用户名: 密码: 验证码:
P300/CBP相关因子在肠型胃癌中的表达及功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
P300/CBP相关因子(P300/CBP associated factor, PCAF)是哺乳动物中第一个被报道的组蛋白乙酰化转移酶,目前研究认为PCAF通过调节组蛋白和非组蛋白水平而与肿瘤的发生、发展相关联。PCAF的发现为GNAT家族,即GCNS相关的N端乙酰化转移酶(GCNS-relatad-acetytransferas, GNAT),在细胞中的正确定位提供了良好的解释,为肿瘤的分子机理研究和预后判断提供了新的思路,有望作为肿瘤预后判断的一个新的标志物。PCAF基因在肿瘤中的研究目前尚是一个新的领域,迄今为止国内外尚无有关于胃癌中PCAF的实验研究报道。鉴于以上原因,本实验拟研究PCAF基因在肠型胃癌中的表达情况,通过胃腺癌细胞株SGC-7901构建能够稳定表达外源基因PCAF的胃癌细胞系,在此基础上,观察PCAF基因转染对胃癌细胞体内体外生长的抑制作用并探讨其可能机理,为胃癌的诊断和治疗提供新的思路和理论依据。
     第一部分PCAF在人肠型胃癌组织和胃腺癌细胞系中的表达
     目的:研究PCAF在人肠型胃癌组织和胃腺癌细胞系中的表达情况及其与临床病理的相关性,以初步探讨PCAF在人胃癌中表达的生物学意义。
     方法:采用Western blot方法检测永生化人胃粘膜上皮细胞株GES-1和人胃癌细胞株SGC-7901,MKN-45,AGS中PCAF的表达。在406例临床病理资料完整的肠型胃癌及对应癌旁正常胃组织标本中,采用免疫组织化学染色法检测PCAF在组织学水平的表达,结合临床病理资料对实验结果统计分析。
     结果:
     1. Western-blot检测提示胃腺癌细胞株中PCAF蛋白呈低至痕量表达,而永生
     化胃粘膜上皮细胞株GES-1中PCAF为高表达;
     2.在肠型胃癌组织中,PCAF的表达与胃壁侵犯、肿瘤瘤体大小、TNM分期、p21、pRb(P< 0.001), PCNA相关(P<0.01);
     3. PCAF在肠型胃癌组织中的表达下调与突变型p53密切相关(P<0.01);
     4.单因素分析显示PCAF/wtp53的患者较其他组合类型的患者有更好的临床预后(P<0.0001);5.多因素分析显示,肿瘤的部位,淋巴结转移,PCAF/p53表型(P<0.0001),胃
     壁侵犯(P=0.001)和PCNA(P=0.018)是判断肠型胃癌预后的独立预后因子。
     结论:PCAF特异性下调表达于肠型胃癌组织,可能引起胃癌肿瘤细胞中全组蛋白水平的下调和下游基因的转录失活并可能通过影响肿瘤相关的非组蛋白,参与胃癌发生演进的过程。PCAF与突变型p53的联合检测有助于在临床判断肠型胃癌患者的预后。
     第二部分pcDNA3.1-PCAF重组载体的构建及转染细胞的生物学效应
     目的:应用定向基因克隆技术,构建PCAF基因真核表达载体pcDNA3.1-PCAF,建立并鉴定能稳定表达外源PCAF基因的胃癌细胞系以研究PCAF基因对SGC-7901细胞生物学行为的影响及其可能的机理。
     方法:
     1.
     (1)从美国ATCC哺乳动物基因组获得PCAF克隆(克隆号10435572);
     (2)通过对pBluescriptR酶切分离获得PCAF的cDNA插入全长,并通过定向克隆技术构建PCAF基因真核表达载体pcDNA3.1-PCAF;
     (3)对重组体pcDNA3.1-PCAF进行鉴定;
     (4)测序结果重组体所含DNA序列与Genebank公布PCAF序列号比对,结果一致。
     2.将PCAF基因的真核表达质粒pcDNA3.1-PCAF和空载体pcDNA3.1质粒分别转化细菌、扩增提取纯化后,应用脂质体Lipo2000介导的方法分别转染体外培养的p53突变型胃腺癌细胞系SGC-7901。G418筛选阳性克隆并扩增培养传代。鉴定稳转基因,并同时检测其下游效应分子p21、pRb等的表达。
     3.以成功构建的分别能稳定表达外源pcDNA3.1-PCAF、空载体pcDNA3.1的胃癌细胞系和未转染质粒载体的SGC-7901细胞为研究对象,通过MTT比色、软琼脂克隆集落形成等一系列细胞学功能实验及TUNEL染色的形态学观察,探索稳定转染细胞株中PCAF的表达对肿瘤细胞增殖、凋亡的影响。
     结果:
     1.
     (1)应用脂质体将质粒pcDNA3.1顺利导入大肠杆菌DH5α内,且转化效率高。
     (2)酶切电泳结果显示pcDNA3.1质粒被EcoRI、Acc65I成功双酶切。
     (3) RT-PCR方法扩增的插入片段电泳证实扩增的片段即为目的片段。重组质粒酶切鉴定预期目的条带。
     (4)测序结果重组体所含DNA序列与Genebank公布PCAF序列比对,结果一致。
     2.重组体pcDNA3.1-PCAF转染细胞株和空载体pcDNA3.1转染细胞株均获得氨苄青霉素抗性。重组体pcDNA3..1-PCAF转染细胞株和空载体pcDNA3.1转染细胞株因携带有Neor扩标签,均检测到Neor的表达,证实转染成功。Western blot显示重组体pcDNA3.1-PCAF转染细胞株中目的基因PCAF在蛋白质水平上表达均较空载体转染细胞株和未转染细胞株显著增强。
     3.对转染前后的细胞观察表明,重组体转染组细胞生长减慢,克隆形成率降低,裸鼠体内成瘤受到抑制,但凋亡变化不明显。
     结论:
     1.应用基因克隆技术成功构建PCAF基因真核表达载体pcDNA3.1-PCAF。
     2.成功构建分别能稳定表达外源pcDNA3.1-PCAF、空载体pcDNA-3.1的胃癌细胞系PCAF-7901和Vec-7901。
     3.通过软琼脂克隆形成实验和裸鼠成瘤等功能学研究发现,PCAF基因在体内和体外实验中均可表现出显著的抑瘤能力,PCAF还可阻滞胃癌细胞的G1/S期转化,但对凋亡没有观察到明显作用。
PCAF (P300/CBP associated factor), a recently identified protein, also known as the first mammalian histone acetyltransferases which have been found.The present studies demonstrated that PCAF functions as a negative regulator of cell transformation and tumor cell growth through the regulation of histones and other cancer-related non-histones.PCAF might be broadly involved in diverse type of activated signaling pathways and tumorigenesis. The identification of PCAF supplies a new aim for molecular mechanism of tumor. Consequentially, it is a new target gene of much promise for gene therapy, but the study on PCAF gene in cancer just now began.To our knowledge, this is the first report about the expression of PCAF in gastric carcinoma.According to the mentioned above,we performed the following experiments. Firstly,we investigated the expression of PCAF in intestinal type gastric cancer gastric cancer tissue samples and explored its correlation with clinical and pathological characters.Then we established and identified gastric carcinoma cell lines(SGC-7901) transfected by exogenous gene PCAF.Based on above work, we investigated whether the exogenous gene PCAF transfer could inhibit the growth of gastric carcinoma cell lines in vitro and in vivo, and explored the possible machanism of this effect.Purpose a theoretical basis of genic diagnosis and therapy for intestinal-type gastric carcinoma.
     Part I Expression of PCAF in intestinal-type gastric carcinoma tissues and gastric adenocarcinoma cell lines.
     Objective:To determine the expression of PCAF in gastric cancer and to investigate the association of PCAF with gastric cancer.
     Methods:Wesern blot analysis were used to detect the expression level of protein of PCAF in gastric carcinoma cell lines (SGC-7901, MKN-45, AGS) and immortalized gastric mucosa epithelial cell line GES-1. Immunohistochemistry was 1performed to evaluate the expression of PCAF in a large subset containing 406 intestinal type gastric cancer samples. Correlationship between the expression of PCAF and clinical pathological characters was investigated.
     Results:
     1. Western blot analysis revealed that all gastric cancer cell lines including AGS, MKN-45 and SGC-7901 exhibited significantly lower levels of PCAF expression compared to those in immortalized gastric mucosa epithelial cell line GES-1 (P<0.05).
     2. Statistical analysis displayed a significant correlation in PCAF expression with the gastric wall invasion, tumor size, TNM stage, p21, pRb (P<0.001) and PCNA (P<0.01) in intestinal type gastric cancer specimens.
     3. A reduced PCAF protein expression correlated significantly with a mutant type p53 protein expression (P<0.01).
     4. Univariate analysis indicated that the patients demonstrating the high-PCAF/wild type p53 expression have a significantly (P<0.0001) better overall survival (OS).
     5. Multivariate analysis indicated that the location, lymph node metastasis, PCAF/p53 (P<0.0001), gastric wall invasion (P=0.001) and PCNA (P=0.018) are independently significant prognostic factors for OS.
     Conclusions:Reduced expression of PCAF plays an important role in the development of intestinal type gastric cancer and correlates with a poor clinical outcome. PCAF/p53 phenotype may be an independent bio-marker for prognosis in gastric carcinoma
     Part II Biological effect of recombinant vector in stably transfected gastric cacinoma cell lines PCAF-7901
     Objective:To construct a eukaryotic expression plasmid of PCAF gene:pcDNA3.1-PCAF, in order to study its effect on the biological behavior of gastric carcinoma cell line SGC-7901 in vitro and in vivo.
     Methods:
     1.
     (1) PCAF clone (ATCC Catalog No.10435572) was obtained from the Mammalian Genome Collection.
     (2) The full-length PCAF cDNA insert was isolated from pBluescriptR by double digestion of EcoRI and Acc65I, and then subcloned into the mammalian expression vector pcDNA3.1 (-) with the sites of EcoRI and Acc65I. The eukaryotic expression vector of PCAF was constructed by double restriction endonucleases cleavage directional clone method.
     (3) Double restriction endonucleases cleavage and sequencing methods were used to identify the eukaryotic expression vector of PCAF gene.
     (4) DNA sequencing was performed to confirm the construction.
     2.
     Two different plasmids including a recombinate pcDNA3.1-PCAF and an empty pcDNA3.1 vector were prepared by transformation of bacterium, amplification and purification of plasmids.Then two kinds of plasmids were reseparately transferred into gastric carcinoma cell line SGC-7901 cultured in vitro by using lipofectamine 2000. After transfection, positive clones were screened with G418 and expanded by culture.The expression of the Neo'tag-gene was detected by RT-PCR to confirm whether the combinant vector DNA integrated with the genomic DNA of SGC-7901. Western blot methods were used to analysis expression of PCAF protein in SGC-7901 cells before and after transfection.
     3.
     MTT growth test, flow cytometry analysis were used in vitro to study the effects of PCAF expression on transfected cells proliferation. Tumor growth in nude mice was used to access the tumorigenicity of gastric cancer cells. Apoptosis cells were detected by TUNEL staining.
     Results:
     1.
     (1) Vector pcDNA3.1 was introduced into coli DH5a with Lipo 2000.
     (2) Vector pcDNA3.1 can be successful cleavage by double restriction endonucleases EcoRl and Acc65I.
     (3) Double restriction endonucleases cleavage identification indicated the expected straps.
     (4) DNA sequencing was performed to confirm the construction.
     2.
     All of the two cell lines transfected by cooresponding plasmid acquired resistance to neomycin. The Neo'-tag gene was detected by RT-PCR in cell lines un-transfected due to lack of Neo'-tag. Western-blot showed that the PCAF were expressed higher in cell lines transfected by pcDNA3.1-PCAF than in cell lines un-transfected and transfected by an empty vector on protein level.
     3.
     Transfected with PCAF eukaryotic expression vector could significantly inhibit growth compared with the untransfected cells in the MTT assay. Flow cytometry analysis showed the proportion of G0/G1 phase cells in PCAF-7901 group was significantly higher than the proportion in the control group. The apoptotic indexes among PCAF-7901, Vec-7901 and SGC-7901 were determined by TUNEL. There was no obvious difference among the three groups.
     Conclusions:
     1. The eukaryotic expression vector of PCAF gene was successfully constructed by techniques of gene engineering.
     2. The eukaryotic vector was transfected successfully to SGC-7901 cells with liposome2000, which integrated with SGC-7901 cell genome and markedly enhanced the expression of PCAF protein in SGC-7901 cells.
     3. PCAF was able to suppress tumorigenicity of gastric cancer cells both in vitro and in vivo, including colony formation in soft agar and tumor formation in nude mice. PCAF could also inhibit intestinal type gastric cancer cells entering S phase from G1 phase. PCAF cannot induce apoptosis
引文
1. Lauren P. The two histological main types of gastric carcinoma:diffuse and so-called intestinal-type carcinoma. An attempt at a histoclinical classification[J]. Acta Pathol Microbiol Scand 1965; 64:31-49
    2. Hansson LE, Lindgren A, Nyren O.Can endoscopic biopsy specimens be used for reliable Lauren classification of gastric cancer[J]? Scand J Gastroenterol.1996; 31(7):711-715.
    3. Ono S, Oue N, Kuniyasu H, et al.Acetylated histone H4 is reduced in human gastric adenomas and carcinomas[J].J Exp Clin Cancer Res 2002; 21:377-382.
    4. Pham AD, Sauer F. Ubiquitin-activating/conjugating activity of TAFII 250, a mediator of activation of gene expression in Drosophila[J]. Science 2000; 289:2357-2360.
    5 Sassone-Corai P, Mizzen CA,Cheung P, et al.Requirement of Rsk-2 for epidermal growth factor-activated phosphorylation of histone H3 [J]. Science, 1999,285:886-891.
    6. Mizzen CA, Allis CD.Linking histone acetylation to transcriptional regulation. Cell Mol Life Sci,1998,54:6-20.
    7. Yang, X. J., V. V. Ogryzko, et al. "A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A." [J] Nature 1996 382(6589):319-324.
    8. Ogryzko V, Schlitz R, Russanova V, Howard B, Nakatani Y. The transcriptional coactivators p300 and CBP are histone acetyltransferases [J].Cell.1996;87: 953-959.
    9. Bannister, A.J. and Miska, E.A. Cell Mol Life Sci.200057,1184-1192.
    10. Ait,Si-Ali-SCarlisi,D, Ramirez,S,et al.Phosphorylation by p44 MAP kinase/ ERK1 stimulates CBP histone acetyl transferase activity In vitro[J]. Biochem Biophys Res Commun,1999; 262:157-162.
    11. Lipinski KS, Fax P, Wilker B, et al. Differences in the interactions of oncogenic adeno virus 12 early region 1A and nononcogenic adenovirus 2 early region 1 A with the cellular coactivators p300 and CBP [J]. Virology,1999, 255:94-105.
    12. Korzus E, Torchia J, Rose DW, et al.Transcription factor-specific requirements for coactivators and their acetyltransferase functions [J]. Science,1998; 279 (5351):703-707.
    13 Sakaguchi K, Herrera JE, Saito S, et al.DNA damage activates p53 through a phosphorylation and acetylation cascade. Gene Dev,1998,12(18):2831-2841.
    14. Sheppard KA,Rose DW,Haque ZK,et al.Transcriptional activation by NF-kappa B requires multiplecoactivator[J].Mol Cell Biol,1999,19(9):6367-6378.
    15. Patel JH,Du Y,Ard PG,et al.The c-myc oncoproteins a substrate of the acetyltransferases hGCN5/PCAF and TIP60[J].Mol Cell Biol,2004,24 (24): 10826-10834.
    16. Hamamori Y, Sartorelli V, Ogryzko V. Regulation of histone acetyltransferases p300 and PCAF by the bHLH protein twist and adenoviral oncoprotein ElA[J]. Cell,96(3):405-413
    17. Bryant, L.A., Mixon, P., Davidson, M., Bannister, A.J., Kouzarides, T. and Sinclair, J.H. The human cytomegalovirus 86-kilodalton major immediate-early protein interacts physically and functionally with histone acetyltransferase P/CAF[J]. J Virol,2000,74,7230-7237.
    18. Wang L, Grossman SR, Kieff E.Epstein-Barr virus nuclear protein 2 interacts with p300, CBP, and PCAF histone acetyltransferases in activation of the LMP1 promoter[J]. Proc Natl Acad Sci U S A.2000;97(1):430-435.
    19. Benkirane, M., Chun, R. F., Xiao, H., Ogryzko, V. V., Howard, B. H., Nakatani, Y, Jeang, K.-T. Activation of Integrated Provirus Requires Histone Acetyltransferase. p300 and P/CAF are coactivators for HIV-1 Tat[J]. J Biol. Chem.1998 273:24898-24905
    20. Lee D, Hwang SG, Kim J, et, al.Functional interaction between p/CAF and human papillomavirus E2 protein[J].J Biol Chem.2002 277(8):6483-6489.
    21. Ozdag H, Batley SJ, Forsti A, et al.Mutation analysis of CBP and PCAF reveals rare inactivating mutations in cancer cell lines but not in primary tumours [J].Br J Cancer 2002 4;87(10):1162-1165.
    22 Liu L, Scolnick DM, Trievel RC, et al.p53 sites acetylated in vitro by PCAF and p300 are acetylated in vivo in response to DNA damage[J].Mol Cell Biol.1999 19 (2):1202-1209.
    23. Poux AN, Marmorstein R.Molecular basis for Gcn5/PCAF histone acetyltransferase selectivity for histone and nonhistone substrates [J]. Biochemistry 2003 42(49):14366-74.
    24. Yang XJ, Ogryzko VV, Nishikawa J, et al. A p300/CBP-associated factor that
    competes withthe adeno-viral oncoprotein E1A. Nature 1996,382,319-324.
    25. Liu Y, Colosimo AL, Yang XJ, Liao D et al.Adenovirus E1B 55-kilodalton oncoprotein inhibits p53 acetylation by PCAF[J]. Mol Cell Biol,2000,20, 5540-5553.
    26. Polyak K, Xia Y, Zweier JL, Kinzler KW, Vogelstein B,et al. A model for p53-induced apoptosis[J]. Nature,1997,389,300-305.
    27. Watts GS, Oshiro MM, Junk DJ, Wozniak RJ, Watterson S, Domann FE, et al. The acetyltransferase p300/CBP-associated factor is a p53 target gene in breast tumor cells[J]. Neoplasia 2004; 6(3):187-194.
    28. Ge X, Jin Q, Zhang F,et al. PCAF acetylates{beta}-catenin and improves its stability [J]. Mol Biol Cell.2009; 20(1):419-427
    29. Zhu C, Qin YR, Xie D, Chua DT, Fung JM, Chen L, et al. Characterization of tumor suppressive function of P300/CBP-associated factor at frequently deleted region 3p24 in esophageal squamous cell carcinoma[J]. Oncogene 2009;28(31):2821-8.
    30. Xu W, Edmondson DG, Evrard YA, et al. Loss of Gcn512 leads to increased apoptosis and mesodermal defects during mouse development[J]. Nat Genet, 2000,26(2):229-232.
    31. Bu P, Evrard YA, Lozano G, et al. Loss of Gcn5 Acetyltransferase Activity Leads to Neural Tube closure defects and exencephaly in Mouse Embryos[J]. Mol Cell Biol,2007,27 (9):3405-3416
    32.李世杰,连正兴,李冬杰,等。染色质修饰基因在新生死亡克隆牛组织中的表达分析.科学通报,2006,51(1):50-54
    33. Gpta MP, Samant SA, Smith SH, et al.HDAC4 and PCAF Bind to Cardiac Sarcomeres and Play a Role in Regulating Myofilament Contractile Activity[J]. J Biol Chem,2008,283 (15):10135-10146
    34. Puri PL, A vanaggiatiML, Balsano C, et al. p300 is required for MyoD-dependent cell cycle arrest and muscle2specific gene transcription [J]. EMBO J,1997,16:369-383.
    35. Grant PA, Berger SL, Workman JL, et al.Identification and analysis of native nucleosomal histone acetyltransferase complexes [J].Methods Mol Biol-Methods Mol Bio,1999,119:311.
    36. Geiman TM, Robertaon KD, Williag HT,et al.Chromatin remodeling,histone modifications and DNA methylation-how dose it all fit together[J]. J Cell
    Biochem,2002,87(2):117.
    37. Hollstein, M., K. Rice, M. S. Greenblatt, et al. Database of p53 gene somatic mutations in human tumors and cell lines[J].Nucleic Acids Res,1994;22: 3551-3555
    38 Anderson C, Nijagal A, Kim J. Molecular markers for gastric adenocarcinoma: an update [J].Mol Diagn Ther 2006;10:345-352.
    39. Kim JH, Uhm HD, Gong SJ, et al.Relationship between p53 over-expression and gastric cancer progression [J]. Oncology.1997 54(2):166-170.
    40. Ogawa, Maeda K, Onoda N, et al. Imuohistochemical study of p21 expression in gastric carcinoma[J].Gen To Kagaku Ryoho 1997,24(suppl 2):292-295.
    41. Noda H, Maehara Y,Irie K,et al. Increased proliferative activity caused by loss of p21(WAF1/CIP1)expression and its clinical significance in patients with early-stage gastric carcinoma[J].Cancer,2002 94(7):2107-2112
    42. Liggett WH, Sidransky D. Role of the Rb tumor suppressor gene in cancer [J]. J Clin Oncol,1998,16 (3):1197-1206.
    43 Yasogaw a Y, Takano Y, O kayasu I, et al. The 5P4 antibody (anti-cyclin D1 /D2) related ant igen:cytoplasmic staining is co rrelated to the p rogression of gast ric cancer[J]. Pathol In,1998; 48:717
    44. Cappello F., Palma A., Martorana A., Rappa F., Cabidi D., Barresi E., et al.: Biological aggressiveness evaluation in prostate carcinomas:immuno-histochemical analysis of PCNA and p53 in a series of Gleason 6(3+3) adenocarcinomas[J]. Eur J Histochem,2003,47(2):129-132.
    45. Mori M, Kakeji Y, Adachi Y, et al. The prognostic significance of proliferating cell nuclear antigen in clinical gastric cancer [J]. Surgery,1993,113(6):683-690.
    46. Maeda K Chung YS, Onoda N, et al. Proliferating cell nuclear antigen labeling index of preoperative biopsy specimens in gastric carcinoma with special reference to prognosis[J]. Cancer,1994,730:528-533.
    1. Strahl BD, Allis CD. The language of covalent histone modifications. Nature 2000; 403(6765):41-5.
    2. Pfister S, Rea S, Taipale M, Mendrzyk F, Straub B, Ittrich C, et al. The histone-acetyltransferase hMOF is frequently downregulated in primary breast carcinoma and medulloblastoma and constitutes a biomarker for clinical outcome in medulloblastoma.Int J Cancer 2008; 122(6):1207-13.
    3. Seligson DB, Horvath S, Mc Brian MA, Mah V, Yu H, Tze S, et al. Global levels of histone modifications predict prognosis in different cancers. Am J Pathol 2009; 174(5):1619-28.
    4. Blanco JC, Minucci S, Lu J,et al. The histone acetylase PCAF is a nuclear receptor coactivator. Genes Dev.1998 12(11):1638-51.
    5. Imhof A, Yang XJ, Ogryzko VV, Nakatani Y, Wolffe AP, Ge H, et al. Acetylation of general transcription factors by histone acetyltransferases. Curr Biol 1997; 7(9):689-92.
    6. Sakaguchi K, Herrera JE, Saito S, et al.DNA damage activates p53 through a phosphorylation and acetylation cascade. Gene Dev,1998,12(18):2831-2841.
    7. Sheppard KA,Rose DW,Haque ZK,et al.Transcriptional activation by NF-kappa B requires multiplecoactivator.Mol Cell Biol,1999,19(9):6367-6378.
    8. Patel JH,Du Y,Ard PG,et al.The c-myc oncoproteins a substrate of the acetyltransferases hGCN5/PCAF and TIP60.Mol Cell Biol,2004,24 (24):10826-10834.
    9. Xu W, Edmondson DG, Evrard YA, et al. Loss of Gcn512 leads to increased apoptosis and mesodermal defects during mouse development. Nat Genet,2000, 26(2):229-232.
    10. Bu P, Evrard YA, Lozano G, et al. Loss of Gcn5 Acetyltransferase Activity Leads to Neural Tube closure defects and exencephaly in Mouse Embryos. Mol Cell Biol,2007,27 (9):3405-3416
    11.李世杰,连正兴,李冬杰,等。染色质修饰基因在新生死亡克隆牛组织中的表达分析.科学通报,2006,51(1):50-54.
    12. Gupta MP, Samant SA, Smith SH, et al. HDAC4 and PCAF Bind to Cardiac Sarcomeres and Play a Role in Regulating Myofilament Contractile Activity. J Biol Chem,2008,283(15):10135-10146.
    13. Zhu C, Qin YR, Xie D, Chua DT, Fung JM, Chen L, et al. Characterization of tumor suppressive function of P300/CBP-associated factor at frequently deleted region 3p24 in esophageal squamous cell carcinoma. Oncogene 2009; 28 (31):2821-8.
    14. Yang XJ, Ogryzko VV, Nishikawa J, Howard BH, Nakatani Y.A p300/CBP-associated factor that competes with the adeno viral oncoprotein E1A. Nature 1996; 382 (6589):319-24.
    15. Gu W, and Roeder, R.G. Activation of 053 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 1997; 90(5):595-606.
    16. Zhao LY, Liu Y, Bertos NR, Yang XJ, Liao D.PCAF is a coactivator for p73-mediated transactivation. Oncogene 2003; 22(51):8316-29.
    17. Sartorelli V, Puri PL, Hamamori Y, Ogryzko V, Chung G, Nakatani Y, et al. Acetylation of MyoD directed by PCAF is necessary for the execution of the muscle program.Mol Cell 1999;4(5):725-34.
    18. Puri PL, Sartorelli V, Yang XJ, Hamamori Y, Ogryzko W, Howard BH, et al. Differential roles of p300 and PCAF acetyltransferases in muscle differentiation. Mol Cell 1997;1(1):35-45.
    19. Caretti G, Salsi V, Vecchi C, Imbriano C, Mantovani R. Dynamic recruitment of NF-Y and histone acetyltransferases on cell-cycle promoters. J Biol Chem.2003; 278(33):30435-40.
    20. Guo A, Salomoni P, Luo J, Shih A, Zhong S, Gu W,et al. The function of PML in p53-dependent apoptosis. Nat Cell Biol 2000; 2(10):730-6.
    21. Liu L, Scolnick DM, Trievel RC, Zhang HB, Marmorstein R, Halazonetis TD, et al. p53 sites acetylated in vitro by PCAF and p300 are acetylated in vivo in response to DNA damage. Mol Cell Biol 1999; 19(2):1202-9.
    22.Ito A, Lai CH, Zhao X, Saito S, Hamilton MH, Appella E, et al. p300/ CBP-mediated p53 acetylation is commonly induced by p53-activating agents and inhibited by MDM2. EMBO J 2001; 20(6):1331-40.
    23. Luo J, Su F, Chen D, Shiloh A, Gu W.Deacetylation of p53 modulates its effect on cell growth and apoptosis. Nature 2000; 408(6810):377-81.
    24. Cohen HY, Lavu S, Bitterman KJ, Hekking B, Imahiyerobo TA, Miller C, et al.Acetylation of the C Terminus of Ku70 by CBP and PCAF Controls Bax-Mediated Apoptosis. Mol Cell 2004; 13(5):627-38.
    25. Yamauchi T, Yamauchi J, Kuwata T, Tamura T, Yamashita T, Bae N,et al. Distinct but overlapping roles of histone acetylase PCAF and of the closely related PCAF-B/GCN5 in mouse embryogenesis.Proc Natl Acad Sci USA 2000;97(21):11303-6.
    26. Maurice T, Duclot F, Meunier J, Naert G, Givalois L, Meffre J,et al.Altered memory capacities and response to stress in p300/CBP-associated factor (PCAF) histone acetylase knockout mice. Neuropsychopharmacology 2008; 33(7):1584-602.
    27. McKenna ES, Sansam CG, Cho YJ, Greulich H, Evans JA, Thom CS,et al. Loss of the epigenetic tumor suppressor SNF5 leads to cancer without genomic instability. Mol Cell Biol 2008; 28 (20):6223-33.
    28. Ozdag H, Batley SJ, Forsti A, Iyer NG, Daigo Y, Boutell J, et al.Mutation analysis of CBP and PCAF reveals rare inactivating mutations in cancer cell lines but not in primary tumours.Br J Cancer 2002; 87(10):1162-5.
    29. Watts GS, Oshiro MM, Junk DJ, Wozniak RJ, Watterson S, Domann FE, et al. The acetyltransferase p300/CBP-associated factor is a p53 target gene in breast tumor cells. Neoplasia 2004; 6(3):187-94.
    30. Zhu C, Qin YR, Xie D, Chua DT, Fung JM, Chen L, et al. Characterization of tumor suppressive function of P300/CBP-associated factor at frequently deleted region 3p24 in esophageal squamous cell carcinoma. Oncogene 2009; 28 (31):2821-8.
    31.Soussi T, Asselain B, Hamroun D, Kato S, Ishioka C, Claustres M, et al. Meta-analysis of the p53 mutation database for mutant p53 biological activity reveals a methodologic bias in mutation detection. Clin Cancer Res 2006; 12(1):62-9.
    32. Hanazono K, Natsugoe S, Stein HJ, Aikou T, Hoefler H, Siewert JR. Distribution of p53 mutations in esophageal and gastric carcinomas and the relationship with p53 expression. Oncol Rep 2006; 15(4):821-4.
    33.Nagy Z, Tora L. Distinct GCN5/PCAF-containing complexes function as co-activators and are involved in transcription factor and global histone acetylation. Oncogene 2007; 26(37):5341-57.
    34. Bouvard V, Zaitchouk T, Vacher M, Duthu A, Canivet M, Choisy-Rossi C, et al.Tissue and cell-specific expression of the p53-target genes:bax, fas, mdm2 and wafl/p21, before and following ionising irradiation in mice.Oncogene 2000;19(5):649-60.
    35. Pediconi N, Guerrieri F, Vossio S, Bruno T, Belloni L, Schinzari V, et al. hSirTl-dependent regulation of the PCAF-E2F1-p73 apoptotic pathway in response to DNA damage. Mol Cell Biol 2009; 29(8):1989-98.
    36.Roviello F, Marrelli D, Vindigni C, De Stefano A, Spina D, Pinto E.P53 accumulation is a prognostic factor in intestinal-type gastric carcinoma but not in the diffuse type. Ann Surg Oncol 1999; 6(8):739-45.
    37. Yasui W, Oue N, Ono S, Mitani Y, Ito R, Nakayama H. Histone acetylation and gastrointestinal carcinogenesis. Ann N Y Acad Sci 2006; 983:220-31.
    38. Park YS, Jin MY, Kim YJ, Yook JH, Kim BS, Jang SJ. The global histone modification pattern correlates with cancer recurrence and overall survival in gastric adenocarcinoma. Ann Surg Oncol 2008; 15(7):1968-76.
    39. Lowe SW, Bodis S, McClatchey A, Remington L, Ruley HE, Fisher DE, et al.p53 status and the efficacy of cancer therapy in vivo. Science 1994; 266(5186):807-10.
    40. Yu G, Wang J, Chen Y, Wang X, Pan J, Li G, et al. Over-expression of phosphorylated mammalian target of rapamycin predicts lymph node metastasis and prognosis of Chinese patients with gastric cancer. Clin Cancer Res 2009; 15(5):1821-9.
    [1]Ji Un Kang,Jason Jongho Kang,Kye Chul Kwon,et al.Genetic Alterations in Primary Gastric Carcinomas Correlated with Clinicopathological Variables by Array Comparative Genomic Hybridization[J].Korean Med Sci.2006;21(4): 656-665.
    [2]Gologan A, Sepulveda AR,et al.Microsatellite instability and DNA mismatch repair deficiency testing in hereditary and sporadic gastrointestinal cancers[J].Clin Lab Med.2005;25(1):179-196.
    [3]Toyota M, Ahuja N,Ohe-Toyota M, et al.CpG island methylator phenotypein colorectal cancer[J].PNAS,1999;96:8681-8686.
    [4]Lee JH,Park SJ,Abraham SC,et al.Frequent CpG island methylation in precursor lesions and early gastric adenocarcinomas[J].Oncogene,2004;23: 4646-4654.
    [5]Chen JD, Kearns S, Porter T,et al.MET mutation and familial gastric cancer[J]. JMed Genet,2001;38(8):E26.
    [6]Werner M,Becker KF,Keller G,et al. Gastric adenocarcinoma:pathomorphology and molecular pathology[J].Cancer Res,2001,127(4):207-216.
    [7]Hamai Y, Matsumura S, Kuraoka K,et al.A single nucleotide polymerphism in the 5'-untranslated region of EGF gene is associated with occur rence and malignant progression of gastric cancer[J].Pathobiology,2005,72(3):133-138.
    [8]Burbano RR, Assumpcao PP,Leal MF,et al.C-MYC locus amplification as metastasis predictor in intestinal-type gastric adenocarcinomas:CGH study in Brazil[J].Anticancer Res,2006;26(4B):2909-2914.
    [9]Pinto-de-Sousa J,Silva F,David L,et al.Clinicopathological significance and survival influence of p53 protein expression in gastric carcinoma[J]. Histopathology,2004,44 (4):323-331.
    [10]Zheng HC,Li YL,Sun JM,et al.Growth, invasion,metastasis,differentiation, angiogenesis and apoptosis of gastric cancer regulated by expression of PTEN encoding products[J]. World J Gastroenterol,2003,9(8):1662-1666.
    [11]Zhao P,Liu W,Lu YL,et al.Clinicopathological significance of FHIT protein expression in gastric adenocarcinoma patients [J]. World J Gastroenterol, 2005,11(36):5735-5738.
    [12]Cho YG, Nam SW,Kim TY,et al.Overexpression of S-100A4 is closely related to the aggressiveness of gastric cancer[J].APMIS,2003,111(5):539-545.
    [13]KONDO T, SENTANI K, OUO N, et al Expression of RHOC is associated with metastasis of gastric carcinomas[J].pathobiology,2004,71(1):19-25.
    [14]Mashino K,Sadanaga N, Yamaguchi H,et al.Expression of chemokine receptor CCR7 is associated with lymph node metastasis of gastric carcinoma[J]. Cancer Res,2002,62(10):2937-2941.
    [15]Pujuguel P, DelMaestro L,Gautreau A,et al.Ezrin regulates E-cadherin-dependent adherens junction assembly through Racl activation[J]. Mol Biol Cell,2003,14:2181-2191.
    [16]Toh Y, Oki E, Oda S, Tokunaga E,et al.Overexpression of the MTA1 gene in gastrointestinal carcinomas:correlation with invasion and metastasis[J].Int J Cancer,1997;74:459-463.
    [17]Yasushi Sumiyoshi, Yoshihiro Kakeji,Akinori Egashira,et al. Overexpression of Hypoxia-Inducible Factor 1A and p53 Is a Markerfor an Unfavorable Prognosis in Gastric Cancer[J].Clin Cancer Res,2006;12(17):5112-5117.
    [18]Ito R,Oue N, Zhu X,et al.Expression of integrin-linked kinase is closely correlated with invasion and metastasis of gastric carcinoma[J].Virehows Arch,2003,42(2):118-123.
    [19]WANG DR,CHEN GY, LIU XL,et al.CD44v6 in peripheral blood and bone marrow as micrometastasis of patients with gastric cancer[J].World J Gastroenterol 2006;12(1):36-42.
    [20]WANG CS, LIN KH, CHEN SL,et al.Overexpression of SPARC gene in human gastric carcinoma and its clinic-pathologic significance[J].Br J Cancer,2004,91(11):1924-1930.
    [21]Chen JQ,Zhan WH,He YL,et al.Expression of heparanase gene,CD44v6, MMP-7 and nm23 protein and their relationship with the invasion and metastasis of gastric carcinomas [J].World J Gastroenterol,2004,10 (6):776-782.
    [25]Dong JT, Lamb PW, Rinker-Schaeffer CW,et al.KAI1, a metastasis suppressor gene for prostate cancer on human chromosome 11p11.2[J].Science, 1995,12;268(5212):884-886.
    [26]Tsutsumi S,Shimura T,Morinaga N,et al.Loss of KAI1 expression in gastric cancer[J].Hepatogastroenterology,2005,52(61)281-284.
    [27]Yu M, Zheng H, Tsuneyama K,et al.Paradoxical expression of maspin in gastric carcinomas:correlation with carcinogenesis and progression[J].Hum Pathol,2007;38(8):1248-1255.
    [28]Song SY, Son HJ, Nam E,et al.Expression of reversion-inducing-cysteine-rich protein with Kazal motifs (RECK) as a prognostic indicator in gastric cancer[J].Eur J Cancer,2006;42(1):101-108.
    [29]Zhihai Peng, DaoyanWei, LiweiWang,et al.RUNX3 Inhibits the Expression of Vascular Endothelial Growth Factor and Reduces the Angiogenesis,Growth, and Metastasis of Human Gastric Cancer[J].Clin Cancer Res,2006; 12(21): 6386-6394.
    [30]Sakakura C, Hasegawa K, Miyagawa K,et al.Possible Involvement of RUNX3 Silencing in the Peritoneal Metastases of Gastric Cancers[J].Clin Cancer Res, 2005; 11 (18):6479-6488.
    [31]Feakins RM,Nickols CD,Bidd H,et al. Abnormal expression of pRb,p16,and cyclin D1 in gastric adenocarcinoma and its lymph node metastases: relationship with pathological features and survival[J].Hum Pathol, 2003,34(12):1276-1282.
    [32]Chou NH, Chen HC, Chou NS,et al.Expression of altered retinoblastoma protein inversely correlates with tumor invasion in gastric carcinoma[J]. World J Gastroenterol,2006;12(44):7188-7191.
    [33]Nitti D, Belluco C, Mammano E,et al.Low level of p27(Kipl) protein expression in gastric adenocarcinoma is associated with disease progression and poor outcome [J].J Surg Oncol,2002;81(4):167-175.
    [34]Yoo YD, Park JK, Choi JY,et al.CDK4 down-regulation induced by paclitaxel is associated with G1 arrest in gastric cancer cells[J].Clin Cancer Res,1998; 4(12):3063-3068.
    [35]Mitani Y,Oue N, Hamai Y,et al.Histone H3 acetylation is associated with reduced p21(WAF1/CIP1) expression by gastric carcinoma[J].J Pathol, 2005;205:65-73.
    [36]Isobe N,Onodera H, Mori A,et al.Caspase-3 expression in human gastric carcinoma and its clinical significance[J].Oncology.2004;66(3):201-209.
    [37]Zhao XH, Gu SZ, Tian HG,et al.Clinical significance of expression of apoptotic signal proteins in gastric carcinoma tissue[J].World J Gastroenterol, 2005;11(25):3846-3849.
    [38]Guilford P, Hopkins J, Harraway J,et al.E-cadherin germline mutations in familial gastric cancer[J].Nature,1998;392:402-405.
    [39]Koriyama C,Akiba S,Itoh T,Sueyoshi K,et al.E-cadherin and beta-catenin expression in Epstein-Barr virus-associated gastric carcinoma and their prognostic significance[J]. World J Gastroenterol.2007; 13(29):3925-3931.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700