-672
    86. Wingender E, Karas H, Knuppel R. TRANSFAC database as a bridge between sequence data libraries and biological function. Pac Symp Biocomput 1997:477-85..
    87. Roder K, Schweizer M. Running-buffer composition influences DNA-protein and protein-protein complexes detected by electrophoretic mobility-shift assay (EMSA). Biotechnol Appl Biochem 2001;33(Pt 3):209-14.
    88. Ren B, Dynlacht BD. Use of chromatin immunoprecipitation assays in genome-wide location analysis of mammalian transcription factors. Methods Enzymol 2004;376:304-15.
    89. Ding C. 'Other' applications of single nucleotide polymorphisms. Trends Biotechnol 2007;25(7):279-83.
    90. Matesanz F, Fedetz M, Collado-Romero M, et al. Allelic expression and interleukin-2 polymorphisms in multiple sclerosis. J Neuroimmunol 2001;119(1):101-5.
    91. Cao H, van der Veer E, Ban MR, et al. Promoter polymorphism in PCK1 (phosphoenolpyruvate carboxykinase gene) associated with type 2 diabetes mellitus. J Clin Endocrinol Metab 2004;89(2):898-903.
    92. Hofler H, Specht K, Becker KF. Molecular analysis of gene expression in tumor pathology. Adv Exp Med Biol 2003;532:19-26.
    93. Wittwer CT, Herrmann MG, Gundry CN, Elenitoba-Johnson KS. Real-time multiplex PCR assays. Methods 2001;25(4):430-42.
    94. van der Velden VH, Hochhaus A, Cazzaniga G, Szczepanski T, Gabert J, van Dongen JJ. Detection of minimal residual disease in hematologic malignancies by real-time quantitative PCR: principles, approaches, and laboratory aspects. Leukemia 2003;17(6):1013-34.
    95. Wilson GD, Marples B. Flow cytometry in radiation research: past, present and future. Radiat Res 2007;168(4):391-403.
    1. Sestak AL, Nath SK, Sawalha AH, Harley JB. Current status of lupus genetics. Arthritis Res Ther 2007;9(3):210.
    2. Biswas NK, Dey B, Majumder PP. Using HapMap data: a cautionary note. Eur J Hum Genet 2007;15(2):246-9.
    3. Nannya Y, Taura K, Kurokawa M, Chiba S, Ogawa S. Evaluation of genome-wide power of genetic association studies based on empirical data from the HapMap project. Hum Mol Genet 2007;16(20):3494-505.
    4. Botstein D, Risch N. Discovering genotypes underlying human phenotypes: past successes for mendelian disease, future approaches for complex disease. Nat Genet 2003;33 Suppl:228-37.
    5. Ueda H, Howson JM, Esposito L, Heward J, Snook H, Chamberlain G, et al. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 2003;423(6939):506-11.
    6. Gough SC, Walker LS, Sansom DM. CTLA4 gene polymorphism and autoimmunity. Immunol Rev 2005;204:102-15.
    7. Anjos SM, Shao W, Marchand L, Polychronakos C. Allelic effects on gene regulation at the autoimmunity-predisposing CTLA4 locus: a re-evaluation of the 3' +6230G>A polymorphism. Genes Immun 2005;6(4):305-11.
    8. Krishnan S, Chowdhury B, Tsokos GC. Autoimmunity in systemic lupus erythematosus: integrating genes and biology. Semin Immunol 2006;18(4):230-43.
    9. Cai G, Karni A, Oliveira EM, Weiner HL, Hafler DA, Freeman GJ. PD-1 ligands, negative regulators for activation of naive, memory, and recently activated human CD4+ T cells. Cell Immunol 2004;230(2):89-98.
    10. Carter L, Fouser LA, Jussif J, Fitz L, Deng B, Wood CR, et al. PD-1:PD-L inhibitory pathway affects both CD4(+) and CD8(+) T cells and is overcome by IL-2. Eur J Immunol 2002;32(3):634-43.
    11. Wang J, Yoshida T, Nakaki F, Hiai H, Okazaki T, Honjo T. Establishment of NOD-Pdcd1-/- mice as an efficient animal model of type I diabetes. Proc Natl Acad Sci U S A 2005;102(33):11823-8.
    12. Haywood ME, Hogarth MB, Slingsby JH, Rose SJ, Allen PJ, Thompson EM, et al. Identification of intervals on chromosomes 1, 3, and 13 linked to the development of lupus in BXSB mice. Arthritis Rheum 2000;43(2):349-55.
    13. Prokunina L, Castillejo-Lopez C, Oberg F, Gunnarsson I, Berg L, Magnusson V, et al. A regulatory polymorphism in PDCD1 is associated with susceptibility to systemic lupus erythematosus in humans. Nat Genet 2002;32(4):666-9.
    14. Alarcon-Riquelme ME. The genetics of systemic lupus erythematosus: understanding how SNPs confer disease susceptibility. Springer Semin Immunopathol 2006;28 (2):109-17.
    15. Kong EK, Prokunina-Olsson L, Wong WH, Lau CS, Chan TM, Alarcon-Riquelme M, et al. A new haplotype of PDCD1 is associated with rheumatoid arthritis in Hong Kong Chinese. Arthritis Rheum 2005;52(4):1058-62.
    16. Otto F, Lubbert M, Stock M. Upstream and downstream targets of RUNX proteins. J Cell Biochem 2003;89(1):9-18.
    17. Begovich AB, Carlton VE, Honigberg LA, Schrodi SJ, Chokkalingam AP, Alexander HC, et al. A missense single-nucleotide polymorphism in a gene encoding a protein tyrosine phosphatase (PTPN22) is associated with rheumatoid arthritis. Am J Hum Genet 2004;75(2):330-7.
    18. Bottini N, Musumeci L, Alonso A, Rahmouni S, Nika K, Rostamkhani M, et al. A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Nat Genet 2004;36(4):337-8.
    19. Pearce SH, Merriman TR. Genetic progress towards the molecular basis of autoimmunity. Trends Mol Med 2006;12(2):90-8.
    20. Ikari K, Momohara S, Inoue E, Tomatsu T, Hara M, Yamanaka H, et al. Haplotype analysis revealed no association between the PTPN22 gene and RA in a Japanese population. Rheumatology (Oxford) 2006;45(11):1345-8.
    21. Ray D, Tomar N, Gupta N, Goswami R. Protein tyrosine phosphatase non-receptor type
    22 (PTPN22) gene R620W variant and sporadic idiopathic hypoparathyroidism in Asian Indians. Int J Immunogenet 2006;33(4):237-40.
    22. Zhuang H, Kosboth M, Lee P, Rice A, Driscoll DJ, Zori R, et al. Lupus-like disease and high interferon levels corresponding to trisomy of the type I interferon cluster onchromosome 9p. Arthritis Rheum 2006;54(5):1573-9.
    23. Barnes BJ, Richards J, Mancl M, Hanash S, Beretta L, Pitha PM. Global and distinct targets of IRF-5 and IRF-7 during innate response to viral infection. J Biol Chem 2004;279(43):45194-207.
    24. Graham RR, Kozyrev SV, Baechler EC, Reddy MV, Plenge RM, Bauer JW, et al. A common haplotype of interferon regulatory factor 5 (IRF5) regulates splicing and expression and is associated with increased risk of systemic lupus erythematosus. Nat Genet 2006;38(5):550-5.
    25. Takaoka A, Yanai H, Kondo S, Duncan G, Negishi H, Mizutani T, et al. Integral role of IRF-5 in the gene induction programme activated by Toll-like receptors. Nature 2005;434(7030):243-9.
    26. Mancl ME, Hu G, Sangster-Guity N, Olshalsky SL, Hoops K, Fitzgerald-Bocarsly P, et al. Two discrete promoters regulate the alternatively spliced human interferon regulatory factor-5 isoforms. Multiple isoforms with distinct cell type-specific expression, localization, regulation, and function. J Biol Chem 2005;280(22):21078-90.
    27. Cheung VG, Spielman RS, Ewens KG, Weber TM, Morley M, Burdick JT. Mapping determinants of human gene expression by regional and genome-wide association. Nature 2005;437(7063):1365-9.
    1. Yan Q, Malashkevich VN, Fedorov A, et al. Structure of CD84 provides insight into SLAM family function. Proc Natl Acad Sci U S A 2007;104(25):10583-8.
    2. Ma CS, Nichols KE, Tangye SG. Regulation of cellular and humoral immune responses by the SLAM and SAP families of molecules. Annu Rev Immunol 2007;25:337-79.
    3. Veillette A. Immune regulation by SLAM family receptors and SAP-related adaptors. Nat Rev Immunol 2006;6(1):56-66.
    4. Cocks BG, Chang CC, Carballido JM, Yssel H, de Vries JE, Aversa G. A novel receptor involved in T-cell activation. Nature 1995;376(6537):260-3.
    5. Latour S, Veillette A. Molecular and immunological basis of X-linked lymphoproliferative disease. Immunol Rev 2003;192:212-24.
    6. Carballido JM, Aversa G, Kaltoft K, et al. Reversal of human allergic T helper 2 responses by engagement of signaling lymphocytic activation molecule. J Immunol 1997;159(9):4316-21.
    7. Wang N, Satoskar A, Faubion W, et al. The cell surface receptor SLAM controls T cell and macrophage functions. J Exp Med 2004;199(9):1255-64.
    8. Davidson D, Shi X, Zhang S, et al. Genetic evidence linking SAP, the X-linked lymphoproliferative gene product, to Src-related kinase FynT in T(H)2 cytokine regulation. Immunity 2004;21(5):707-17.
    9. Howie D, Simarro M, Sayos J, Guirado M, Sancho J, Terhorst C. Molecular dissection of the signaling and costimulatory functions of CD150 (SLAM): CD150/SAP binding and CD150-mediated costimulation. Blood 2002;99(3):957-65.
    10. Cannons JL, Yu LJ, Hill B, et al. SAP regulates T(H)2 differentiation and PKC-theta-mediated activation of NF-kappaB1. Immunity 2004;21(5):693-706.
    11. Sun Z, Arendt CW, Ellmeier W, et al. PKC-theta is required for TCR-induced NF-kappaB activation in mature but not immature T lymphocytes. Nature 2000;404 (6776):402-7.
    12. Sidorenko SP, Clark EA. Characterization of a cell surface glycoprotein IPO-3, expressed on activated human B and T lymphocytes. J Immunol 1993;151(9):4614-24.
    13. Kis LL, Nagy N, Klein G, Klein E. Expression of SH2D1A in five classical Hodgkin'sdisease-derived cell lines. Int J Cancer 2003;104(5):658-61.
    14. Crotty S, McCausland MM, Aubert RD, Wherry EJ, Ahmed R. Hypogamma- globulinemia and exacerbated CD8 T-cell-mediated immunopathology in SAP-deficient mice with chronic LCMV infection mimics human XLP disease. Blood 2006;108(9):3085-93.
    15. Punnonen J, Cocks BG, Carballido JM, et al. Soluble and membrane-bound forms of signaling lymphocytic activation molecule (SLAM) induce proliferation and Ig synthesis by activated human B lymphocytes. J Exp Med 1997;185(6):993-1004.
    16. Mikhalap SV, Shlapatska LM, Yurchenko OV, et al. The adaptor protein SH2D1A regulates signaling through CD150 (SLAM) in B cells. Blood 2004;104(13):4063-70.
    17. Mikhalap SV, Shlapatska LM, Berdova AG, Law CL, Clark EA, Sidorenko SP. CDw150 associates with src-homology 2-containing inositol phosphatase and modulates CD95-mediated apoptosis. J Immunol 1999;162(10):5719-27.
    18. Farina C, Theil D, Semlinger B, Hohlfeld R, Meinl E. Distinct responses of monocytes to Toll-like receptor ligands and inflammatory cytokines. Int Immunol 2004;16(6):799-809.
    19. Bleharski JR, Niazi KR, Sieling PA, Cheng G, Modlin RL. Signaling lymphocytic activation molecule is expressed on CD40 ligand-activated dendritic cells and directly augments production of inflammatory cytokines. J Immunol 2001;167(6):3174-81.
    20. Rethi B, Gogolak P, Szatmari I, et al. SLAM/SLAM interactions inhibit CD40-induced production of inflammatory cytokines in monocyte-derived dendritic cells. Blood 2006;107(7):2821-9.
    21. Komori H, Furukawa H, Mori S, et al. A signal adaptor SLAM-associated protein regulates spontaneous autoimmunity and Fas-dependent lymphoproliferation in MRL-Faslpr lupus mice. J Immunol 2006;176(1):395-400.
    22. Hron JD, Caplan L, Gerth AJ, Schwartzberg PL, Peng SL. SH2D1A regulates T-dependent humoral autoimmunity. J Exp Med 2004;200(2):261-6.
    23. Chan AY, Westcott JM, Mooney JM, Wakeland EK, Schatzle JD. The role of SAP and the SLAM family in autoimmunity. Curr Opin Immunol 2006;18(6):656-64.
    24. Wandstrat AE, Nguyen C, Limaye N, et al. Association of extensive polymorphisms in the SLAM/CD2 gene cluster with murine lupus. Immunity 2004;21(6):769-80.
    25. Yanagi Y, Ono N, Tatsuo H, Hashimoto K, Minagawa H. Measles virus receptor SLAM (CD150). Virology 2002;299(2):155-61.
    26. Dhiman N, Jacobson RM, Poland GA. Measles virus receptors: SLAM and CD46. Rev Med Virol 2004;14(4):217-29.
    27. Grosjean I, Caux C, Bella C, et al. Measles virus infects human dendritic cells and blocks their allostimulatory properties for CD4+ T cells. J Exp Med 1997; 186(6):801-12.
    28. Fugier-Vivier I, Servet-Delprat C, Rivailler P, Rissoan MC, Liu YJ, Rabourdin-Combe C. Measles virus suppresses cell-mediated immunity by interfering with the survival and functions of dendritic and T cells. J Exp Med 1997;186(6):813-23.
    29. Ward BJ, Griffin DE. Changes in cytokine production after measles virus vaccination: predominant production of IL-4 suggests induction of a Th2 response. Clin Immunol Immunopathol 1993;67(2):171-7.
    30. Hahm B, Arbour N, Oldstone MB. Measles virus interacts with human SLAM receptor on dendritic cells to cause immunosuppression. Virology 2004;323(2):292-302.
    31. Welstead GG, Hsu EC, Iorio C, Bolotin S, Richardson CD. Mechanism of CD150 (SLAM) down regulation from the host cell surface by measles virus hemagglutinin protein. J Virol 2004;78(18):9666-74.
    32. Kiel MJ, Yilmaz OH, Iwashita T, Yilmaz OH, Terhorst C, Morrison SJ. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 2005;121(7):1109-21.
    33. Shizuru JA, Negrin RS, Weissman IL. Hematopoietic stem and progenitor cells: clinical and preclinical regeneration of the hematolymphoid system. Annu Rev Med 2005;56:509-38.
    [1]. Pearce SH, Merriman TR. Genetic progress towards the molecular basis of autoimmunity. Trends Mol Med 2006;12:90-98.
    [2] Reveille JD. Genetic studies in the rheumatic diseases: present status and implications for the future. J Rheumatol Suppl 2005;72:10-13.
    [3] Alarcon-Riquelme ME. The genetics of systemic lupus erythematosus: understanding how SNPs confer disease susceptibility. Springer Semin Immunopathol 2006;28:109-117.
    [4]. Shin HD, Sung YK, Choi CB, Lee SO, Lee HW, Bae SC. Replication of the genetic effects of IFN regulatory factor 5 (IRF5) on systemic lupus erythematosus in a Korean population. Arthritis Res Ther 2007;9:R32.
    [5]. Thorburn CM, Prokunina-Olsson L, Sterba KA, Lum RF, Seldin MF, Alarcon-Riquelme ME, Criswell LA. Association of PDCD1 genetic variation with risk and clinical manifestations of systemic lupus erythematosus in a multiethnic cohort. Genes Immun 2007;8:279-287.
    [6]. Demirci FY, Manzi S, Ramsey-Goldman R, et al.Association of a common interferon regulatory factor 5 (IRF5) variant with increased risk of systemic lupus erythematosus (SLE). Ann Hum Genet 2007;71:308-311.
    [7]. Miller I, Hatzivassiliou G, Cattoretti G, Mendelsohn C, Dalla-Favera R. IRTAs: a new family of immunoglobulinlike receptors differentially expressed in B cells. Blood 2002;99:2662-2669.
    [8]. Chistiakov DA, Chistiakov AP: Is FCRL3 a new general autoimmunity gene? Hum Immunol 2007;68:375-383.
    [9]. Kochi Y, Yamada R, Suzuki A. et al. A functional variant in FCRL3, encoding Fc receptor-like 3, is associated with rheumatoid arthritis and several autoimmunities.Nat Genet 2005;37:478-485.
    [10]. Ikari K, Momohara S, Nakamura T, Hara M, Yamanaka H, Tomatsu T, Kamatani N: Supportive evidence for a genetic association of the FCRL3 promoter polymorphism with rheumatoid arthritis. Ann Rheum Dis 2006;65:671-673.
    [11]. Tan EM, Cohen AS, Fries JF, Masi AT, McShane DJ, Rothfield NF, Schaller JG, Talal N, Winchester RJ. The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 1982;25:1271-1277.
    [12]. Hochberg MC: Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 1997;40:1725.
    [13]. Shirasawa S: [Susceptibility genes for the development of autoimmune thyroid disease]. Nippon Rinsho 2006;64:2208-2214.
    [14]. Hu X, Chang M, Saiki RK. et al. The functional -169T-->C single-nucleotide polymorphism in FCRL3 is not associated with rheumatoid arthritis in white North Americans. Arthritis Rheum 2006;54:1022-1025.
    [15]. Eyre S, Bowes J, Potter C, Worthington J, Barton A. Association of the FCRL3 gene with rheumatoid arthritis: a further example of population specificity? Arthritis Res Ther 2006;8:R117.
    [16]. Umemura T, Ota M, Yoshizawa K, Katsuyama Y, Ichijo T, Tanaka E, Kawa S, Kiyosawa K. Lack of association between FCRL3 and FcgammaRII polymorphisms in Japanese type 1 autoimmune hepatitis. Clin Immunol 2007;122:338-342.
    [17]. Choi CB, Kang CP, Seong SS, Bae SC, Kang C. The -169C/T polymorphism in FCRL3 is not associated with susceptibility to rheumatoid arthritis or systemic lupus erythematosus in a case-control study of Koreans. Arthritis Rheum 2006;54:3838-3841.
    [18]. Martinez A, Sanchez E, Valdivia A, Orozco G. et al. Epistatic interaction between FCRL3 and NFkappaB1 genes in Spanish patients with rheumatoid arthritis. Ann Rheum Dis 2006;65:1188-1191.
    [19]. Martinez A, Nunez C, Martin MC, Mendoza JL, Taxonera C, Diaz-Rubio M, de la Concha EG, Urcelay E. Epistatic interaction between FCRL3 and MHC in Spanish patients with IBD. Tissue Antigens 2007;69:313-317.
    [20]. Mori M, Yamada R, Kobayashi K, Kawaida R, Yamamoto K. Ethnic differences inallele frequency of autoimmune-disease-associated SNPs. J Hum Genet 2005;50:264-266.
    [21]. Gregersen PK, Lee HS, Batliwalla F, Begovich AB. PTPN22: setting thresholds for autoimmunity. Semin Immunol 2006;18:214-223.
    [22]. Rueda B, Reddy MV, Gonzalez-Gay MA, et al. Analysis of IRF5 gene functional polymorphisms in rheumatoid arthritis. Arthritis Rheum 2006;54:3815-3819.本文已经被Journal of dermatological science杂志接受(SCI,IF:2.636)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700