用户名: 密码: 验证码:
扁豆分子遗传图谱构建、主要农艺性状QTL定位及花序发育的生理学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
扁豆(Lablab purpureus (L.)) Sweet是一种古老的作物,其品质优良,营养价值高,用途广泛。它可以用作粮食、蔬菜和草料。在我国南方地区,扁豆主要用作鲜荚蔬菜和草药,具有很大的栽培面积。目前,我国扁豆生产存在产量小、品质低的问题。如何提高扁豆的产量和品质一直困扰着育种工作者。本试验室经过多年的扁豆栽培观察,发现扁豆花序性状是决定扁豆产量的主要因素之一,果实性状是构成扁豆品质和商品性的重要因子,生育期性状影响扁豆产量和品质。因此本课题对扁豆的花序性状、果实性状和生育期性状等农艺性状进行QTL定位以及对花序的分化、发育进行了形态学研究。
     本试验使用花序等性状差异大的扁豆农家品种‘眉豆2012’ב南汇23’的F2群体构建了一张扁豆遗传连锁图谱。图谱包含131个标记位点,其中122个RAPD分子标记位点,9个形态标记。整个图谱由14个连锁群构成,涵盖1302.4 cM ,平均间距9.9 cM。在F2群体和F3株系中,应用复合区间作图法,重点对花轴长度、花序长度、花序至叶腋间的花梗长度、叶腋到第一朵花的花梗长度、花序两端花间的花梗长度、花序节数、花节间距、初花节位和最低花节9个花序性状进行QTL定位,共检测出49个QTL,分布在10个连锁群上。有些不同性状的QTL位于相同的连锁群区域内,表明控制花序诸性状的基因存在基因多效现象。这些QTL在分子标记辅助育种中将起到重要的作用。
     运用贝叶斯模型选择法,本试验对F2群体的荚长度、荚宽度、荚厚度、开花期、结荚期、成熟期和两年F3株系的果实和生育期8个农艺性状:荚长度、荚宽度、荚厚度、荚面积、荚体积、开花期、结荚期和成熟期进行了QTL定位,并在F3株系中检测了QTL与环境的互作效应(QEs)。结果表明,当阈值2lnBF设定为2.1时,在F2群体中共检测到21个主效QTL和22对上位性效应。主效QTL的表型变异量在2.8%至9.6%之间变化。在F3株系中,8个性状共检测到30个主效QTL,分布在9个连锁群上,其贡献率均较小。同时,还检测到24对上位性效应,其贡献率比主效QTL和QEs的大。在所有的主效QTL中,有13个主效QTL与环境间存在互作关系。环境对果实性状影响较小,但对生育期性状影响较大。此外,有些检测到的主效QTL和QEs存在一因多效现象。在F2群体中,有两个主效QTL表现出基因多效性。在F3株系中,存在4个多效性QTL和2个多效性QEs。在这些多效性位点中,有2个主效QTL在三个世代中均能检测到。分别是第4连锁群上同时影响开花期和成熟期性状的主效QTL;第6连锁群上同时影响开花期、结荚期和成熟期三个性状的主效QTL。这些多效性基因具有稳定性,可以应用到分子标记辅助育种工作中来提高扁豆的产量和商品品质。
     为了进一步的研究扁豆花序性状对产量的影响,试验以长花序品种‘南汇23’和短花序品种‘眉豆2012’为材料,采用石蜡切片法观察花序分化和发育进程。结果表明,两品种的花序分化过程基本一致。扁豆花序分化始于真叶展平期,止于4叶期。5叶期开始现蕾。花序分化具体细分为花序未分化期、花序分化始期、花序分化期、花原基分化期、萼筒分化期、花瓣分化期、雄蕊分化期、雌蕊分化期、花序伸长期。对扁豆花序轴发育研究表明,两扁豆品种的花序轴在花序分化过程中存在显著差异。‘南汇23’的花序轴宽度从花序分化开始一直大于‘眉豆2012’的花序轴宽度,其花序轴长度从花序分化期后期便小于‘眉豆2012’的花序轴长度。花序分化完成后的生长发育过程中,两扁豆品种花序轴各性状的发育规律不尽相同,并且‘南汇23’完成花序轴发育的时间比‘眉豆2012’的长两天。此外,环境显著影响花序轴各性状的发育。花序分化过程的划分和花序轴发育研究有利于在扁豆生产上制定相应的栽培技术措施。
Lablab purpureus (L.) Sweet is an ancient legume species, commonly kown as lablab, who serves as vegetable, foodstuff and herb. Lablab has many outstanding qualities. In China, lablab serves as vegetable and Chinese medicinal herb. In recent years, the market demand for output and market quality in lablab gradually has exceeded the supply. In addition, lablab breeding obviously lags behind other legume plants in the world. It is needed to improve the output and market quality. Through years’observation of the inflorescence and fruit development in cultivated lablab varieties, we found that the florescence traits were significantly associated with output of lablab, fruit traits were the important factors of market quality in lablab and the growth phenological traits had influence on output and market quality of lablab to a certain degree.
     The objective of this study was to identify quantitative trait loci (QTLs) associated with the agronomic traits: floral axis rachis length, inflorescence length, peduncle from axis to axillae, peduncle from axillae to first flower, peduncle between extreme flowers, node number of inflorescence, rachis internode length, node of the first inflorescence, node of lowest florescence, pod length, pod diameter, pod flesh thickness, pod area, pod volume, flowering time, podding time and harvest maturity period in lablab, which were key factors of the output and market quality in lablab. And it was to observe the regulation of inflorescence differentiation, growth and development of florescence in lablab.
     A molecular linkage map was constructed by using 136 F2 progeny derived from a cross of‘Medou 2012’בNanhui 23’. The map included 131 loci (122 RAPD and nine morphological loci), and the fourteen linkage groups covered 1302.4 cM with the average marker interval of 9.9 cM. Using the F2 population and F3 derived lines with composite interval mapping method, a total of 49 QTLs were detected on ten linkage groups for nine agronomic traits (floral axis rachis length, inflorescence length, peduncle from axis to axillae, peduncle from axillae to first flower, peduncle between extreme flowers, node number of inflorescence, rachis internode length, node of the first inflorescence, node of lowest florescence). Some QTLs were detectable in the same linkage regions among different generation/season combinations, suggesting genes which control inflorescence development were pleiotropic or coincident involving more than one trait. Thus these QTLs can be tagged for marker assisted selection in breeding high yield vegetable cultivars of lablab.
     Using 136 F2 population derived from a cross of‘Medou 2012’בNanhui 23’, the six agronomic traits, namely pod length, pod diameter, pod flesh thickness, flowering time, podding time and harvest maturity period were measured. Bayesian model selection was used to locate interacting QTLs for these traits. A total of 21 main-effect QTLs and 22 pairs of epistatic interactions were detected under that the threshold of statistic 2lnBF was 2.1 for declaring significance. The phenotypic variance explained by these QTLs ranged from 2.8% to 9.6%. In addition, we repeatedly measured eight agronomic traits, including five fruit traits (pod length, pod diameter, pod flesh thickness, pod area and pod volume ) and three growth phenological traits (flowering time, podding time and harvest maturity period) in F3 lines from two planting years in order to map the QTLs for these traits in lablab. Bayesian model selection was used to analyze main-effect QTL, epistatic QTL and main-effect QTL by environment interaction as well. As a result, a total of 30 main-effect QTLs were identified on 9 linkage groups with relative small phenotypic variances, and of which, 13 main-effect QTLs had interacted with two planting years. Twenty four pairs of epistatic QTLs were also found which accounted for large proportions of the phenotypic variations. In both F2 population and F3 lines, Some QTL and QEs were found to be pleiotropy. Two QTLs in F2 population, four QTLs and two QEs in F3 lines were pleiotropic. Among these QTLs, two QTLs were detectable among three generations, one responsible for flowering time, podding time and harvest maturity period, and another for flowering time and harvest maturity period simultaneously. These QTL were useful in MAS to improve the output and market quality of lablab.
     In order to probe into the regulation of growth and development of florescence in lablab, the inflorescence differentiation in the way of paraffin-cut section was observed with‘Nanhui 23’and‘Meidou 2012’as materials. Results showed that the process of inflorescence differentiation in lablab was from first-leaf time to four-leaf time, and could be divided into nine stages: unifferentiation phase, inflorescence differentiation elementary period, iInflorescence differentiation phase, single flower differentiation phase, bract differentiation phase, petal differentiation phase, stamen differentiation phase, pistil differentiation phase, inflorescence protraction phase. In the course of the whole inflorescence differentiation, the diameter of floral axis rachis in‘Nanhui 23’was larger than that in‘Meidou 2012’, while the length of floral axis rachis in‘Nanhui23’was less than that in‘Meidou2012’. And in the development of floral axis rachis, there was the distinct difference in two accessions, and the development of floral axis rachis in‘Nanhui 23’was two day long than that in‘Meidou 2012’. In addition, the developments of all traits about floral axis rachis were evidently influenced by environment.
引文
[1] Shivashankar G, Kulkarni RS, Shashidhar HE, et al. Improvement of field bean. Veg crop., 1993, 5:277-286
    [2]郑卓杰.中国食用豆类学.北京.中国农业出版社, 1997, 97-99
    [3] Schaafthausen RV. Dolichos lablab or Hyacinth bean: Itsuses for feed, food and soil improvement. Economic Botany, 1963, 17:146-153
    [4] Wood IM. Lablab bean (Lablab purpureus) for grain and forage production in the Ord Irrigation Area. Aust J Exp Agric Anim Hush., 1983, 23:162-171
    [5] Kay DE. Crop and product digest No 3- Food legumes. London. Tropical Products Institute, 1979
    [6] Ibewiro B, Sanginga N, Vanlauwe B, et al. Evaluation of symbiotic dinitrogen inputs of herbaceous legumes into tropical cover-crop systems. Biol Fertil Soils., 2000, 32:234-242
    [7] Lloyd DL, Smith KP, Clarkson NM, et al. Sustaining multiple production systems. 3. Ley pastures in the subtropics. Trop Grassl., 1991, 25:181-188
    [8] Duke JA, Kretschmer AE, Reed CF, et al. Lablab purpureus (L.) Sweet. In: Handbook of legume of world economic importance. New York,, USA and London, UK. Plenum Press, 1981, 102-106
    [9] Smarrt J. Evolution of grain legumes.Ⅱ. Old and new world pulse of lesser economic importance. Exp Agric., 1985, 21:1-18
    [10] Williams JGK, Kubelik AR, Livak KJ, et al. DNA polymorphisms amplifies by arbitrary primers are useful as genetic markers. Mucleic Acids Res., 1990, 18:6531-6535
    [11] Welsh J, Mc-Clelland M. Fingerprinting genomes using PCR with arbitary primers. Nuclic Acids Res., 1990, 19:7313-7318
    [12] Binelh G, Bucci G. A genetic linkage map of Picea abies Karrst. based on RAPD markers, as a tool in population genetics. Theor Appl Genet., 1994, 88:283-288
    [13] Rowland LJ, Levi A. RAPD-based genetic linkage map of blueberry derived from a cross between diploid species (Vaccinium darrowl and V. elliottii). Theor Appl Genet., 1994, 87:863-868
    [14]Tautz D, Manfred Renz. Simple sequences are ubiquitious repetitive components of eukaryote genomes. Nucleic Acids Research., 1984, 17: 6463-6471
    [15]徐云碧,朱立煌.分子数量遗传学.北京.中国农业出版社, 1994
    [16] Zabeau M. Selective restriction fragment amplification: a general method fro DNA fingerprinting. European Patent Application. Publication No. 0534858 A1, 1993
    [17] Li G, Quirous CF. Sequence-related amplified polymorphism (SRAP), A new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Thero Appl Genet., 2001, 103:455-461
    [18]林忠旭,张献龙,聂以春,等.棉花SRAP遗传连锁图构建.科学通报,2003, 48(15):1676-1679
    [19]朱诚,刘非燕. RAPD技术与桂花品种分类和鉴定.广西植物, 1999, 19(2):190-192
    [20]赵久然,等.利用DNA指纹鉴定玉米杂交种纯度及其真伪技术的研究.作物学报,1999,7 (1): 9-13
    [21] Cossir AT. Genetic diversity and varietal identification in the species Nicotana tabacum by RAPD markers. Annaesddll tabac. Section2, 1994, 26:1-7
    [22]陈新露,陈振锋,等.随机扩增多态DNA(RAPD)标记用于丁香品种遗传分析及品种分类.西北植物学报, 1999, 19 (2):169-176
    [23]吴敏生,等. RAPD在玉米品种鉴定和纯度分析种的应用.作物学报, 1999, 25 (4):479-483
    [24]郑成本,等.植物分子标记原理与方法.湖南科学技术出版社, 2002
    [25]方宣钧,黄育民,陈启锋,等.若干水稻品种(组合)的等位酶和RAPD遗传分析.中国农业科学, 1999, 32(2):1-8
    [26] Cossirat JC. Genetic diversity and variety identification in the species Nicotana tabacum by RAPD markers. Annaesddll tabac. Section 2, 1994, 26:1-7
    [27]徐明辉,郑民慧,等.烟草品种RAPD分子标记遗传差异研究.农业生物技术学报, 1998, 6 (3):281-285
    [28]杨清辉,李富生,等.割手密RAPD指纹图谱分析.云南农业大学学报, 1998, 13 (4): 347-351
    [29]刘勋甲,郑用琏.玉米轮回选择群体遗传多样性RAPD分子标记评估.中国农业科学, 1999, 32 (3):14-20
    [30] Tulsieram LK, Glaubitz JG, Kiss G, et al. Single tree genetic linkage mapping in conifers using haploid DNA from megagmetophytes. Biotechnology, 1992, 18:689-692
    [31]尹佟明,黄敏仁,等.利用显性分子标记和F1群体进行林木遗传连锁图谱的构建.生物工程进展, 1996, 16 (4):12-16
    [32]陈洪,朱立煌,等. RAPD标记构建水稻分子连锁图.植物学报, 1995, 37:677-684
    [33]李松涛,张忠廷,王斌,等.用新的分子标记方法(RAPD)分析小麦抗白粉病基因Pm4a的近等基因系.遗传学报, 1995, 22(2):103-108
    [34] Devos KM, Gale MD. The genetic maps of wheat and their potential in plant breeding. Outlook Agric., 1992, 22:93-99
    [35]张志宏,杜立群,等.离子注入烟草种子引起的M1代变异分析.生物物理学报, 1998, 14 (4):762-766
    [36] Michelmore RW, Paranand I, Kessali RV. Identification of markers linked to disease resistance gene by bulked segregant analysis: a rapid method to detect markers in specific genomic regions using segrefationg populatins. Proc Natl Acad Sci USA., 1991, 88: 9829-9832
    [37]张忠廷,李松涛,王斌. RAPD在水稻温敏核不育研究的应用.遗传学报, 1994, 21(5):373-378
    [38]柯枫英,石永刚,等.玉米淀米修饰基因du的RAPD标记研究.作物学报, 1999, 25(1):1-7
    [39]石永刚,郑用琏,等.玉米S组CMS育性恢复基因的分子标记定位.作物学报, 1997, 23 (1):1-6
    [40] Tanksly SD. Abstract of plant genomeШ, San Diego, USA, 1995, 14:256-268
    [41]方宣钧,吴为人,唐纪良.作物DNA标记辅助育种.科学出版社, 2001
    [42] Bostein DRL, White M, Sholnick J. Construction of a genetic linkage map in man using restriction fragment length polymorphism. Am J Hum Genet., 1980, 32:314-331
    [43] Philip T. Induced tetraploidy in Dolichos lablab Linn. Curr Sci., 1982, 51:945
    [44] Konduri V, Godwin ID, Liu CJ. Genetic mapping of the Lablab purpureus genome suggests the presence of a‘cuckoo’gene(s) in this species. Theor Appl Genet., 2000, 100:866-871
    [45] Apuya NR, Pkeim P. Restriction fragment length polymorphisms as genetic markers in soybean, Glycine max (L) Merril. Theor Appl Genet., 1988, 75:889-901
    [46] Mansur LM, Orf JH, Chase K, et al. Genetic mapping of agronomic traits using recombinant inbred lines of soybean.Crop Sciences, 1996, 36(5):1327-1336
    [47] Cregan PB, Jarvik T, Bush AL, et al. An integrated genetic linkage map of the soybean. Crop Sci., 1999, 39:1464-1490
    [48] Song QJ, Marek LF, Shoemaker RC, et al. A new integrated genetic linkage map of the soybean, Theor Appl Genet., 2004, 109(1):122-128
    [49]张德水,董伟,惠东威,等.用栽培大豆与半野生大豆间的杂种F2群体构建基因组分子标记连锁框架图.科学通报, 1997, 42(12):1326-1330
    [50]刘峰,庄炳昌,张劲松,等.大豆遗传图谱的构建和分析.遗传学报, 2000, 27(11):1018-1026
    [51]吴晓雷,贺超英,王永军,等.大豆遗传图谱的构建和分析,遗传学报, 2001, 28(11):1051-1061
    [52] Zhang WK, Wang YJ, Luo GZ, et al. QTL mapping of ten agronomic traitson the soybean (Glycine max L. Merr.) genetic mapand their association with EST markers. Theor Appl Genet., 2004, 108:1131-1139
    [53]宛煜嵩,王珍,肖英华,等.一张含有227个SSR标记的大豆遗传连锁图.分子植物育种, 2005, 3(1):15-20
    [54] Humphry ME, Konduri V, Lambrides CJ, et al. Development of a mungbean (Vigna radiata) RFLP linkage map and its comparison with lablab (Lablab purpureus) reveals a high level of colinearity between the two genomes. Theor Appl Genet., 2002, 105:160-166
    [55] Menancio-Hautea D, Kumar L, Danesh D, et al. A genome map for mungbean [Vigna radiata (L.) Wilczek] based on DNA genetic markers (2n = 2x = 22). In: O’Brien JS (ed) Genetic maps 1992. A compilation of linkage and restriction maps of genetically studied organisms. Cold Spring Harbor Laboratory Press. New York, 1993b, 259-261
    [56] Boutin SR, Young ND, Olson TC, et al. Genome conservation among three legume genera detected with DNA markers. Genome, 1995, 38:928-937
    [57] Weeden NF, Timmerman GM, Hemmat M, et al. Inheritance and reliability of RAPD markers. In: ASA (ed) Proc Symp Applic RAPD Technol Plant Breed. Joint Plant Breed Symp Ser. ASA, Madison, 1992, 12-17
    [58] Menendez M, Hall AE, Gepts P, et al. A genetic linkage map of cowpea (Vigna unguiculata ) developed from a cross between two inbred, domesticated lines Theor Appl Genet., 1997, 95:1210-1217
    [59] Lambrides CJ, Lawn RJ, Godwin ID, et al. Two genetic linkage maps of mungbean using RFLP andRAPD markers. Aust J Agric Res., 2000, 51:415-425
    [60] Dirlewanger E, Isaac PG, Ranade S, et al. Restriction fragment length polymorphism analysis of loci associated with disease resistance genes and developmental traits inPisum sativum L. Theor Appl Genet., 1994, 88:17-27
    [61] Gilpin BJ, McCallum JA, Frew TJ, et al. A linkage map of the pea (Pisum sativum L.) genome containing cloned sequences of known function and expressed sequence tags (ESTs). Theor Appl Genet., 1997, 95:1289-1299
    [62] Laucon V, Haurogne K, Ellis N, et al. Genetic mapping in pea. 1. RAPD-based genetic linkage map of pisum sativm. Thero Appl Genet., 1998, 97:905-915
    [63] Kraft JM, Baranger A, Coyne CJ. Quantitative trait loci for partial resistance to Aphanomyces root rot in pea. Theor Appl Genet., 2002, 106:28-39
    [64] Tar’an B, Warkentin T, Somers DJ, et al. Identification of quantitative trait loci for grain yield, seed protein concentration and maturity in field pea (Pisum sativum L.). Euphytica, 2004, 136:297-306
    [65] Havey MH, Muehlbauer FJ. Linkages between restriction fragment length, isozyme and morphological markers in lentil. Theor Appl Genet., 1989, 77:395-401
    [66] Tahir M, Simon CJ, Muehlbauer FJ. Gene map of lentil: a review. LENS Newslett, 1993, 20:3-10
    [67] Eujayl I, Baum M, Powell W, et al. A genetic linkage map of lentil (Lens sp.) based on RAPD and AFLP markers using recombinant inbred lines. Theor Appl Genet., 1998, 97:83-89
    [68] Rubeena FR, Taylor PWJ. Construction of an intraspecific linkage map of lentil (Lens culinaris ssp. culinaris). Theor Appl Genet., 2003, 107:910-916
    [69] Dura′n Y, Fratini R, Garc?′a P, et al. An intersubspecific genetic map of Lens. Theor Appl Genet., 2004, 108:1265-1237
    [70] Hamwieh A, Udupa SM, Choumane W, et al. A genetic linkage map of Lens sp. based on microsatellite and AFLP markers and the localization of fusarium vascular wilt resistance. Theor Appl Genet., 2005, 110:669-677
    [71] Kaga A, Ohnishi M, Ishii T, et al. A genetic linkage map of azuki bean constructed with molecularand morphological markers using an interspecific population ( Vigna angularis ? V. nakashimaet). Theor Appl Genet., 1996, 93:658-663
    [72] Vallejos CE, Sakiyama NS, Chase CD. A molecular marker-based linkage map of Phaseolus vulgaris L. Genetics, 1992, 131:733-740
    [73]盛志廉,陈瑶生.数量遗传学.北京.科学出版社, 1999, 340-347
    [74] Sax K. The association of size differences with seed-coat pattern and pigmentation in Phaseolus vulgaris. Genetics, 1923, 8:552-560
    [75] Thoday JM. Location of polygenes. Nature, 1961, 191:368-370
    [76] Keightley PD, Blfield J. Detection of quantitative trait loci from fretuency changes of marker alles under selection. Genet. Res., 1993, 62:195-203
    [77]李维明,吴为人,卢浩然.检验作物数量性状基因与遗传标记连锁关系的方差分析法及其应用.作物学报, 1993, 19(2):97-102
    [78] Rodolphe F, Lefort M. A muli-marker model for detecting chromosomal segments displaying QTL activity. Genetics, 1993, 134:1277-1288
    [79] Jansen RC. Interval mapping of multiple quantitative trait loci. Genetics, 1993, 135:205-211
    [80] Zeng ZB. Precision mapping for quantitative trait loci. Genetics, 1994, 136:1457-1468
    [81] Simpson SP. Detection of linkage between quantitative trait lici and restriction fragment length polymorphisms using inbred lines. Theor Appl Genet., 1989, 77:815-819
    [82] Soller M, Brody T, Genizi A. On the power of experimental designs for the detection of linkage between marker loci and quantitative loci in crosses between inbred lines. Theor Appl Genet., 1976, 47:35-39
    [83] Rodople F, Lefort M. A multi-marker model for detecting chromosomal segments displaying QTL activity. Genetics, 1993, 134:1277-1288
    [84] Lander ES, Botstein D. Mapping medelian factors underlying quantitative traits using RFLP linkage maps. Genetics, 1989, 121:185-199
    [85]吴为人,李维明,卢浩然.基于最小二乘估计的数量性状基因座的复合区间定位法.福建农业大学学报, 1996, 25(4):394-399
    [86] Zhu J, Wei BS. Mixed model approaches for genetic analysis of quantitative traits. In chen LS, Ruan S G, Zhu J, ed. Advanced TGopocs in Biomathematiccs. Singapore. Proceedings of International Conference on Mathematical Viology. World Scientific Publishing Co., 1998, 321-330
    [87] Moreno-Gonzalez J. Genetica models to estimate additive and non-additive effects of marker-associated QTL using multiple regression techniques. Theor Appl Genet., 1992, 85:435-444
    [88] Yi N, Yandell BS, Churchill GA, et al. Bayesian model selection for genome-wide epistatic quantitative trait loci analysis. Genetics, 2005, 170:1333-1344
    [89]李平.水稻分子图谱的构建与基因分析. [博士学位论文].四川.四川农业大学, 2001
    [90] Alpert KB, Tanksley, et al. High-resolution mapping and isolation of yeast artificial contigcontaining fw2.2: a major fruit weight quantitative trait locus in tomato. Proc Matl Acad Sci., 1996, 93(26):1503-1550
    [91] Yano M, Sasaki T. Genetic and molecular dissection of quantitative traits in rice. Plant Mol Biol., 1997, 35:145-153
    [92] Tanksley SD. Mapping polygenes. Annu Rev Genet., 1993, 27:205-233.
    [93] Eshed Y, Zamir D. An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics, 1995, 141:1147-1162
    [94] Howell PM, Marshall DF, Lydiate DJ. Towards developing intervarietal substitution lines in Brassica napus using marker-assisted selection. Genome, 1996, 39:348-358
    [95] Ramsay LD, Jennings DE, Bohuon EJ, et al. The construction of a substitution library of recombinant backcross lines in Brassica oleracea for the precision mapping of quantitative trait loci. Genome, 1996, 39:558-567
    [96]游明安,盖钧镒.大豆花序性状的研究现状.中国油料, 1995, 17(1):74-77
    [97] Kilen TC. Inheritance of a long terminal raceme in soybean.Crop Sci., 1989, 29(4):966-968
    [98] Van Schaik PH, Probst AH. The inheritance of inflorescence type, peduncle length, flower per. node, and per cent flower shedding in soybeans. Agron J., 1958, 50:98-102
    [99] Xiao JH, Li JM, Y L, et al. Dominance is the major genetic basis of heterosis in rice as revealed by QTL analysis using molecular markers. Genetics, 1995, 140:745-754
    [100] Xiao J, Li J, Yuan L, et al. Identification of QTLs affecting traits of agronomic importance in a recombinant inbred population derived from a sub-specific rice cross. Theor Appl Genet., 1996, 92: 230-244
    [101]林鸿宣,庄杰云,钱惠荣,等.水稻株高及其构成因素数量性状基因座位的分子标记定位.作物学报, 1996, 22(3):257-263
    [102] Zhuang JY, Lin HX, Lu J. Analysis of QTL×environment interaction for yield components and plant height in rice. Theor Appl Genet., 1997, 95:799-808
    [103]刘桂富,卢永根,王国昌,等.水稻产量、株高及其相关性状的QTL定位.华南农业大学学报, 1998, 19(3):5-9
    [104] Borner A, Schumann E, Furste A, et al. Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet., 2002, 105:921-936.
    [105] Jantasuriyarat C, Vales MI, Watson CJW, et al. Identification and mapping of genetic loci affecting the free-threshing habit and spike compactness in wheat (Triticum aestivum L.). Theor Appl Genet., 2004, 108:261-273
    [106] Rance KA, Mayes S, Price Z, et al. Quantitative trait loci for yield components in oil palm (Elaeis guineensis Jacq.). Theor Appl Genet., 2001, 103:1302-1310
    [107] Takahashi M, Nagasawa N, Kitano H, et al. Panicle phytomer 1mutations affect the panicle architecture of rice.1998, 148:479-494
    [108] Blair MW, Iriarte G, Beebe S. QTL analysis of yield traits in an advanced backcross population derived from a cultivated Andean·wild common bean (Phaseolus vulgaris L.) cross. Theor Appl Genet., 2006, 112:1149-1163
    [109] Chaim AB, Paran I, Grube RC, et al. QTL mapping of fruit-related traits in pepper (Capsicum annuum). Theor Appl Genet., 2001, 102:1016-1028
    [110] Ku HM, Grandillo S, Tanksley SD. fs8.1, a major QTL, sets the pattern of tomato carpel shape well before anthesis. Theor Appl Genet., 2000, 101:873-878
    [111] Al-Mukhtar FA, Coyne DP. Inheritance and association of flower, ovule, seed, pod, and maturity characters in dry edible beans. Diss Abstr., 1981, 41:3306-3307
    [112] Leyna HK, Korban SS, Coyne DP. Changes in patterns of inheritance of flowering time of dry beans in different environments. J Hered., 1982, 73:306-308
    [113] Padda DS, Munger HM. Photoperiod, temperature and genotype interactions affecting time of flowering in beans Phaseolus vulgaris L. J Am Soc Hortic Sci., 1969, 94:157-160
    [114] Keim P. RFLP mapping in soybean: association between marker lici and variation in quantitative traits. Genetics, 1990, 126: 735-742
    [115] Meksem K, Zhang HB, Lighefoot DA. A plant transformation ready bacterial artificial chromosome library for soybean: Applications in chromosome walking and genome wide physical mapping. Soybean Genetics Newsletter, 1998, 25:108-111
    [116] Tasma IM, Green DE. Mapping genetic loci for flowering time, maturity and photoperiod insensitivity in soybean. Mol Breed., 2001, 8:25-35
    [117] Boerma HR, Mian MAR. Application of DNA markers for selection of intractable soybean traits. Korea Soybean Digest, 1998, 15 (2):106-121
    [118] Wang D, Graef GL, Procopiuk AM et al. Identification of putative QTL that underlie yield in interspecific soybean backcross populations. Theor Appl Genet., 2004, 108:458-467
    [119]李扬汉.蔬菜解剖与解剖技术.北京.农业出版社, 1991.
    [120]韩燕来,远彤,陈锋,等.小扁豆花芽分化与结实率的研究.河南农业大学学报, 1999, 33(4):403-406
    [121]巫朝福,张先炼,吴淑琴,等.蚕豆花芽分化的研究.内蒙古农业科技, 1994, 3:1-3
    [122]赵洪礼,贾金龙,缪祥辉,等.豌豆落花落荚、花芽分化及栽培技术.青海科技, 1997, 4(4):11-15
    [123]官春云,郭清泉.春大豆花芽分化的初步研究.湖南农学院学报, 1983, 3:49-52
    [124] Kitsaki CK, Semmos NV, Tzoutzoukou CG. Changes of respiration rate, ethylene evolution, and abscisic acid content in developing inflorescence and young fruit of Olive (Olea europaea L. cv. Konservolia). J Plant Growth Regul., 1999, 18:1-7
    [125] Slabbert MM. Inflorescence initiation and development in Cyrtanthus elatus (Jacq. Traub). Scientia Horticulturae, 1997, 69:61-71
    [126]许勇,欧阳新星,张海英,等.与西瓜野生种质抗枯萎病基因连锁的RAPD标记.植物学报, 1999, 41(9):952-955
    [127] Miehelmore RW, Kesseli RV, Francis DM, et al. Strategies to cloning disease resistance genesfrom plants. In: Moleeular Plant Pathology: A Practical Approach. DJ Bowles, Oxford . IRLPress, 1992, 233-288
    [128] Serquen FC. Mapping and QTL analysis of horticultural traits in a narrowal crossyn cucumber (cucumisativas L) using random amplified polymowhie DNA markers. Molecular Breeding, 1997, 3(4):257-268
    [129] Colombani VS, Causse M, Gervais L, et a1. Eddieieney of RFLP, RAPD and AFLP markers for the construction ofan intraspeeifie map of the tomato genome. Genome, 2000, 43:29-40
    [130]张子学,隋益虎,等.辣椒雄性不育RAPD体系优化及标记的筛选.种子, 2005, 24(2):24-26
    [131]王晓武,方智远,孙培田,等.一个与甘蓝显性雄性不育基因连锁的RAPD标记.园艺学报, 1998, 25(2):197-198
    [132]王晓武,方智远,孙培田,等.甘蓝显性雄性不育基因的延长随机引物扩增DNA(ERPAD)标记.园艺学报, 1999, 26(1):23-27
    [133]曹必好,宋洪元,雷建军,等.结球甘蓝抗TuMV相关基因的克隆.遗传学报, 2002,29(7):646-652
    [134]邹继军,董伟,等.大豆RAPD影响因素的探讨.大豆科学, 1998, 17(3):197-201
    [135]曹丽华,康振生,魏国荣.小麦条锈菌基因组DNA的分离及其RAPD分析体系的建立.西北农林科技大学学报, 2004, 2(4):33-36
    [136]方萱钧,黄育民,陈启锋,等.若干水稻品种(组合)的等位酶和RAPD遗传分析.中国农业科学, 1999, 32(2):1-8
    [137]王冰冰,孙启宝. RAPD技术进展及其在小麦遗传育种中的应用.农业生物技术学报, 1997, 5(3):227-233
    [138]史永忠.柑桔RAPD技术体系建立与体细胞杂种鉴定.园艺学报, 1998, 25(3):105-ll0
    [139]黄三文.辣椒RAPD系统的建立及在杂种纯度鉴定上的应用.园艺学报, 2001, 28(1):77-79
    [140]赵玉军.苹果基因组DNA的快速提取.农业生物技术, 2002, 10(2):124-126
    [141] Lander ES, Green P, Abrahamson J, et al. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1987, 1:174-181
    [142] Lincoln S, Daly M, Lander ES. Constructing genetic maps with MAPMAKER/EXP 3.0. Cambridge. Whitehead Institute, 1992
    [143] Kumar N, Kulwal PL, Balyan HS, et al. QTL mapping for yield and yield contributing traits in two mapping populations of bread wheat. Mol Breeding., 2007, 19:163-177
    [144] Fery RL. Genetics of vigna. Hort Rev., 1980, 2:311-394
    [145] Jin WL, Chen XZH. The genetic law of the stem and seed color characters in Azuki Bean. J Agric Coll., 1996, 11:1-6
    [146] Kennard WC, Poetter K, Dijkhuizen A, et al. Linkages among RFLP, RAPD, isozyme, disease-resistant and morphological markers in narrow and wide crosses of cucumber. Theor Appl Genet., 1994, 89:42-48
    [147] Halldén C, Hansen M. Competition as a source of errors in RAPD analysis. Theor Appl Genet., 1996, 93:1185-1192
    [148] Liu CJ. Genetic diversity and relationships among Lablab purpureus genotypes evaluated using RAPDs as markers. Euphytica, 1996, 90:115-119
    [149] O’Donoughue LS, Wang Z, Roder M, et al. An RFLP-based linkage map of oats based on a cross between two diploid taxa (Avena atlantica A. hirtula). Genome, 1992, 35:765-771
    [150] Yan JB, Tang H. Genetic analysis of segregation distortion of molecular markers in Maize F2 population. Acta Cenetia Sinica., 2003, 30:913-918
    [151] Vogl C, Xu SZH. Multipoint mapping of viability and segregation distorting loci using molecular markers. Genetics, 2000, 155:1439-1447
    [152] Villalta I. Comparative QTL analysis of salinity tolerance in terms of fruit yield using two solanum populations of F7 Lines. Theor Apple Genet., 2007, 114:1001-1017
    [153] Frary A, Doganlar M. QTL analysis of morphological traits in eggplant and implications forconservation of gene function during evolution of solanaceous species. Thero Appl Genet., 2003, 107:359-370
    [154] He XL, Zhang JZ. Toward a molecular understanding of pleiotropy. Genetics, 2006, 173:1885-1891
    [155]郭龙彪,罗利军,邢永忠,等.水稻重要农艺性状的两年QTL剖析.中国水稻科学, 2003, 17(3):211-218
    [156] Ford R, Pang ECK, Taylor PWJ. Genetics of resistance to ascochyta blight (Ascochyta lentis) of lentil and the identification of closely linked RAPD markers. Theor Appl Genet., 1999, 98:93-98
    [157] Kao CH, Zeng ZB. Modeling epistasis of quantitative trait loci using cockerham's model. Genetics, 2002, 160:1243-1261
    [158] Yandell BS, Mehta T, Banerjee S, et al. R/qtlbim: QTL with Bayesian interval mapping in experimental crosses. Bioinformatics, 2007, 23:641-634
    [159] Jiang C, Zeng ZB. Mapping quantitative trait loci with dominant and missing markers in various crosses from two inbred lines. Genetica, 1997, 101:47-58
    [160] Kass RE, Raftery AE. Bayes factors. J Amer Stat Assoc., 1995, 90:773-795
    [161] Jiang GH, He YQ, Xu CG, et al. The genetic basis of stay-green in rice analyzed in a population of doubled haploid lines derived from an indica by japonica cross. Theor Appl Genet., 2004, 108:688-698
    [162] Wang BH, Guo WZH, Zhu XF, et al. QTL mapping of fiber quality in an elite hybrid derived-RIL population of upland cotton. Euphytica, 2006, 152:367-378
    [163] Xing YZ, Tan YF, Hua JP, et al. Characterization of the main effects, epistatic effects and their environmental interactions of QTLs on the genetic basis of yield traits in rice. Theor Appl Genet., 2002, 1065:248-257
    [164]郑国锠.生物显微技术.北京.人民教育出版社, 1978
    [165]郭蕊,赵祥云,王文和,等.百合花芽分化的形态学研究.沈阳农业大学学报, 2006, 37(1):31-34
    [166]王金刚,廉利,车代弟.唐菖蒲花芽分化超微结构观察.东北农业大学学报, 2006,37(2): 171-174

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700