用户名: 密码: 验证码:
大鼠视觉可塑性相关基因cDNA消减文库的构建及筛选
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:采用抑制性消减杂交技术构建大鼠视觉可塑性相关基因的cDNA消减文库,筛选与视觉可塑性关键期终止相关的基因及与视觉可塑性相关的基因,探讨视觉可塑性及其关键期终止的分子机制。
     方法:本研究主要分为四个部分,各部分的具体研究方法如下:1、自行设计并制作专用大鼠暗饲养箱,建立暗饲养动物模型及暗饲养后予光照刺激动物模型。2、采用暗饲养动物模型(D67)及暗饲养后予光照刺激动物模型(D60+L7),应用抑制性消减杂交技术构建大鼠视皮质与视觉可塑性关键期终止相关基因的cDNA消减文库。并通过PCR筛选、反向Northern杂交、测序及同源性检索对差异表达基因进行分析,筛选视觉可塑性关键期终止相关基因。3、应用抑制性消减杂交技术构建幼年(P28)和成年(P60)大鼠视皮质差异表达基因的cDNA消减文库。并通过PCR筛选、反向Northern杂交、测序及同源性检索对差异表达基因进行分析,筛选视觉可塑性相关基因。4、采用半定量RT-PCR技术检测部分筛选到的基因在不同组大鼠视皮质中表达情况,进一步验证应用抑制性消减杂交技术筛选到的差异表达基因的真实性。
     结果:1、自行设计并成功制作了能满足实验要求的专用大鼠暗饲养箱,成功建立了暗饲养动物模型及暗饲养后予光照刺激动物模型。2、成功构建了大鼠视皮质与视觉可塑性关键期终止相关基因的cDNA消减文库,经筛选,得到14个在D60+L7大鼠视皮质中上调表达基因的片段。其中13个为已知基因,一个为新基因片断。发现锌指蛋白9、烯醇酶-1、热休克蛋白8、脂肪细胞补体相关蛋白、肽基脯氨酸异构酶A、非神经元烯醇酶及ftp-3基因参与了视觉可塑性关键期的终止,同时,也筛选到既往有文献报道其功能与可塑性相关的β-微管蛋白基因、髓磷脂碱蛋白基因、亲环素基因参与了视觉可塑性关键期的终止。3、成功构建了幼年和成年大鼠视皮质差异表达基因的cDNA消减文库,经过筛选,最后确定了11个基因在视觉可塑性关键期内的大鼠(P28)视皮质中上调表达,4个基因在视觉可塑性关键期终止后的大鼠(P60)视皮质中上调表达。发现硬脂酰基-辅酶A去饱和酶2基因、α血红蛋白基因、谷氨酸-脯氨酸二肽重复蛋白基因、mDj4、不均一核糖核酸核蛋白C1/C2基因、strain BN/SsNHsdMCW
Objective:To construct subtractive cDNA libraries which associated with visual cortex plasticity in the rat by using suppression subtractive hybridization technique and screening the related genes which associated with termination of the critical period of the visual cortex plasticity or associated with visual cortex plasticity.And to investigate the molecular mechanism involved.
     Methods:1、Designed and made the dark rearing box for rats and established animal models of dark rearing rats and dark-reared for 60 days postnatal and light-exposed for 7 days rats.2、A subtracted cDNA library was constructed with the visual cortex of rats that were dark-reared for 67 days postnatal(D67) and of those that were dark-reared for 60 days postnatal and light-exposed for 7 days(D60+L7) by using suppression subtractive hybridization technique.Differentially expressed genes were screened by polymerase chain reaction(PCR),reverse Northern hybridization,sequencing and homology analysis to screening genes which related to termination the critical period.3、To construct subtractive cDNA libraries using juvenile(P28) and adult(P60) rats' visual cortex with suppression subtractive hybridization technique.Using PCR technique,reverse Northern hybridization, sequencing and homology search to analysis the differential expression genes fragments to screening genes which associated with plasticity.4、Used semiquantitative RT-PCR to measure the expression level of several genes which screened by SSH in the visual cortex of different groups to further verify the reliability of the SSH.
     Results:1、The dark rearing box was made successfully and established animal models of dark rearing rats and light-exposed after dark-reared rats.2、The subtracted cDNA library associated with termination of the critical period of visual cortex plasticity in rats was constructed successfully.After screening,14 sequences which were up-regulated in the visual cortex of D60+L7 rats were obtained.There were 13 known genes fragments and a novel one.Of the known genes,we found Znf9、Eno-1、Hsp8、30 kDa adipocyte complement-related protein、Ppia、Non-Neuronal Enolase and ftp-3 gene participation the termination course of the critical period of visual cortex plasticity.And we also found those genes which encodingβ-Tubulin,myelin basic protein,and Cyclophilin participation the termination of the critical period which's function had been reported to be associated with visual cortex plasticity.3、Juvenile and adult rats' visual cortex differential expression genes' subtractive cDNA libraries were set up successfully.11 genes were obtained by sequencing and homology search which were up-regulation expressed in the visual cortex of P28 and 4 genes were up-regulation expressed in P60.We found Scd2、Hba-al、Glu-Pro dipeptide repeat protein、mDj4、hnRNP C1/ hnRNP C2 and strain BN/SsNHsdMCW mitochondrion gene which were up-regulation expressed in the visual cortex of P28 rats, which participate the critical period of plasticity and were the genes which related to plasticity,Hsp8、strain F344 x BN F1 mitochondrion、BHE/Cdb tRNA-Lys gene、complete mitochondrial genome participate the termination of the critical period of visual cortex plasticity of adult rats.And we also found those genes encoding calmodulin 2,cytochrome b and proteolipid protein were up-regulation expressed in the visual cortex of P28 rats, whose function had been reported to be associated with visual cortex plasticity.4、The results of semiquantitative RT-PCR indicating that the level of Hsp8 mRNA expression was significant higher in the visual cortex of P60 rats than that of P28 rats,the level of Plp mRNA expression was significant higher in the visual cortex of P28 rats than that of P60 rats,the level of Mbp mRNA expression was significant higher in the visual cortex of D60+L7 rats than that of D67 rats,which were in agreement with the SSH results and further verifies the reliability of the subtractive cDNA library we constructed.The results confirmed that Hsp8 gene and Mbp gene were the genes which termination the critical period,and Plp gene was the plasticity gene.
     Conclusions:The successfully construction of the subtracted cDNA libraries laying an important basis for elucidating the molecular mechanism of the critical period of visual cortex plasticity.A set of candidate genes association with termination of the critical period and association with visual cortex plasticity were screened from the subtracted cDNA libraries.Further screening and verification these genes maybe found the most important genes which determine whether or not termination of the critical period.It will make it possible to use gene therapy to regulation the critical period of visual cortex plastitity and
引文
1. Hubel DH, Wiesel YN. The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J Physiol,1970,206(2):419-436
    2. Hubel DH, Wiesel TN, LeVay S. Plasticity of ocular dominance columns in monkey striate cortex. Philos Trans R Soc Lond B Biol Sci,1977,278:377-409
    3. Gordon JA, Stryker MP. Experience-dependent plasticity of binocular responses in the primary visual cortex of the mouse. J Neurosci, 1996,16:3274-3286
    4. 管怀进, 龚启荣主编. 现代基础眼科学. 人民军医出版社,1998, 382.
    5. Berardi N, Pizzorusso T, Ratto GM,et al. Molecular basis of plasticity in the visual cortex. Trends Neurosci,2003,26(7):369-378
    6. Pinaud R, Tremere LA, Penner MR, et al. Complexity of sensory environment drives the expression of candidate-plasticity gene, nerve growth factor induced-A. J Neurosci, 2002,112(3):573-582
    7. Michela F, Takao KH. Inhibitory threshold for critical-period activation in primary visual cortex. Nature. 2000,404(9): 183-186
    8. Bear MF, Rittenhse CD. Molecular basis for induction of ocular dominance plasticity.J Neurobiol,1999,41(1):83-91
    9. Lachance PE, Chaudhuri A. Microarray analysis of developmental plasticity in monkey primary visual cortex. J Neurochem,2004,88(6):1455-1469
    10. Ossipow V, Pellissier F, Schaad O, et al. Gene expression analysis of the critical period in the visual cortex. Mol Cell Neurosci,2004,27(1):70-83
    11. Yang CB, Zheng YT, Li GY, et al. Identification of Munc13-3 as a Candidate Gene for Critical-Period Neuroplasticity in Visual Cortex. J Neurosci,2002, 22(19):8614-8618
    12. Roderick A, Corriveau, Carla J, et al. Dynamic Regulation of cpg15 during Activity-Dependent Synaptic Development in the Mammalian Visual System. J Neurosci, 1999, 19(18):7999-8008
    13. Cuibo Y, Bethany S, Steven R, et al. Bidirectional regulation of mitochondrial gene expression during developmental neuroplasticity of visual cortex. Biochem Biophys Res Commun, 2001, 287(5):1070-1074
    14. Prasad S, Kojic L, Li P et al. Gene expression patterns during enhanced periods of visual cortex plasticity.J Neurosci,2003,111(1):35-45.
    15.Prasad SS,Cynader MS.Identification of cDNA clones expressed selectively during the critical period for visual cortex development by subtractive hybridization.Brain Res,1994,639(1):73-84
    16.Cynader MS.Prolonged sensitivity to monocular deprivation in dark-reared cats:effects of age and visual exposure.Brain Res,1983,284(2-3):155-164
    17.Fagiolini M,Pizzorusso T,Berardi N,et al.Functional postnatal development of the rat primary visual cortex and the role of visual experience:dark rearing and monocular deprivation.Vision Res,1994,34:709-720.
    18.Mower GD,Caplan CJ,Christen WG,et al.Dark rearing prolongs physiological but not anatomical plasticity of the cat visual cortex.J Comp Neurol,1985,235(4):448-466
    19.Viegi A,Cotrufo T,Berardi N,et al.Effects of dark rearing on phosphorylation of neurotrophin Trk receptors.Eur J Neurosci,2002,16(10):1925-1930
    20.Mower GD,Berry DJ,Burchfiel JL,et al.Comparison of the effects of dark rearing and binocular suture on development and plasticity of cat visual cortex.Brain Res,1981,220(2):255-267
    21.Tommaso P,Paolo M,Nicoletta B,et al.Reactivation of ocular dominance plasticity in the adult visual cortex.Science,2002,298(8):1248-1251
    22.Lee WC,Nedivi E.Extended Plasticity of Visual Cortex in Dark-Reared Animals May Results from Prolonged Expression of cpg15-Like Genes.J Neurosci,2002,22(5):1807-1815
    23.Lisitsyn NA.Representational difference analysis:finding the differences between genomes.Trends Genet,1995,11(8):303-307
    24.Liang P,Pardee AB.Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction.Science,1992,257(5072):967-971
    25.周安宇,张宏,王海燕.基因差异表达研究方法的进展及其在肾脏科学研究中的应用.国外医学泌尿系统分册,2002,22(4):242-246
    26.Diatchenleo L,Lau YFC,Campbell AP,et al.Suppression subtractive hybridazation:A method for generating differentially regulated or tissue-specific cDNA probes and libraries.Proc Natl Acad Sci USA,1996,93:6025-6030.
    27.Von Stein OD,Thies WG,Hofmann M.A high throughput screening for rarely transcribed differentially expressed genes.Nucleic Acids Res, 1997,25(13):2598-2602.
    28. Stassar MJ, Devitt G, Brosius M, et al. Identification of human renal cell carcinoma associated genes by suppression subtractive hybridization. Br J Cancer, 2001, 85(9): 1372-1382.
    29. Eleveld-Trancikova D, Kudela P, Majerciak V, et al. Suppression subtractive hybridization to isolate differentially expressed genes involved in invasiveness of melanoma cell line cultured under different conditions. Int J Oncol, 2002, 20(3): 501-508.
    30. Wang HC, Ko YH, Mersmann HJ, et al. The expression of genes related to adipocyte differentiation in pigs. J Anim Sci, 2006,84(5): 1059-1066
    31. Chen Y, Zhang YZ, Zh ZG, et al. Identification of differently expressed genes in human colorectal adenocarcinoma. World J Gastroenterol, 2006,12(7):1025-1032
    32. Naranjo V, Hofle U, Vicente J, et al. Genes differentially expressed in oropharyngeal tonsils and mandibular lymph nodes of tuberculous and nontuberculous European wild boars naturally exposed to Mycobacterium bovis. FEMS Immunol Med Microbiol, 2006,46(2):298-312
    33. Buisseret P, Gary-Bobo E, Imbert M. Ocular motility and recovery of orientational properties of visual cortical neurons in dark-reared kitten. Nature, 1978,272(5656): 816-817
    34. Kaminska B, Kaczmarek L, Chaudhuri A. Visual stimulation regulates the expression of transcription factors and modulates the composition of AP-1 in visual cortex. J Neurosci, 1996,16(12):3968-3978
    35. Raphae P, Liisa A, Tremere.Light-induced zif268 expression is dependent on noradrenergic input in rat visual cortex. Brain Research,2000,882:251-255
    36. Maccioni RB, Veronica CV. Role of microtubule-associated proteins in the control of microtubule as assembly. Physiol Rev, 1995, 75: 835-864.
    37. Diaz-Nido J, Serrano L, Hernandez M, et al. Phosphorylation of microtubule protein in rat brain at different developmental stages:Comparison with that found in neuronal cultures. J Neurochem, 1990,54(1):211 -214
    38. Caroni P, Schwab ME. Antibody against myelin-associated inhibitor of neurite growth neutralizes non-permissive substrate properties of CNS white matter. Neuron, 1988,1: 85-96.
    39. Reynolds R, Wilkin GP. Development of macroglial cells in rat cerebellum II. An in situ immunohistochemical study of oligodendroglial lineage from precursor to mature myelinating cell. Development, 1988,102: 409-425
    40. MacLaren RE. Expression of myelin proteins in the opossum optic nerve: late appearance of inhibitors implicates an earlier non-myelin factor in preventing ganglion cell regeneration. J Comp Neurol. 1996,372(1):27-36
    41. Baumann N, Pham-Dinh D. Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol Rev. 2001,81(2):871-927.
    42. Bandtlow CE, and Schwab ME. NI-35/250/nogo-a: a neurite growth inhibitor restricting structural plasticity and regeneration of nerve fibers in the adult vertebrate CNS. Glia, 2000,29: 175-181.
    43. Blight A. Containing plasticity: neurite inhibitory factors of myelin. Nat Neurosci,1998, 1(2): 87-88.
    44. Qiu J, Cai D, and Filbin MT. Glial inhibition of nerve regeneration in the mature mammalian CNS. Glia , 2000,29: 166-174
    45. Patrik V, Michaela T, Martin E,et al. Increased lesion - induced sprouting of corticospinal fibres in the myelin-free rat spinal cord. Eur J Neurosci,1998,10(1):45-56
    46. Arckens L, Van der Gucht E, Van den Bergh G, et al. Differential display implicates cyclophilin A in adult cortical plasticity. Eur J Neurosci, 2003 ,18(1):61-75
    47. Zeng J,Heuchel R,Schaffner W, et al. Thionein (apometallothionein) can modulate DNA binding and transcription activation by zinc finger containing factor Spl.FEBS Lett.1991,279(2):310-315
    48. Miller J, Mclachlan AD, Klug A. Repetitive zinc-binding domains in the protein transcription factor ⅢA from xenopus oocytes.EMBO J, 1985, 4(6): 1609-1704
    49. Sakimura K, Kushiya E, Obinata M, et al. Molecular cloning and the nucleotide sequence of cDNA to mRNA for non-neuronal enolase (alpha alpha enolase) of rat brain and liver. Nucleic Acids Res,1985,13(12):4365-4378
    50. Heydari AR, Takahashi R, Gutsmann A, et al. Hsp70 and aging. Experientia, 1994,50(11-12):1092-1098
    51. Wu B, Gu MJ, Heydari AR, et al. The effect of age on the synthesis of two heat shock proteins in the hsp70 family. J Gerontol, 1993,48(2): 50-56
    52. Il Soo Moon, In Sick Park, Leslie T, et al. Presence of both Constitutive and Inducible Forms of Heat Shock Protein 70 in the Cerebral Cortex and Hippocampal Synapses. Cerebral Cortex,2001,11(3):238-248
    53. Kelly S, Bieneman A, Horsburgh K, et al. Targeting expression of hsp70i to discrete neuronal populations using the Lmo-1 promoter: assessment of the neuroprotective effects of hsp70i in vivo and in vitro. J Cereb Blood Flow Metab, 2001,21(8):972-981
    54. Ratajczak T, Carrello A. Cyclophilin 40 (CyP240), mapping of its hsp90 binding domain and evidence that FKBP52 competes with CyP 40 for hsp90 binding. J Biol Chem, 1996,271 (6):2961 -2965
    55. Joshua A, Michael P. Experience-dependent plasticity of binocular responses in the primary visual cortex of the mouse . J Neurosci,1996,16(10):3274-3286
    56. Weimbs T, Stoffel W. Proteolipid protein (PLP) of CNS myelin: position of free, disulfide-bonded, and fatty acid thioester-linked cysteine residues and implication for the membrane topology of PLP. Biochemistry, 1992, 31:12289-12296.
    57. Sinoway MP, Kitagawa K, Timsit S, et al. Proteolipid protein interactions in transfectants: implications for myelin assembly. J Neurosci Res, 1994, 37:551-562.
    58. Simons M, Kramer EM, Macchi P,et al. Overexpression of the myelin proteolipid protein leads to accumulation of cholesterol and proteolipid protein in endosomes/lysosomes : implications for Pelizaeus-Merzbacher disease . J Cell Biol, 2002,157(2):327-336
    59. Garbern J, Cambi F, Shy M, et al. The molecular pathogenesis of Pelizaeus-Merzbacher disease . Arch Neurol, 1999,56:1210-1214
    60. Jia WG, Beaμlieu C, Liu YL et al. Calcium calmodulin dependent kinase Ⅱ in cat visual cortex and its development. Dev Neurosci, 1992,14(3):238-246
    61. Ho N, Liauw JA, Blaeser F, et al. Impaired synaptic plasticity and cAMP response element-binding protein activation in Ca2+/calmodulin-dependent protein kinase type Ⅳ/Gr-deficient mice. J Neurosci, 2000, 20(17): 6459-6472
    62. Malinow R, Schμlman H, Tsien RW.Inhibition of postsynaptic PKC or CaMKⅡ blocks induction but not expression of LTP. Science, 1989,245,862-866
    63. Funauchi M, TsμMoto T, Nishigori A, et al. Long-term depression is induced in Ca2+/calmodulin in kinase-inhibited visual cortex neurons. Neuroreport,1992,3: 173-176
    64. Lledo PM, Hjelmstad GO, Mukherji S, et al. Calcium/calmodulin-dependent kinase II and long-term potentiation enhance synaptic transmission by the same mechanism. Proc Natl Acad Sci, 1995,92:11175-11179
    65. Silva AJ, Stevens CF, Tonegawa S, et al. Deficient hippocampal long-term potentiation ina-calcium-calmodulin kinase Ⅱ mutant mice. Science, 1992,257:201-206
    66. Silva AJ, Paylor R, Wehner JM, et al. Impaired spatial learning ina-calcium-calmodulin kinase Ⅱ mutant mice. Science, 1992,257:206-211
    67. Gordon JA, Cioffi D, Silva AJ,et al. Deficient Plasticity in the Primary Visual Cortex of α-Calcium/Calmodulin-dependent Protein Kinase II Mutant Mice. Neuron, 1996,17(3): 491-499
    68. Gadaleta G, Pepe G, De Candia G, et al. The complete nucleotide sequence of the Rattus norvegicus mitochondrial genome: cryptic signals revealed by comparative analysis between vertebrates. J Mol Evol,1989,28(6):497-516
    69. Kaminska B, Kaczmarek L, Larocque S, et al. Activity-dependent regulation of cytochrome b gene expression in monkey visual cortex. J Comp Neurol, 1997,379(2):271-282
    70. Pinter M, Lent DD, Strausfeld NJ, et al. Memory consolidation and gene expression in Periplaneta americana. Learn Mem, 2005,12(1):30-38
    71. Hevner RF, Wong-Riley MT. Regulation of cytochrome oxidase protein levels by functional activity in the macaque monkey visual system. J Neurosci,1990,10(4): 1331 -1340
    72. Hevner RF, Wong-Riley MT. Neuronal expression of nuclear and mitochondrial genes for cytochrome oxidase (CO) subunits analyzed by in situ hybridization: comparison with CO activity and protein. JNeurosci,1991,11(7):1942-1958
    73. Dyck RH, Cynader MS. An interdigitated columnar mosaic of cytochrome oxidase, zinc, and neurotransmitter-related molecules in cat and monkey visual cortex. Proc Natl Acad Sci U S A. 1993, 90(19): 9066-9069.
    74. Kaestner KH, Ntambi JM, Kelly TJ, et al. Differentiation-induced gene expression in 3T3-L1 preadipocytes. A second differentially expressed gene encoding stearoyl-CoA desaturase. J Biol Chem. 1989, 264(25): 14755-14761
    1. Hubel DH, Wiesel YN. The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J Physiol, 1970,206(2):419-436
    2. Hubel DH, Wiesel TN, LeVay S. Plasticity of ocular dominance columns in monkey striate cortex. Philos Trans R Soc Lond B Biol Sci, 1977,278:377-409
    3. Gordon JA, Stryker MP. Experience-dependent plasticity of binocular responses in the primary visual cortex of the mouse. J Neurosci, 1996,16:3274-3286
    4. Berardi N, Pizzorusso T, Ratto GM,et al. Molecular basis of plasticity in the visual cortex. Trends Neurosci,2003,26(7):369-378
    5. Bear MF, Rittenhouse CD. Molecular basis for induction of ocular dominance plasticity.JNeurobiol,1999,41(1):83-91
    6. Lachance PE, Chaudhuri A. Microarray analysis of developmental plasticity in monkey primary visual cortex . J Neurochem,2004,88(6): 1455-1469
    7. Ossipow V, Pellissier F, Schaad O,et al. Gene expression analysis of the critical period in the visual cortex. Mol Cell Neurosci.2004,27(1):70-83
    8. Schuman E M. Neurotrophin regulation of synaptic transmission. Curr Opin Neurobiol, 1999,9:105-109
    9. McAllister AK, Katz LC, Lo DC. Neurotrophins and synapticplasticity. Annu Rev Neurosci, 1999,22:295-318
    10. Berninger B, Poo M. Exciting neurotrophins.Nature,1999, 401(6756):860~863
    11. Kafitz K W, Rose C R, Thoenen H, et al. Neurotrophin-evoked rapid excitation through TrkB receptors. Nature,1999, 401(6756):918~921
    12. Bonhoeffer T. Neurotrophins and activity-dependent development of the neocortex. Curr Opin Neurobiol, 1996,6:119—126
    13. Lindholm D. Neurotrophic factors and neuronal plasticity: is there a link? Adv Neurol, 1997,73:1-6
    14. Von Bartheld C S. Neurotrophins in the developing and regenerating visual system. Histol Histipathol,1998,13(2):437—459
    15. Kang H, Schuman E M. Long-lasting neurotrophin-induced enhancement of synaptic transmission in the adult hippocampus. Science, 1995,267 (5204):1658-1662
    16. Pinaud R, Tremere LA, Penner MR, et al. Complexity of sensory environment drivers the expression of candidate-plasticity gene, nerve growth factor induced-A. J Neurosci, 2002,112(3): 573-582
    
    17. Castren E, Zafra F, Thoenen H, et al. Light regulates expression of brain-derived neurotrophic factor mRNA in rat visual cortex. Proc Natl Acad Sci USA, 1992,89(20):9444-9448
    
    18. Capsoni S, Tongiorgi E, Cattaneo A, et al. Differential regulation of brain-derived neurotrophic factor messenger RNA cellular expression in the adult rat visual cortex.J Neurosci. 1999,93(3):1033-1040.
    
    19. Carmignoto G, Cellerino A, Domenici L, et al. Effects of nerve growth factor on neuronal plasticity of the kitten visual cortex. J Physiol, 1993.464:343-360
    
    20. Domenici L, Parisi V, Maffei L. Exogenous supply of nerve growth factor prevents the effects of strabismus in the rat. J Neurosci, 1992,51(1): 19-24
    
    21. Domenici L, Berardi N, Carmignoto G, et al. Nerve growth factor prevents the amblyopic effects of monocular deprivation. Proc Natl Acad Sci USA,1991,88(19):8811-8815
    
    22. Fiorentini A, Berardi N, Maffei L, et al. Nerve growth factor preserves behavioral visual acuity in monocularly deprived kittens. Visual Neurosci, 1995; 12:51
    
    23. Caleo M, Lodovichi C, Pizzorusso T, et al. Expression of the transcription factor Zif268 in the visual cortex of monocularly deprived rats: effects of nerve growth factor.J Neurosci, 1999,91 (3):1017-1026
    
    24. Fagiolini M, Pizzorusso T, Berardi N, et al. Functional postnatal development of the rat primary visual cortex and the role of visual experience: dark rearing and monocular deprivation. Vision Res. 1994;34(6):709
    
    25. Alessandro B, Laura C, Susan W, et al. Heterozygous Knock-Out Mice for Brain-Derived Neurotrophic Factor Show a Pathway-Specific Impairment of Long-Term Potentiation But Normal Critical Period for Monocular Deprivation. J Neurosci, 2002, 22(23): 10072-10077
    
    26. Huang ZJ, Kirkwood A, Pizzorusso T, et al. BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex. Cell,1999,98(6):739-755
    27.Qiang G,Yulin L,Max SC.Nerve Growth Factor-Induced Ocular Dominance Plasticity in Adult Cat Visual Cortex.Proc Natl Acad Sci U S A,1994,91(18):8408-8412
    28.高鹏芬,阴正勤,刘应兵,等.大鼠视觉发育可塑性关键期内视皮层神经元LTP的研究.中国神经科学杂志,2002,11:2435-2438
    29.Huang CS,Shi SH,Ule J,et al.Common molecular pathways mediate long-term potentiation of synaptic excitation and slow synaptic inhibition.Cell,2005,123(1):105-118.
    30.阴正勤,孟晓红,陈莉.斜视幼猫发育过程中视皮层神经元NMDA-R1的表达.第三军医大学学报,2002,24(7):749-771。
    31.Yin ZQ,Grewther GS,Grewther PD.Distribution and localization of NMDA receptor subunit 1 in the visual cortex of strabismic and anisometropic amblyopic cat.Neuroreport,1996,7(18):2997-3003
    32.阴正勤,余涛,陈莉.斜视性弱视猫发育过程中视皮层神经元NMDA-R1表达的免疫组织化学电镜观察.中华眼科杂志,2002,38(8):472-475
    33.Yin ZQ,Deng Z,Grewther G,et al.Altered expression of alternatively spliced isoforms of the mRNA NMDAR1 receptor in the visual cortex of strabismic cats.Molecular Vision,2001,7:271-276
    34.Fox K,Daw N,Sato H.Dark-rearing delays the loss of NMDA-receptor function in kitten visual cortex.Nature,1991,350(6316):342-344
    35.Tongiorgi E,Ferrero F,Cattaneo A,et al.Dark-rearing decreases NR2A N-methyl-D-aspartate receptor subunit in all visual cortical layers.J Neurosci,2003,119(4):1013-1022
    36.Bear MF,Colman H.Binocular competition in the control of geniculate cell size depends upon visual cortical N-methyl-D-aspartate receptor activation.Proc Natl Acad Sci USA,1990,87(23):9246-9249
    37.Bear MF,Kleinschmidt A,Gu QA,et al.Disruption of experience-dependent synaptic modifications in striate cortex by infusion of an NMDA receptor antagonist.J Neurosci,1990,10(3):909-925
    38.Gu Q A,Bear MF,Singer W,et al.Blockade of NMDA-receptors prevents ocularity changes in kitten visual cortex after reversed monocular deprivation.Dev Brain Res,1989,47(2):281-288
    39. Berardi N, Pizzorusso T, Maffei L. Critical periods during sensory development. Curr Opin Neurobiol, 2000, 10 (1): 138-145
    40. Cao Z, Liu L, Lickey M, et al. Development of NR1, NR2A and NR2B mRNA in NR1 immunoreactive cells of rat visual cortex. Brain Research, 2000,868:296-305
    41. Alev E, Janna LH. Decline of the Critical Period of Visual Plasticity Is Concurrent with the Reduction of NR2B Subunit of the Synaptic NMDA Receptor in Layer 4. Neurosci, 2003,23:5208-5218
    42. Fagiolini M, Katagiri H, Miyamoto H, et al. Separable features of visual cortical plasticity revealed by N-methyl-D-aspartate receptor 2A signaling. PNAS, 2003,100(5): 2854-2859
    43. Faissner A, Steindler D. Boundaries and inhibitory molecules in developing neural tissues. Glia, 1995, 13 (4): 233-254
    44. Bruckner G, Grosche J, Schmidt S, et al. Postnatal development of perineuronal nets in wild-type mice and in a mutant deficient in tenascin-R. J Comp Neurol, 2000, 428 (4):616-629
    45. Koppe G, Bruckner G, Brauer K, et al. Developmental patterns of proteoglycan-containing extracellular matrix in perineuronal nets and neuropil of the postnatal rat brain. Cell Tissue Res, 1997, 288 (1):33-41.
    46. Hockfield S, Kalb RG, Zaremba S, et al. Expression of neural proteoglycans correlates with the acquisition of mature neuronal properties in the mammalian brain. Cold Spring Harb Symp Quant Biol. 1990 ,55:505-514.
    47. Carulli D, Rhodes KE, Brown DJ, et al. Composition of perineuronal nets in the adult rat cerebellum and the cellular origin of their components. J Comp Neurol, 2006,494(4):559-577
    48. Bradbury EJ, Moon LD, Popat RJ, et al. Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature, 2002, 416 (6881): 636-640
    49. Massey JM, Hubscher CH, Wagoner MR, et al. Chondroitinase ABC digestion of the perineuronal net promotes functional collateral sprouting in the cuneate nucleus after cervical spinal cord injury. J Neurosci, 2006,26(16):4406-4414
    50. Tommaso P, Paolo M, Nicoletta B, et al. Reactivation of ocular dominance plasticity in the adult visual cortex. Science, 2002, 298 (8): 1248-1251
    51. Lander C, Kind P, Maleski M, et al. A Family of Activity-Dependent Neuronal Cell-Surface Chondroitin Sulfate Proteoglycans in Cat Visual Cortex. J Neurosci, 1997, 17(6): 1928-1939
    52. Fagiolini M, Hensch TK. Inhibitory threshold for critical-period activation in primary visual cortex. Nature,2000,404 (6774): 183-186.
    53. Hensch TK, Fagiolini M, Mataga N, et al. Local GABA Circuit Control of Experience-Dependent Plasticity in Developing Visual Cortex Science, 1998,282 (5393):1504 -1508
    54. Kim H G, Wang T, Olafsson P, et al. Neurotrophin 3 potentiates neuronal activity and inhibits gamma-aminobutyratergic synaptic transmission in cortical neurons. Proc Natl Acad Sci USA,1994;91:12341
    55. Taha S, Hanover JL, Silva AJ, et al. Autophosphorylation of CaMKⅡ is required for ocular dominance plasticity. Neuron,2002,36 (3):483-491
    56. Di Cristo G, Berardi N, Cancedda L, et al. Requirement of ERK activation for visual cortical plasticity. Science,2001,292 (5525):2337-2340
    57. Beaver CJ, Ji Q, Fischer QS, et al. Cyclic AMP-dependent protein kinase mediates ocular dominance shifts in cat visual cortex. Nat Neurosci. 2001,4(2): 159-163
    58. Bhalla US, Iyengar R. Emergent properties of networks of biological signaling pathways. Science, 1999, 283 (5400):381-387
    59. Husi H, Ward MA, Choudhary JS, et al. Proteomic analysis of NMDA receptor-adhesion protein signaling complexes. Nat Neurosci, 2000,3(7): 661-669.
    60. Kim JH, Lee HK, Takamiya K, et al. The role of synaptic GTPase-activating protein in neuronal development and synaptic plasticity. J. Neurosci, 2003,23 (4):1119-1124.
    61. Brown GP, Blitzer RD, Connor JH, et al. Long-term potentiation induced by theta frequency stimulation is regulated by a protein phosphatase-1-operated gate. J Neurosci, 2000,20(21):7880-7887
    62. Hoffmann R, Baillie GS, MacKenzie SJ, et al. The MAP kinase ERK2 inhibits the cyclic AMP-specific phosphodiesterase HSPDE4D3 by phosphorylating it at Ser579. EMBO J, 1999,18(4): 893-903
    63. Liao DS, Mower AF, Neve RL, et al. Different mechanisms for loss and recovery of binocularity in the visual cortex. J. Neurosci,2002, 22 (20): 9015-9023.
    64. Tony AP, Soren I, Daniel RS, et al. CRE-mediated gene transcription in neocortical neuronal plasticity during the developmental critical period. Neuron, 1999, 22 (1): 63-72
    65. Silva AJ, Kogan JH, Frankland PW, et al. CREB and memory. Annu Rev Neurosci, 1998,21:127-148
    66. Impey S, Mark M, Villacres EC, et al. Induction of CRE-mediated gene expression by stimuli that generate long-lasting LTP in area CA1 of the hippocampus. Neuron, 1996, 16(5): 973-982
    67. Mayr B, Montminy M. Transcriptional regulation by the phosphorylation- dependent factor CREB. Nat Rev Mol Cell Biol, 2001,2(8):599-609
    68. Wu X, McMurray CT. Calmodulin kinase Ⅱ attenuation of gene transcription by preventing cAMP response element-binding protein (CREB) dimerization and binding of the CREB-binding protein. J Biol Chem, 2001,276(3):1735-1741
    69. Matthews RP, Guthrie CR, Wailes LM, et al. Calcium/calmodulin-dependent protein kinase types Ⅱ and Ⅳ differentially regulate CREB-dependent gene expression. Mol Cell Biol, 1994,14(9): 6107-6116
    70. Deisseroth K, Heist EK, Tsien RW. Translocation of calmodulin to the nucleus supports CREB phosphorylation in hippocampal neurons. Nature, 1998,392 (6672): 198 -202
    71. Deisseroth K, Tsien RW. Dynamic multiphosphorylation passwords for activity-dependent gene expression. Neuron,2002,34(2):179-182.
    72. Grewal SS, York RD, Stork PJ. Extracellular-signal-regulated kinase signalling in neurons. Curr Opin Neurobiol, 1999, 9(5): 544-553.
    73. Cancedda L, Putignano E, Impey S, et al. Patterned vision causes CRE-mediated gene expression in the visual cortex through PKA and ERK. J Neurosci, 2003,23 (18): 7012 -7020
    74. Prasad SS, Kojic LZ, Li P, et al. Gene expression patterns during enhanced periods of visual cortex plasticity. J Neurosci, 2002, 111(1): 35-45
    75. Cuibo Y, Bethany S, Steven R, et al. Bidirectional regulation of mitochondrial gene expression during developmental neuroplasticity of visual cortex. Biochemical and Biophysical Research Communications. 2001;287(5):1070-1074
    76. George D, Irina V. Immediate early gene expression in the visual cortex of normal and dark reared cats: differences between fos and egr-1. Molecular Brain Research, 2002,105:157-160

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700