用户名: 密码: 验证码:
乳酸菌发酵剂菌株的自溶特性及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乳酸菌的自溶特性可影响发酵乳制品品质,发酵剂菌体的高度自溶不仅缩短了成熟周期、降低了生产成本,同时菌体自溶后释放的胞内物质也决定着发酵乳制品的风味和感官特性。本课题选择了发酵乳制品工业中最为常用的几种乳酸菌作为研究对象,对这些菌株的自溶特性进行研究,并将这一特性应用于酸乳发酵剂的选育工作中。主要研究结果如下:
     利用碘化丙锭(PI)只能对细胞壁破损的菌体进行标记的特性,建立经PI染色联用流式细胞仪的方法(PI-FCM),可快速检测乳酸菌菌株的自溶度。将乳酸菌菌体细胞经20 mmol/L的PI-PBS染液在4℃条件下避光染色30 min后上样,流式细胞仪检测器激发波长488 nm,检测波长630 nm,每个样品收集105个细胞,得到PI染色阳性细胞数与细胞总数之间的比值,即为乳酸菌的自溶度;使用平板计数法和菌悬液吸光值法对PI-FCM测定结果的进行验证,相关性系数分别为r=0.9805和r=0.9249(p<0.01),说明PI-FCM方法可对乳酸菌自溶度进行准确测定。与传统方法相比,PI-FCM方法的灵敏度(103 cells/mL~107 cells/mL)、精密度(CV<5%)和准确度均处于较高水平,且耗时短、干扰因素少,可作为乳酸菌菌株自溶度的检测方法。
     选择发酵性能好的野生型菌株进行N+离子注入诱变,离子注入能量为50 keV,注入剂量为4×2.6×1013 ion/cm2,菌体存活率在23%~33%之间,总突变率在57%~78%之间,突变幅度在-51.96%~+151.24%之间;对突变菌株进行筛选,经7次传代培养验证,得到了遗传性状稳定、自溶度改变的乳酸菌菌株。
     自溶度较小的菌株细胞体积较小,易形成长链;乳酸菌自溶度因其种属不同而不同,同一种属不同菌株之间自溶度也存在差异,菌株的生物量与自溶度并无明显相关;过高或者过低的环境温度和pH值都可抑制乳酸菌的自溶,但某些菌株在低pH值条件下也能呈现较高的自溶度;悬浮介质中的Mg2+和Ca2+对菌株自溶的促进作用较为显著。相同测定条件下,乳酸乳杆菌产脂肪酶活性最高,德氏乳杆菌保加利亚亚种产蛋白酶活性最高,同一种属自溶度越大的菌株产酶活性到达峰值所需时间越短。
     使用已知的自溶酶基因acmA序列设计引物,对14株乳酸乳球菌基因组中的N-乙酰基肽聚糖水解酶进行PCR扩增,在12个菌株中得到了碱基长度约为1100 bp的特异性片段。这些片段的碱基序列和氨基酸序列与其他N-乙酰基肽聚糖水解酶基因具有高度的同源性。由不同自溶度的菌株中扩增得到的特异性产物,其氨基酸序列同源性为94.91%。使用荧光定量RT-PCR技术对各菌株中N-乙酰基肽聚糖水解酶的转录水平进行分析,发现菌株自溶度与N-乙酰基肽聚糖水解酶转录水平极为相关。
     在酸乳发酵过程中,自溶度较高的乳酸菌菌株产酸性能更优,凝乳时间较短;菌株的自溶度对酸乳的黏度、持水率以及风味物质的成分及含量影响不大,但对酸乳的后酸化程度有着显著影响。在模拟货架期的10℃~15℃贮藏条件下,由自溶度较高的菌株制作的酸乳后酸化程度相对较低。选育出三株自溶度较高的菌株进行复配,运用二次正交旋转组合设计复合发酵剂中各菌株比例,根据所建模型优选结果,最后确定三种菌株最优组合方案为:GS191.46%、LD3-A3 2.44%、S15-A3 6.10%。使用该复合发酵剂制作的酸乳感官性状优良,具有较好的风味和质地,后酸化程度小,可极好的满足生产需要。
Bacterial peptidoglycan hydrolases (autolysins) degrade the peptidoglycan of cell walls, causing cell autolysis. Autolysis of lactococci used as starter cultures in the manufacture of fermented milk results in the leakage of lipases, proteases and peptidases and other intracellular components, which play an important role in flavor development during ripening. Hence, autolysis properties of lactic acid bacteria are crucial for their applications as dairy starters.
     To establish a rapid and sensitive method to detect autolysis rate of lactic acid bacteria, A Flow Cytometric Method (FCM) can be employed. Cell suspensions were dyed 30 min by PI-PBS (20 mmol/L) in 4℃dark environment. A 630 nm long pass filter was used to collect the red fluorescence (FL3 488 nm), and 1×105 cells were collected each sample. Data were analyzed by CellQuest online analysis system. Test time depended on different concentrations of cell suspensions, were about 40 s to 100 s. FCM enumerations were accurate down to a concentration of 104 cells/mL. Correlation test results reported that there were no significant difference between FCM test and other normal methods for the determination of autolysis rate of lactic acid bacteria. FCM by use of fluorescent probes propidium iodide (PI) is a good analytical method that allows the rapid and sensitive measurement of viability of lactic acid bacteria. This FCM method provides tools to assess the viability of different lactic acid bacteria in fermentation starters and probiotic products.
     In order to obtain different autolysis rate lactic acid bacteria, Streptococcus salivarius ssp., Lactobacillus delbrueckii ssp. Bulgaricus, Lactobacillus lactis, Lactobacillus casei, and Lactococcus lactis ssp. Lactis were mutated by 50 keV N+ ions implantation. The results indicate that the survival rate curve took a saddle shape and there was a high positive mutation rate by the dose of 4×2.6×1013 ion/cm2. The survival rate was 25%~33% under this implantation condition. Strains which have different autolyisis rates were obtained among the mutated strains whose mutation rate in the range of -51.96%~+151.24%. Fermentation property of these strains were stable after 7 generation transfer inoculation. It was indicated that the ion implantation technique is a feasible method in breeding lactic acid bacteria starter strains.
     Autolysis rate of different strains were determined under various conditions of incubated temperature and pH values, as these factors were closely related to cell viability and flavor development in the products. Autolysis rate increased when temperature and pH values were rasing in a certain range. Over higher or lower temperature and pH value would inhibit autolysis of strains. But there were some strains indicate high autolysis in extreme low pH. Mg2+ could affect autolysis rate of lactic acid bacteria. Strains showed higher autolysis when they were suspended in 0.1 mol/L magnesian phosphate buffer. Lipase and protease activities were closely related to the sort of strains. Time of reaching the highest activities for lipase and protease depended on the autolytic degree of strains. All Lactococcus lactis ssp. Lactis strains showed higher lipase activities, and protease activities in Lactobacillus delbrueckii ssp. Bulgaricus, were mostly higher than other strains. These properties should be considered when commercial starters are selected.
     The occurrence of the acmA gene, encoding the major peptidoglycan hydrolase of lactic acid bacteria, has been determined in 14 Lactococcus lactis ssp. Lactis and Lactococcus lactis ssp. cremoris strains. On the basis of PCR amplification of the gene acmA, 12 strains exhibited a single 1,100 bp fragment highly correlated with N-acetylmuramidase of Lactococcus lactis. There was discrepancy between the high autolysis level strains and low auloysis level strains. Using fluorescent quantitative real-time PCR testified that autolysis rate was closely related with the transcript level of N-acetylmuramidase.
     Coagulation time decreased significantly by using high autolysis rate lactic acid bacteria fermented yogurt, were positivly related to acid producing ability of lactic acid bacteria starters. There was no raletive correlation between autolysis rate of strains and water holdup, viscosity and flavor compounds of yogurt. However, yogurt acidities were significant infuluenced by autolysis rate of lactic acid bacteria staters, especially in the simulated shelf life of 10℃~ 15℃storage conditions. High autolysis rate starters could decrease acidification level of yogurt.
     A dratic orthogonal rotary composite design is employed to study the effects of characters of yogurt fermented by high autolysis strains in mixed starters. According to regression analysis to strains GS1-A8, LD3-A3 and S15 -A3 coding value (X1, X2, X3) as independent variables, the shelf life of yogurt acidity changing degree (Δ0T) Y1 and sensory evaluation scores Y2 as the dependent variable, a regression equation were established. The optimum combinated scheme of three strains of programs was selected according the model: GS1 91.46%, LD3-A3 2.44%, S15-A3 6.10%. Yogurt fermented by the selected optimum starter has favorable sensory properties, good flavor and texture and lower acidification level.
引文
[1]. Amiali, N., Lacroix, C., & Simard, R. E. (1998). High nisin Z production by Lactococcus lactis UL719 in whey permeate with aeration World. Journal of Microbiology and Biotechnology, 14, 887–894.
    [2]. Anderson, D. G., & McKay, L. L. (1983), A simple and rapid method for isolating large plasmid DNA from lactic streptococci. Applied and Environmental Microbiology, 46, 549–552.
    [3]. Andrews, A. T. (1983). Proteinases in normal bovine milk and their action on caseins. Journal of Dairy Research, 50(1), 45–55.
    [4]. Ard. O., Y., Larsson, P. O., Mansson, L., & Hedenberg, A. (1989). Studies of peptidolysis during early maturation and its influence on low-fat cheese quality. Milchwissenschaft, 44(8), 485–490.
    [5]. Aston, J. W., Durward, I. G., & Dulley, J. R. (1983). Proteolysis and flavour development in Cheddar cheese. Australian Journal Dairy Technology, 38, 55–59.
    [6]. Beal, C., Skokanova, J., Latrille, E., Martin, N., & Corrieu, G. (1999). Combined effects of culture conditions and storage time on acidification and viscosity of stirred yogurt. Journal of Dairy Science, 82, 673–681.
    [7]. Benech, R. O., Kheadr, E. E., Lacroix, C., & Fliss, I. (2003). Impact of nisin producing culture and liposome-encapsulated nisin on ripening of Lactobacillus added-Cheddar cheese. Journal of Dairy Science, 86, 1895–1909.
    [8]. Benech, R. O., Kheadr, E. E., Laridi, R., Lacroix, C., & Fliss, I. (2002). Inhibition of Listeria innocua in Cheddar cheese by addition of nisin Z in liposomes or by in situ prodution in mixed culture. Applied Environmental Microbiology, 68, 3683–3690.
    [9]. Bergmaier, D., Champagne, C. P., & Lacroix, C. (2003). Exopolysaccharide production during batch cultures with free and immobilized Lactobacillus rhamnosus RW-9595M. Journal of Applied Microbiology, 95, 1049–1057.
    [10]. Bergmaier, D., Lacroix, C., Macedo, M. G., & Champagne, C. P. (2001). New method for exopolysaccharide determination in culture broth using stirred ultrafiltration cells. Applied Microbiology and Biotechnology, 57, 401–406.
    [11]. Bie, R., & Sjostrom, G. (1975a). Autolytic properties of some lactic acid bacteria used in cheese production. Part I: Material and methods. Milchwissenschaft, 30(11), 653–657.
    [12]. Bie, R., & Sjostrom, G. (1975b). Autolytic properties of some lactic acid bacteria used in cheese production. Part II: Experiments with fluid substrates and cheese. Milchwissenschaft, 30(12), 739–747.
    [13]. Billot-Klein, D.,Legrand, R.,Sehoot, B.,van Heijenoort, J.,& Futmann, L. (1997). Peptidoglycan structure of Lactobacillus casei,as species highly resistant to glycopeptide antibiotics. Baeteriol. 179,6208–6212.
    [14]. Blakesley, R. W., & Boezi, J. A. (1977). A new staining technique for proteins in polyacrylamide gels using Coomassie brilliant blue G- 250. Analytical Biochemistry, 82, 580–581.
    [15]. Bolotin, A., Wincker, P., Mauger, S., Jaillon, O., Malarme, K., Weissenbach, J., Ehrlich, S. D., & Sorokin, A. (2001). The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Research, 11, 731–753.
    [16]. Bouksaim, M., Lacroix, C., Audet, P., & Simard, R. E. (2000). Effects of mixed starter composition on nisin Z production by Lactococcus lactis subsp. lactis biovar. diacetylactis UL719 during production and ripening of Gouda cheese. International Journal of Food Microbiology, 59, 141–156.
    [17]. Boutrou, R., Sepulchre, A., Gripon, J.-C., & Monnet, V. (1998a). Simple tests for predicting the lytic behaviour and proteolytic activity of lactococcal strains in cheese. Journal of Dairy Science, 81, 2321–23 28.
    [18]. Boutrou, R., Sepulchre, A., Pitel, G., Durier, C., Vassal, L., Gripon, J.-C., & Monnet,V. (1998b). Lactococcal lysis and curd proteolysis: Two predictable events important for the development of cheese flavour. International Dairy Journal, 8, 609–616.
    [19]. Broome, M. C., Kause, D. A., & Hickey, M. W. (1990). The use of nonstarter lactobacilli in Cheddar cheese manufacture. Australian Journal Dairy Technology, 45, 67–72.
    [20]. Brunskill, E. W., & Bayles, K. W. (1996), Identification and molecular characterization of a putative regulatory locus that affects autolysis in Staphylococcus aureus. The Journal of Bacteriology, 178, 611–618.
    [21]. Buist, G. (1997). AcmA of Lactococcus lactis, a cell-binding major autolysin. Ph.D. thesis, University of Groningen, Haren, The Netherlands.
    [22]. Buist, G., Karsens, H., Nauta, A., van Sinderen, D., Venema, G.,& Kok, J. (1997). Autolysis of Lactococcus lactis caused by induced overproduction of its major autolysin, AcmA. Applied and Environmental Microbiology, 63, 2722–2728.
    [23]. Buist, G., Kok, J., Leenhouts, K. J., Dabrowska, M., Venema, G., & Haandrikman, A. J. (1995). Molecular cloning and nucleotide sequence of the gene encoding the major peptidoglycan hydrolase of Lactococcus lactis, a muramidase needed for cell separation. Journal of Bacteriology, 177, 1554–15 63.
    [24]. Buist, G., Venema, G., & Kok, J. (1998). Autolysis of Lactococcus lactis is influenced by proteolysis. Journal of Bacteriology, 180, 5947–5953.
    [25]. Bunthof, C. J., & Tjakko, A. (2002), Development of a flow cytometric method to analyze subpopulations of bacteria in probiotic products and dairy starters. Applied and Environmental Microbiology, 68(6), 2934–2942.
    [26]. Chapot-Chartier, M. P., Deniel, C., Rousseau, M., Vassal, L., & Gripon, J. C. (1994). Autolysis of two strains of Lactococcus lactis during cheese ripening. International Dairy Journal, 4(3), 251–269.
    [27]. Chopin, A., Bolotin, A., Sorokin, A., Ehrlich, S. D., & Chopin, M. (2001). Analysis of six prophages in Lactococcus lactis IL1403: Different genetic structure of temperate and virulent phage populations. Nucleic Acids Research, 29, 644–651.
    [28]. Christensen, J. E., Dudley, E. G., Pederson, J. A., & Steele, J. A. (1999). Peptidases and amino acid catabolism in lactic acid bacteria. Antonie van Leeuwenhoek, 76, 217–246.
    [29]. Christensson, C., Pillidge, C. J., Ward, L. W., & O’Toole, P. W. (2001). Nucleotide sequence and characterisation of the cell envelope proteinase plasmid in Lactococcus lactis subsp. cremoris HP. Journal of Applied Microbiology, 91, 334–343.
    [30]. Cleveland, J., Montville, T. J., Nes, I. F., & Chikindas, M. L. (2001). Bacteriocins: Safe, natural antimicrobials for food preservation. International Journal of Food Microbiology, 71, 1–20.
    [31]. Cogan, T. M., O’Dowd, M., & Mellerick, D. (1981). Effects of pH and sugar on acetoin production from citrate by Leuconostoc lactis. Applied and Environmental Microbiology, 41, 1–8.
    [32]. Coolbear, T., Pillidge, C. J., & Crow, V. L. (1994). The diversity of potential cheese ripening characteristics of lactic acid starter bacteria: 1. Resistance to cell lysis and levels of cellular distribution of proteinase activities. International Dairy Journal, 4,697–721.
    [33]. Coyette, J., & Shockman, G. D. (1973). Some properties of the autolytic N-acetylmuramidase of Lactobacillus acidophilus. Journal of Bacteriolog. 114, 34–41.
    [34]. Crow, V. L., Coolbear, T., Gopal, P. K., Martley, F., McKay, L. L., & Riepe, H. (1995a). The role of autolysis of lactic acid bacteria in the ripening of cheese. International Dairy Journal, 5, 855–875.
    [35]. Crow, V. L., Curry, B., & Hayes, M. (2001), The ecology of nonstarter lactic acid bacteria (NSLAB) and their use as adjuncts in New Zealand Cheddar. International Dairy Journal, 11(4–7), 275–283.
    [36]. Crow, V. L., Gopal, P. K., & Wicken, A. J. (1995b). Cell surface differences of lactococcal strains. International Dairy Journal, 5, 45–68.
    [37]. Crow, V. L., Martley, F. G., Coolbear, T., & Roundhill, S. J. (1995), The influence of phage-assisted lysis of Lactococcus lactis subsp. lactis ML8 on Cheddar cheese ripening. International Dairy Journal, 5, 451–472.
    [38]. Dako, E., El Soda, M., Vuillemard, J., & Simard, R. E. (1995). Autolytic properties and aminopeptidase activities of lactic acid bacteria. Food Research International, 28, 503–509.
    [39]. De Buyser, M., Dufour, B., Maire, M., & Lafarge, V. (2001). Implication of milk and milk products in food-borne diseases in France and in different industrialised countries. International Journal of Food Microbiology, 67, 1–17.
    [40]. De Man, J. C., Rogosa, M., & Sharpe, M. E. (1960). A medium for the cultivation of lactobacilli. Journal of Applied Bacteriology, 23, 130–135.
    [41]. De Ruyter, P. G. G. A., Kuipers, O. P., Meijer, W. C., & De Vos, W. M. (1997). Food-grade controlled lysis of Lactococcus lactis for accelerated cheese ripening. Nature Biotechnology, 15, 976–979.
    [42]. De Vuyst, L., & Degeest, B. (1999). Heteropolysaccharides from lactic acid bacteria. FEMS Microbiology Reviews, 23, 153–177.
    [43]. Delcour, J., Ferain, T., Deghorian, M., Palumbo, E., & Hols, P. (1999). The biosynthesis and functionality of the cell wall of lactic acid bacteria. Antonie van Leeuwenhoek, 76, 159–184.
    [44]. Doleyres, Y., Schaub, L., & Lacroix, C. (2005). Comparison of the functionality of exopolysaccharides produced in situ or added as bioingredients on yoghurt properties. Journal of DairyScience, 88, 4146–4156.
    [45]. Drake, M. A., Boyleston, T. D., Spence, K. D., & Swanson, B. G. (1997). Improvement of sensory quality of reduced fat Cheddar cheese by a Lactobacillus adjunct. Food Research International, 30(1), 35–40.
    [46]. Drake, M. A., Boyleston, T. D., Spence, K. D., & Swanson, B. G. (1996). Chemical and sensory effects of a Lactobacillus adjunct in Cheddar cheese. Food Research International, 29, 381–387.
    [47]. Drider, D., Bekal, S., & Pre′vost, H. (2004). Genetic organization and expression of citrate permease in lactic acid bacteria. Genetics and Molecular Research, 3, 273–281.
    [48]. Driehuis, F., & Wouters, J. T. M. (1987). Effect of growth rate and cell shape on the peptidoglycan composition in Escherichia coli. Journal of Bacteriology, 169, 97–101.
    [49]. Duboc, P., & Mollet, B. (2001). Applications of exopolysaccharides in the dairy industry. International Dairy Journal, 11, 759–768.
    [50]. Dupont, I., Roy, D., & LaPointe, G. (2000). Comparison of exopolysaccharide production by strains of Lactobacillus rhamnosus and Lactobacillus paracasei grown in chemically defined medium and milk. Journal of Industrial Microbiology and Biotechnology, 24, 251–255.
    [51]. Duwat, P., Ehrlich, S. D., & Gruss, A. (1992), Use of degenerate primers for polymerase chain reaction cloning and sequencing of the Lactococcus lactis subsp. lactis recA gene. Applied and Environmental Microbiology, 58, 2674–2678.
    [52]. El Soda, M. (1993). Accelerated maturation of cheese. International Dairy Journal, 3, 531–544.
    [53]. El Soda, M., Madkor, S. A., & Tong, P. S. (1999). Evaluation of commercial adjuncts for use in cheese ripening: 1. Enzymatic activities and autolytic properties of freeze-shocked adjuncts in buffer systems. Milchwissenschaft, 54(2), 85–89.
    [54]. El-Kholy, W., El-Soda, M., Ezzat, N., & El Shafei, H. (1998). Autolysis and intracellular enzyme release from cheese related dairy lactobacilli. Le Lait, 78, 439–452.
    [55]. Feirtag, J. M., & McKay, L. L. (1987). Isolation of Streptococcus lactis C2 mutants selected for temperature sensitivity and potential use in cheese manufacture. Journal of Dairy Science, 70, 1773–1778.
    [56]. Fenelon, M. A., Beresford, T. P., & Guinee, T. P. (2002). Comparison of different bacterial culture systems for the production of reduced-fat Cheddar cheese. International Journal Dairy Technology, 55, 194–203.
    [57]. Fenelon, M. A., Beresford, T., & Guinee, T. P. (2002). Comparison of different bacterial culture systems for the production of reduced fat Cheddar cheese. International Journal of Dairy Technology, 50(4), 1–10.
    [58]. Fenelon, M. A., O’Connor, P., & Guinee, T. P. (2000). The effect of fat content on the microbiology and proteolysis in Cheddar cheese during ripening. Journal of Dairy Science, 83(10), 2173–2183.
    [59]. Foster, S. J. (1992), Analysis of the autolysins of Bacillus subtilis 168 during vegetative growth and differentiation by using renaturing polyacrylamide gel electrophoresis. Journal of Bacteriolog,174:464–470.
    [60]. Foster, S. J. (1995), Molecular characterization and functional analysis of the major autolysin of Staphylococcus aureus 8325/4. Journal of Bacteriolog, 177, 5723–5725.
    [61]. Fowler, G. G., Jarvis, B., & Tramer, J. (1975). The assay of nisin in foods. Society for Applied Bacteriology Technical Series, 8, 91–105.
    [62]. Fox, P. F., & Wallace, J. M. (1997), Formation of flavour compounds. Advances in Applied Microbiology, 45, 17–85.
    [63]. Fox, P. F., O’Connor, T. P., McSweeney, P. L. H., Guinee, T. P., & O’Brien, N. M. (1996). Cheese: Physical, biochemical and nutritional aspects. Advances in Food and Nutrition Research, 39, 164–328.
    [64]. Fox, P. F., Wallace,J. M., Morgan, S., Lynch,C. M., Niland, E. J.,& Tobin, J. (1996). Acceleration of cheese ripening. Antonie van Leeuwenhoek, 70, 271–297.
    [65]. Garde, S., Babin, M., Gaya, P., Nunez, M., & Medina, M. (1999). PCR amplification of the gene AcmA differentiates Lactococcus lactis subsp. lactis and L. lactis subsp. cremoris. Applied and Environmental Microbiology, 65, 5151–5153.
    [66]. Garvie, E. I. (1980). Bacterial lactate dehydrogenases. Microbiological Reviews, 44, 106–139.
    [67]. Gasson, M. J. (1996). Lytic systems in lactic acid bacteria and their bacteriophages. Antonie van Leeuwenhoek, 70,147–159.
    [68]. Gilbert, C., Atlan, D., Blanc, B., & Portalier, R. (1994). Proline iminopeptidase from Lactobacillus delbrueckii subsp. bulgaricus CNRZ 397: purification and characterisation. Microbiology, 140, 537–542.
    [69]. Gilpin, R. W., Chatterjee, A. N., & Young, F. E. (1972). Autolysis of microbial cells: Salt activation of autolytic enzymes in a mutant of staphylococcus aureus. Journal of Bacteriology, 111, 272–283.
    [70]. Godon, J. -J., Delorme, C., Ehrlich, S. D., & Renault, P. (1992). Divergence of genomic sequences between Lactococcus lactis subsp. lactis and Lactococcus lactis subsp. cremoris. Applied and Environmental Microbiology, 58, 4045–4047.
    [71]. Gopal, P. K., & Crow, V. L. (1993). Characterisation of the loosely associated material from the cell surface of Lactococcus lactis subsp. cremoris E8 and its phage resistant variant strain 398. Applied and Environmental Microbiology, 59, 3177–31 82.
    [72]. Goulhen, F., Meghrous, J., & Lacroix, C. (1999). Production of a nisin Z/pediocin mixture by pH-controlled mixed-strain batch cultures in supplemented whey permeate. Journal of Applied Microbiology, 86, 399–406.
    [73]. Govindasamy-Lucey, S., Gopal, P. K., Sullivan, P. A., & Pillidge, C. J. (2000). Varying influence of the autolysin, N-acetyl muramidase, and the cell envelope proteinase on the rate of autolysis of six commercial Lactococcus lactis cheese starter bacteria grown in milk. Journal of Dairy Research, 67, 585–596.
    [74]. Grattepanche, F., Lacroix, C., Audet, P., & LaPointe, G. (2005). Quantification by real-time PCR of Lactococcus lactis subsp. cremoris in milk fermented by a mixed culture. Applied Microbiology andBiotechnology, 66, 414–421.
    [75]. Hannon, J. A., Wilkinson, M. G., Delahunty, C. M., Wallace, J. M., Morrissey, P. A., & Beresford, T. P. (2003). Use of autolytic starter systems to accelerate the ripening of Cheddar cheese. International Dairy Journal, 13, 313–323.
    [76]. Hassan, A. N., Frank, J. F., Schmidt, K. A., & Shalabi, S. I. (1996). Rheological properties of yogurt made with encapsulated nonropy lactic cultures. Journal of Dairy Science, 79, 2091–2097.
    [77]. Hess, S. J., Roberts, R. F., & Ziegler, G. R. (1997). Rheological properties of nonfat yogurt stabilized using Lactobacillus delbrueckii ssp bulgaricus producing exopolysaccharide or using commercial stabilizer systems. Journal of Dairy Science, 80, 252–263.
    [78]. Hugenholtz, J. (1993). Citrate metabolism in lactic acid bacteria. FEMS Microbiology Reviews, 12, 165–178.
    [79]. Huggins, A. R., & Sandine, W. E. (1984). Differentiation of fast and slow milk-coagulating isolates in strains of lactic streptococci. Journal of Dairy Science, 67, 1674–1679.
    [80]. Husson-Kao, C., Mengaud, J., Cesselin, B., van Sinderen, D., Benbadis, L., & Chapot-Chartier, M.-P. (2000). The Streptococcus thermophilus autolytic phenotype results from a leaky prophage. Applied and Environmental Microbiology, 66, 558–565.
    [81]. Hutkins, R. W., & Nannen, N. (1993). PH homeostasis in lactic acid bacteria. Journal of Daily Science, 76 (8), 2356–2365.
    [82]. Jarrett, W. D., Aston, J. W., & Dulley, J. R. (1982). A simple method for estimating free amino acids in Cheddar cheese. Australian Journal of Dairy Technology, 37, 55–58.
    [83]. Jolliffe, L. K., Doyle, R. J., & Streips, U. N. (1980), Extracellular proteases modify cell wall turnover in Bacillus subtilis. Journal of Bacteriolog. 141, 1199–1208.
    [84]. Jolliffe, L. K., Doyle, R. J., & Streips, U. N. (1981), The energized membrane and cellular autolysis in Bacillus subtilis. Cell, 25,753–763.
    [85]. Jordan, K. N., & Cogan, T. M. (1993). Identification and growth of non-starter lactic acid bacteria in Irish cheese. Irish Journal of Agriculture and Food Research, 32, 47–55.
    [86]. Joris, B., Englebert, S., Chu, C.-P., Kariyama, R., Daneo-Mo ore, L., Shockman, G. D., & Ghuysen, J.-M. (1992). Modular design of the Enterococcus hirae muramidase-2 and Streptococcus faecalis autolysin. FEMS Microbiology Letters, 91, 257–264.
    [87]. Kabuki, D. Y., Kuaye, A. Y., Wiedmann, M., & Boor, K. J. (2004). Molecular subtyping and tracking of Listeria monocytogenes in Latinstyle fresh cheese processing plants. Journal of Dairy Science, 87, 2803–2812.
    [88]. Kawabata, S., Vassal, L., Le Bars, D., Cesselin, B., Nardi, M., Gripon, J. C., & Chapot-Chartier, M. P. (1997). Phage-induced lysis of Lactococcus lactis during Saint-Paulin cheese ripening and its impact on proteolysis. Lait, 77, 229–239.
    [89]. Kempler, G. M., & McKay, L. L. (1980). Improved medium for detection of citrate-fermenting Streptococcus lactis subsp diacetylactis. Applied and Environmental Microbiology, 39, 926–927.
    [90]. Kenny, O., FitzGerald, R. J., O’Cuinn, G., Beresford, T., & Jordan, K. (2003b). The effect ofgrowth phase and growth medium on the peptidase system of Lactobacillus helveticus DPC 4571. International Dairy Journal, 13, 509–516.
    [91]. Kenny, O., FitzGerald, R. J., O’Cuinn, G., Beresford, T., & Jordan, K. (2003a). Autolysis of Lactobacillus helveticus strains in Cheddar cheese. Irish Journal of Agricultural and Food Research, 42, 168.
    [92]. Kiernan, R. C., Beresford, T. P., O’Cuinn, G., & Jordan, K. N. (2000). Autolysis of lactobacilli during Cheddar cheese ripening. Irish Journal of Agriculture and Food Research, 39, 95–106.
    [93]. Klaenhammer, T. R. (1993). Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiology Reviews, 12, 39–86.
    [94]. Kleiner, D, Stetler S. W. (1999). Matrix metalloproteinases and metastasis.Cancer Chenother Phamacol, 43, 42-45.
    [95]. Kok, J., van Dijl, J. M., van der Vossen, J. M. B. M., and Venema, G. (1985), Cloning and expression of a Streptococcus cremoris proteinase in Bacillus subtilis and Streptococcus lactis. Applied and Environmental Microbiology, 50, 94–101.
    [96]. Kuchroo, C. N., & Fox, P. F. (1982). Soluble nitrogen in Cheddar cheese: Comparison of extraction procedures. Milchwissenschaft, 37, 331–335.
    [97]. Kunji, E. S., Mierau, I., Hagting, A., Poolman, B., & Konings, W. N. (1996). The Proteolytic systems of lactic acid bacteria. Antonie van Leeuwenhoek, 70, 187–221.
    [98]. Laan, H., Haverkort, P. E., de Leij, L., & Konings, W. N. (1996). Detection and Localisation of lactococcal peptidases with monoclonal antibodies. Journal of Dairy Research, 63(2), 245–256.
    [99]. Laan, H., Tan, S. E., Bruinenberg, P., Limsowtin, G., & Broome, M. (1998). Aminopeptidase activities of starter and non-starter lactic acid bacteria under simulated Cheddar cheese ripening conditions. International Dairy Journal, 8, 267–274.
    [100]. Lamboley, L., Lacroix, C., Champagne, C. P., & Vuillemard, J. C. (1997). Continuous mixed strain mesophilic lactic starter production in supplemented whey permeate medium using immobilized cell technology. Biotechnology and Bioengineering, 56, 502–516.
    [101]. Lane, C. N., & Fox, P. F. (1996). Contribution of starter adjunct lactobacilli to proteolysis in Cheddar cheese during ripening. International Dairy Journal, 6(7), 715–728.
    [102]. Langsrud, T., Landaas, A., & Castberg, H. B. (1987), Autolytic properties of different strains of group B streptococci. Milchwissenschaft, 42,556–560.
    [103]. Law, B. A. (2001). Controlled and accelerated cheese ripening: The research base for new technologies. International Dairy Journal, 11(4–7), 383–398.
    [104]. Law, B. A., Sharpe, M. E., & Reiter, B. (1974), The release of intracellular dipeptidase from starter streptococci during cheddar cheese ripening. International Dairy Journal, 41, 137–146.
    [105]. Law, J., & Haandrikman, A. (1997). Proteolytic enzymes of lactic acid bacteria. International Dairy Journal, 7, 1–11.
    [106]. Lawrence, R. C., & Gilles, J. (1980). The assessment of the potential quality of young Cheddar cheese. New Zealand Journal of Dairy Science and Technology, 15, 1–12.
    [107]. Lee, B. H., Laleye, L. C., Simard, R. E., Holley, R. A., Emmons, D. B., & Giroux, R. N. (1990). Influence of homofermentative lactobacilli on physicochemical and sensory properties of Cheddar cheese. Journal of Food Science, 55, 386–390.
    [108]. Leenhouts, K., Buist, G., & Kok, J. (1999). Anchoring of proteins to lactic acid bacteria. Antonie van Leeuwenhoek, 76, 367–376.
    [109]. Lemieux, L., & Simard, R. E. (1989). Evolution of free amino acids during the ripening of cheddar cheese containing added lactobacilli strains. Journal of Food Science, 54, 885–888.
    [110]. Lepeuple, A.-S., van Gemert, E. L., & Chapot-Chartier, M. -P. (1998a). Analysis of the bacteriolytic enzymes of the autolytic Lactococcus lactis subsp. cremoris AM2 by renaturing polyacrylamide gel electrophoresis: Identification of a prophage-encoded enzyme. Applied and Environmental Microbiology, 64, 4142–41 48.
    [111]. Lepeuple, A.-S., Vassal, L., Cesselin, B., Delacroix-Buch, A., Gripon, J.-C., & Chapot-Chartier, M. -P. (1998b). Involvement of a prophage in the lysis of Lactococcus lactis subsp. cremoris AM2 during cheese ripening. International Dairy Journal, 8,667–674.
    [112]. Lortal, S., Lemee, R., & Valence, F. (1997). Autolysis of thermophillic lactobacilli and dairy propionibacteria: Areview. Lait, 77, 133–150.
    [113]. Lynch, C. M., McSweeney, P. L. H., Fox, P. F., Cogan, T. M., & Drinan, F. D. (1996), Manufacture of Cheddar cheese with and without adjunct lactobacilli under controlled microbiological conditions. International Dairy Journal, 6 (8-9), 851–867.
    [114]. Lynch, C. M., McSweeney, P. L. H., Fox, P. F., Cogan, T. M., & Drinan, F. D. (1997), Contribution of starter lactococci and lactobacilli to proteolysis in Cheddar cheese with controlled microflora. Lait, 77, 441– 459.
    [115]. Macedo, M. G., Lacroix, C., & Champagne, C. P. (2002). Combined effects of temperature and medium composition on exopolysaccharide production by Lactobacillus rhamnosus RW-9595M in a whey permeate based medium. Biotechnology Progress, 18, 167–173.
    [116]. MacFie, H. J. H., Bratchell, N., Greenhoff, K., & Vallis, I. V. (1989). Designs to balance the effect of order of presentation and firstorder carry-over effects in hall tests. Journal of Sensory Studies, 4, 129–148.
    [117]. Madkor, S. A., El Soda, M., & Tong, P. S. (1999). Evaluation of commercial adjuncts for use in cheese ripening: 2. Ripening aspects and flavour development in cheese curd slurries prepared with adjunct lactobacilli. Milchwissenschaft, 54(3), 133–137.
    [118]. Madkor, S. A., El Soda, M., & Tong, S. A. (2000). Ripening of Cheddar cheese with added attenuated adjunct cultures of lactobacilli. Journal of Dairy Science, 83(8), 1684–1691.
    [119]. Martinez-Cuesta, M. C., Kok, J., Herranz, E., Peliaez, C., Requena, T., & Buist, G. (2000). Requirement of autolytic activity for bacteriocin-induced lysis. Applied and Environmental Microbiology, 66, 3174–3179.
    [120]. Martley, F. G., & Lawrence, R. C. (1972). Cheddar cheese flavour. II. Characteristics of single strain starters associated with good or poor flavour development. New Zealand Journal of Dairy Scienceand Technology, 7, 38–44.
    [121]. McSweeney, P. L. H., & Fox, P. F. (1997). Chemical methods for the characterisation of proteolysis in cheese during ripening. Le Lait, 77, 41–76.
    [122]. McSweeney, P. L. H., & Sousa, M. J. (2000). Biochemical pathways for the production of flavour compounds in cheeses during ripening: a review. Le Lait, 80, 293–324.
    [123]. McSweeney, P. L. H., Fox, P. F., Lucey, J. A., Jordan, K. N., & Cogan, T. M. (1993). Contribution of the indigenous microflora to the maturation of Cheddar cheese. International Dairy Journal, 3(7), 613–634.
    [124]. Meghrous, J., Lacroix, C., Bouksaim, M., LaPointe, G., & Simard, R. E. (1997). Genetic and biochemical characterization of nisin Z produced by Lactococcus lactis ssp lactis biovar. diacetylactis UL719. Journal of Applied Microbiology, 83, 133–138.
    [125]. Meijer, W., Dobbelaar, C., & Hugenholtz, J. (1998). Thermoinducible lysis in Lactococcus lactis subsp. cremoris SK110: Implications for cheese ripening. International Dairy Journal, 8, 275–280.
    [126]. Meijer, W., van de Bunt, B., Twigt, M., de Jonge, B., Smit,G., & Hugenholtz, J. (1998). Lysis of Lactococcus lactis subsp. cremoris SK110 and its nisin-immune transconjugant in relation to flavourdevelopment in cheese. Applied and Environmental Microbiology, 64, 1950–1953.
    [127]. Morgan, S., Ross, R. P., & Hill, C. (1997). Increasing starter cell lysis in Cheddar cheese using a bacteriocin-producing adjunct. Journal of Dairy Science, 80, 1–10.
    [128]. Morris, H. A., Holt, C., Brooker, B. E., Banks, J. M., & Manson, W. (1988). Inorganic constituents of cheese: analysis of juice from a onemonth- old Cheddar cheese and the use of light and electron microscopy to characterize the crystalline phases. Journal of Dairy Research, 55, 255–268.
    [129]. Mou, L., Sullivan, J. J., & Jago, G. R. (1976). Autolysis of Streptococcus cremoris. Journal of Dairy Research, 43,275–282.
    [130]. Murray, J. M., & Delahunty, C. M. (2000). Selection of standards to reference terms in a Cheddar cheese flavour language. Journal of Sensory Studies, 15(2), 179–199.
    [131]. Niskasaari, K. (1989). Characteristization of the autolysis of variants of Lactococcus lactis subsp. cremoris. Journal of Dairy Research, 56,639–649.
    [132]. O’Donovan, C., Wilkinson, M. G., Guinee, T. P., & Fox, P. F. (1996). An investigation into the autolytic properties of three lactococcal strains during cheese ripening. International Dairy Journal, 6, 1149–1165.
    [133]. O’Keeffe, A. M., Fox, P. F., & Daly, C. (1978). Proteolysis in Cheddar cheese: Role of coagulant and starter bacteria. Journal of Dairy Research, 45(3), 465–477.
    [134]. O’Sullivan, D., Ross, R. P., Fitzgerald, G. F., & Coffey, A. (2000). Investigation of the relationship between lysogeny and lysis of Lactococcus lactis in cheese using prophage-targeted PCR. Applied and Environmental Microbiology, 66, 2192–2198.
    [135]. ?stlie, H. M., Vegarud, G., & Langsrud, T. (1995). Autolysis of lactococci: detection of lytic enzymes by polyacrylamide gel electrophoresis and characterization in buffer systems. Applied and Environmental Microbiology, 61, 3598–3603.
    [136]. Perry, D. B., McMahon, D. J., & Oberg, C. J. (1997). Effect of exopolysaccharides producing cultures on moisture retention in low fat Mozzarella cheese. Journal of Dairy Science, 80, 799–805.
    [137]. Pillidge, C. J., Crow, V. L., Reid, J. R., & Coolbear, T. (2001). Starter lactocepin type can influence bitterness in cheese. Poster P13, NIZO dairy conference on food microbes, Ede, the Netherlands, 13–15 June.
    [138]. Pillidge, C. J., Govindasam y-Lucey, S., Gopal, P. K., & Crow, V. L. (1998). The major lactococcal cell wall autolysin AcmA does not determine the rate of autolysis of Lactococcus lactis subsp. cremoris 2250 in Cheddar cheese. International Dairy Journal, 8, 843–850.
    [139]. Platteeuw, C., & de Vos, W. (1992), Location, characterization and expression of lytic enzyme-encoding gene, lytA, of Lactococcus lactis bacteriophage fus3. Gene, 118, 115–120.
    [140]. Poquet, I., Saint, V., Seznec, E., Simoes, N., Bolotin, A., & Gruss, A. (2000). HtrA is the unique surface housekeeping protease in Lactococcus lactis and is required for natural protein processing. Molecular Microbiology, 35, 1042–1051.
    [141]. Rawson, H. L., & Marshall, V. M. (1997). Effect of‘ropy’strains of Lactobacillus delbrueckii ssp bulgaricus and Streptococcus thermophilus on rheology of stirred yogurt. International Journal of Food Science and Technology, 32, 213–220.
    [142]. Rehman, S.-Ur., McSweeney, P. L. H., Banks, J. M., Brechany, E. Y., Muir, D. D., & Fox, P. F. (2000). Ripening of Cheddar cheese made from blends of raw and pasteurised milk. International Dairy Journal, 10, 33–44.
    [143]. Reid, J. R., & Coolbear, T. (1998). Altered specificity of lactococcal proteinase PI (Lactocepin I) in humectant systems reflecting the water activity and salt content of Cheddar cheese. Applied and Environmental Microbiology, 64, 588–593.
    [144]. Remacle, A. G., Chekanov, A. V., Golubkov, V. S., Savinov, A. Y., Rozanov D. V., & Strongin1. A. Y. (2006), O-Glycosylation regulates autolysis of cellular membrane type-1 matrix metalloproteinase (MT1-MMP). Journal of Biological Chemistry, 281 (25), 16897–16905.
    [145]. Riepe, H. R., Pillidge, C. J., Gopal, P. K., & McKay, L. L. (1997). Characterization of the highly autolytic Lactococcus lactis subsp. cremoris strains CO and 2250. Applied and Environmental Microbiology, 63, 3757–3763.
    [146]. Roberts, R. F., Zottola, E. A., & McKay, L. L. (1992). Use of a nisinproducing starter culture suitable for cheddar cheese manufacture. Journal of Dairy Science, 75, 2353–2363.
    [147]. Rogosa, M., Mitchell, J. A., & Wiseman, R. F. (1951). A selective medium for the isolation and enumeration of oral and fecal lactobacilli. Journal of Bacteriology, 62, 132–133.
    [148]. Rohm, H., & Kovac, A. (1994). Effects of starter cultures on linear viscoelastic and physical properties of yogurt gels. Journal of Texture Studies, 25, 311–329.
    [149]. Ross, P. R., Galvin, M., Mc Auliffe, O., Morgan, S. M., Ryan, M. P., Twomey, D. P., Meaney, W. J., & Hill, C. (1999). Developing applications for lactococcal bacteriocins. Antonie van Leeuwenhoek, 76, 337–346.
    [150]. Ruas-Madiedo, P., Hugenholtz, J., & Zoon, P. (2002). An overview of the functionality ofexopolysaccharides produced by lactic acid bacteria. International Dairy Journal, 12, 163–171.
    [151]. Sanders, J. W., Venema, G., & Kok, J. (1997). A chloride-inducible gene expression cassette and its use in induced lysis of Lactococcus lactis. Applied and Environmental Microbiology, 63, 4877–48 82.
    [152]. Schneewind, O., Fowler, A., & Faull, K. F. (1995), Structure of the cell wall anchor of surface proteins in Staphylococcus aureus. Science, 268:103–106.
    [153]. Shearman, C. A., Jury, K., & Gasson, M. J. (1992). Autolytic Lactococcus lactis expressing a lactococcal bacteriophage lysin gene. Biotechnology, 10, 196–199.
    [154]. Skriver, A., Roemer, H., & Qvist, K. B. (1993). Rheological characterization of stirred yoghurt: viscometry. Journal of Texture Studies, 24, 185–198.
    [155]. Sodini, I., Remeuf, F., Haddad, S., & Corrieu, G. (2004). The relative effect of milk base, starter, and process on yogurt texture: A review. Critical Reviews in Food Science and Nutrition, 44, 113–137.
    [156]. Somkuti, A. G., Dominiecki, M. E., & Steinberg, D. H. (1998). Permeabilization of Streptococcus thermophilus and Lactobacillus delbrueckii ssp. Bulgaricus with ethanol. Current microbiology, 36, 202–206.
    [157]. Sousa, M. J., Ard. O., Y., & McSweeney, P. L. H. (2001). Advances in the study of proteolysis during cheese ripening. International Dairy Journal, 11(4–7), 327–345.
    [158]. Spinnler, H. E., & Corrieu, G. (1989). Automatic method to quantify starter activity based on pH measurement. Journal of Dairy Research, 56, 755–764.
    [159]. Steele, J. L., &McKay, L. L. (1986). Partial characterization of the genetic basis for sucrose metabolism and nisin production in Streptococcus lactis. Applied and Environmental Microbiology, 51, 57–64.
    [160]. Tagg, J. R., Dajani, A. S., & Wannamaker, L. W. (1976). Bacteriocins of Gram-positive bacteria. Bacteriology Reviews, 40, 722–756.
    [161]. Teggatz, J. A., & Morris, J. A. (1990). Changes in the rheology and microstructure of ropy yogurt during shearing. Food Structure, 9, 133–138.
    [162]. Terzaghi, B. E., & Sandine, W. E. (1975). Improved medium for lactic streptococci and their bacteriophages. Applied Microbiology, 29, 807–813.
    [163]. Thompson, J. (1988), Lactic acid bacteria: model systems for in vivo studies of sugar transport and metabolism in Gram-positive organisms. Journal of Biological Chemistry 70, 325–336.
    [164]. Trepanier, G., Simard, R. E., & Lee, B. H. (1991). Lactic acid bacteria relation to accelerated maturation of Cheddar cheese. Journal of Food Science, 56(5), 1238–1240.
    [165]. Visser, F. M. W. (1977a). Contribution of enzymes from rennet, starter bacteria and milk to proteolysis and flavour development in Gouda cheese. II. Development of bitterness and cheese flavour. Netherlands Milk and Dairy Journal, 31, 188–209.
    [166]. Visser, F. M. W., & de Groot-Mostert, A. E. A. (1977b). Contribution of enzymes from rennet, starter bacteria and milk to proteolysis and flavour development in Gouda cheese. IV. Protein breakdown: Agel electrophoretic study. Netherlands Milk and Dairy Journal, 31, 247–264.
    [167]. Visser, S., Exterkate, F. A., Slangen, C. J., & de Veer, G. J. C. M. (1986). Comparative study of action of cell wall proteinases from various strains of Streptococcus cremoris on bovine as1-, b-, and k-casein. Applied and Environmental Microbiology, 52, 1162–11 66.
    [168]. Wiederholt, K. M., & Steele, J. L. (1993). Prophage curing and partial characterization of temperate bacteriophages from thermolytic strains of Lactococcus lactis ssp. cremoris. Journal of Dairy Science, 76, 921–930.
    [169]. Wilkinson, M. G., Guinee, T. P., O’Callaghan, D. M., & Fox, P. F. (1994), Autolysis and proteolysis in different strains of starter bacteria during Cheddar cheese ripening. Journal of Dairy Research. 61, 249–262.
    [170]. Wilkinson, M. G., Guinee, T. P., O’Callaghan, D. M., & Fox, P. F. (1995). Effect of cooking temperature on the autolysis of starter, Lactococcus lactis subsp. cremoris AM2, and the maturation of Cheddar cheese. Milchwissenschaft, 50, 376–380.
    [171]. Wilkinson, M. G., Guinee, T. P., O’Callaghan, D.M., & Fox, P. F. (1992). Effect of commercial enzymes on proteolysis and ripening in Cheddar cheese. Le Lait, 72, 449–459.
    [172]. Williams, A. G., Noble, J., Tammam, J., Lloyd, D., & Banks, J. M. (2002). Factors affecting the activity of enzymes involved in peptide and amino acid catabolism in non-starter lactic acid bacteria isolated from Cheddar cheese. International Dairy Journal, 12, 841–852.
    [173]. Young, F. E. (1966), Autolytic enzyme association with cell walls of Bacillus subtilis. The Journal of Biological Chemistry. 241:3462–3467.
    [174]. Zourari, A., Accolas, J. P., & Desmazeaud, M. J. (1993). Metabolism and biochemical characteristics of yogurt bacteria. Lait. 72, 1–34.
    [175].高艳红,吕加平,刘鹭,李淑荣. (2009). N+离子注入法选育高产葡萄糖耐量因子(GTF)酵母菌株.核农学报, 23(2), 235–238.
    [176].胡永松,王忠彦. (主编). (1987).微生物与发酵工程,成都:四川大学出版社.
    [177].李艾黎,邓凯波,霍贵成. (2008).环境因素对酸奶菌株自溶的影响,微生物学通报, 35 (8), 1262–1267.
    [178].李全阳,夏文水. (2003).酸乳流变学特性的初步研究.食品与发酵工业, 29(12), 35–39.
    [179].李荣杰. (2009).微生物诱变育种方法研究进展.河北农业科学, 13(10), 73–76, 78.
    [180].李肇特,薛社普. (主编). (1988).中国医学百科全书(组织学与胚胎学).上海:上海科学技术出版社.
    [181].刘凤珠,牛小明,张辉,石欢欢. (2008).离子注入对啤酒酵母诱变效应的研究.中国酿造, 189, 27–29.
    [182].卢燕云,林建国,李明,邱雁临,胡瑛,王常高,蔡俊. (2009).复合诱变选育酸性蛋白酶高产菌株.中国酿造, 202 (1), 49–51.
    [183].朴真三,刘畅,冯艳,曹淑桂. (1998).铜绿假单孢菌脂肪酶产生条件.吉林人学自然科学学报, 1, 97– 99.
    [184].沈娟,别小妹,陆兆新,吕凤霞,朱筱玉. (2006). N+注入诱变芽孢杆菌选育高产抗菌物质菌株.核农学报, 20 (4), 296–298.
    [185].沈萍,陈向东. (主编). (2007).微生物学实验(第4版).北京:高等教育出版社.
    [186].宋道军,姚建铭,吴丽芳,王纪,涂友斌,余增亮. (1999).离子注入对微生物细胞的刻蚀与对DNA的损伤及修复.科学通报, 44 (18), 330–334.
    [187].宋道军. (1999).离子注入效应研究.核技术, 22(3): 129–132.
    [188].汪伟明. (2007).微生物诱变育种技术–离子注入法.科技信息, 20: 14–20.
    [189].姚建明,王纪,王相勤,袁成凌,王文生,余增亮. (2000),离子注入花生四烯酸产生菌诱变选育.生物工程学报, 16 (4), 478–481.
    [190].余增亮. (1994),离子注入生物学研究述评.安徽农业大学学报, 21 (30), 221–226.
    [191].张鹭,郭承宇,王庆忠,路福平. (2006).乳酸菌溶源性的检测及紫外诱变后溶源菌蛋白表达分析.中国酿造, 164 (11), 11–14.
    [192].张晓勇,林壁润,高向阳,沈会芳. (2008).氮离子束注入诱变筛选万隆霉素高产菌株的研究.核农学报,22(6), 766–769.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700