用户名: 密码: 验证码:
抗重金属微生物的筛选及其抗镉机理和镉吸附特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着重金属污染日趋严重,污染治理已成备受关注的焦点。生物修复是颇具潜力的治理方法,应用从污染区分离筛选的本土微生物能有效提高生物修复的效率。因此,研究本土抗重金属微生物对修复重金属污染有重要意义。
     本研究首先通过驯化、筛选和分离,从株洲冶炼厂的土壤中获得一批抗镉微生物。其中抗性最高的细菌和真菌分别是E1和M1,E1能在18 mmol/L的固体培养基和10 mmol/L的液体培养基中生长,M1能80 mmol/L的固体培养基和40 mmol/L的液体培养基中生长。抗镉菌株E1是革兰氏阴性两端钝圆的短杆菌,有端生鞭毛,大小约0.5-1.0μm×2.0-3.0μm。在无镉培养基中产生黄绿或蓝绿色色素,在镉浓度高于1 mmol/L的培养基中一般不产生色素。菌株E1的生理生化特性与假单胞菌很相似。16S rDNA序列同源性分析表明菌株E1与GenBank中的铜绿假单胞菌(Pesudomonas aeruginosa)的同源性最高达98%。可将E1初步鉴定为铜绿假单胞菌。菌株M1菌丝体呈白色或淡紫色,扫描电镜分析表明气生菌丝有隔和分枝,分生孢子细长,长在气生菌丝上,孢子呈椭圆形。通过18S rDNA、ITS和β-微管蛋白基因序列的分析,表明该菌与淡紫拟青霉菌(Paecilomyces lilacinus)同源性达99%以上,将M1初步鉴定为淡紫拟青霉菌。对抗镉菌株E1和M1的抗性和生长条件进行了研究,结果表明,它们不仅具有抗镉的能力,而且还对其它重金属Zn、Mn、Gu、Pb和Co以及多种抗生素具有抗性。菌株E1和M1的适宜生长和抗镉(2mmol/L)条件为温度20-35℃,pH6-8,装液量80-100 mL (250 mL摇瓶)。但是E1的生长和抗镉最适pH值为7,而M1的为6,它们的最适温度是30℃。50mg/L的Zn和Mn能促进或不因影响菌株的生长,而50 mg/L而Pb和Co对两个菌株的生长和抗镉都有抑制作用。
     其次,利用分子生物学技术初步研究了P.aeruginosa E1的抗镉机理。采用煮沸法、SDS法和试剂盒提取P.aeruginosa E1的质粒,没有得到结果;采用SDS、吖啶橙和苯甲酸钠培养消除质粒后测试菌株的抗镉性能,结果发现质粒消除前后的抗镉性能没有明显差异。表明该菌株内没有质粒,抗性基因存在染色体上。利用RT-PCR技术,对P.aeruginosa E1中相关的基因在镉胁迫下的表达差异进行了研究,以了解菌株的抗镉机理。在镉胁迫1h后czcA, czcB和czcC上调表达量达到最大,然后回落到一个相对稳定的范围。czcD却在加入镉离子10min后表达量上调到最高值,达15.67倍,然后在1-4h内保持相对稳定的范围。czcD的表达量一般高于其他三个基因,在抗镉中表现出很重要的作用。在镉胁迫下,基因cysM的表达较cysK强,主要表现为上调表达,而cysK的表达差异较小,表明镉胁迫下由cysM编码的O-乙酰丝氨酸裂解酶B在半胱氨酸的合成中起主要作用。mgt体系对镉离子的转运调控反应比较快,主要在镉胁迫的前期起作用;znu转运体系的表达上调比较缓和而持久。初步认为镉胁迫下菌株E1是通过外排镉离子,增加半胱氨酸的合成来适应环境的,znu和mgt体系“轮流”负责镉离子的内流转运。
     同时,对抗镉P.aeruginosa E1和P.lilacinus M1的镉吸附作用进行了初步探讨。表明抗镉菌株E1的活细菌和灭活细菌都对水环境中的镉有明显去除作用,吸附24h后,活细菌的去镉效果比灭活细菌好,吸附率分别为43.3%和22.6%。对M1在100mg/L镉离子培养基生长过程中的吸附作用进行了研究。在生长对数期,菌株对镉离子的吸附率从8.09%增加到68.8%,该菌株在培养期3-4天的时候吸附效率最高。利用生物陶粒固定微生物进行了镉吸附试验, E1和M1最大吸附率可达42.36%和64.9%,摇瓶和反应器吸附试验均表明固定菌体后的生物陶粒能有效的吸附溶液中的镉离子;红外光谱分析表明E1对镉离子的吸附主要与C-O、C=O、C-H、O-H、C-N、N-H以及磷酸功能基团有关,M1主要与C=O、C-H、N-H等有关;能谱分析证实固定E1和M1的陶粒可以较好的吸附溶液中的镉;M1菌丝体对镉的吸附可能是通过分泌大量胞外多糖类物质来实现的。
     此外,从污染土壤中还分离到一株抗汞菌株D2,通过分析它的16SrDNA序列,将其鉴定为P. aeruginosa。菌株D2能生长在60 mg/L Hg2+的固体培养基中,但在60mg/L Hg2+的液体培养基中不能繁殖。对菌株D2的抗性进行了研究,结果表明它对其他的重金属Cu、Co、Mn、Zn、Cd和Pb有抗性,对抗生素也具有一定抗性。质粒分析表明该菌株内可能没有质粒,抗性基因存在染色体上。通过PCR获得基因merART序列,它们都与R. Metallidurans CH34菌株的质粒和转座子Tn501等的相应基因有很高的相似性,可能是汞的长期胁迫下,抗汞基因发生横向转移的结果。
Heavy metal pollution is increasing with metals exploitation and application. Bioremediation plays a role in pollution treatment. Using the microbe isolated from indigenous soils can improve the efficiency. So the study of the indigenous heavy-metal-resistant strains is significant for bioremediation.
     Some strains resisted to high concentration of cadmium were isolated by acclimation of concentration gradient from the polluted soils of the smeltery in Hunan province, China. Strains marked E1 and M1 with higher resistance were selected in the following experiments. Strain E1 could survive in 18 mmol/L Cd2+ solid medium and 10 mmol/L liquid medium. M1 could survive in 80 mmol/L Cd2+solid medium and 40 mmol/L liquid medium. E1 presents Gram-negative, rod-shaped with polar flagellum, and the size is (0.5-1.0)μm×(2.0-3.0)μm. It produced green or blue pigment, and the pigment disappeared in the absence of cadmium. Based on the characterizations of the physiological and biochemical characteristics 16S rDNA sequence analysis, strain E1 was identified as Pseudomonas aeruginosa.
     On Czapek and PDA solid medium, strain M1 appeared white density mycelia and the bottom of plates showed yellow at the first 3-5 day. But after then the mycelia gradually became yellow or brown. Scanning electron microscope observation showed, the aerial mycelia had septate and branches, slender conidiophores grew out from aerial mycelia and conidia present oval. The strain M1 was identified as Paecilomyces lilacinus based on the morphologic characteristics and the sequences analysis of 18s rRNA, ITS region andβ-tubulin.
     The strains could resist not only to cadmium but also to other metals including Cu, Co, Mn, Pb and Zn. P.aeruginosa E1 and P.lilacinus M1 have broad-spectrum resistance to heavy metals and antibiotics. The growth conditions of two strains were similar. The suitable of conditions were 20-35℃, pH 6-8,80-100 mL medium in 250 mL shaker. But the optimum initial pH in medium was 7 and 6 for E1 and M1.50 mg/L Zn and Mn had some help to the growth. While 50 mg/L Pb and Co would restrain the growths of two strains in cadmium and no cadmium mediums.
     The plasmid did not be extracted from P.aeruginosa E1 by the methods of boiling, SDS and plasmid kit. SDS, acridine and sodium benzoate were singlely added into medium to eliminate plasmid. The resistance ability to cadmium of the cultures performed plasmid eliminations were tested and did not present obviously difference. It was demonstrated that the strain has not plasmid and the resistant gene maybe locate on chromosome. The response of strain E1 to cadmium ion was investigated based on the genes expression profiling examined by using Real-time PCR. Exposure to cadmium for 1 h, the gene czcA,czcB and czcC expression reached the highest level, and then declined to a stable range. czcD gene expression was up-regulated 15.67-fold after exposure to cadmium for 10 min. With the fast and high up-regulation expression, czcD gene was thought as more important in the response of strain E1 to cadmium stress than czcABC. Exposure to cadmium cysM gene expression was present more up-regulation than cysK. It showed that o-acetylserine sulphydrylase-B coded by the cysM played a role in cysteine biosynthesis to resist cadmium. The response of mgt gene to cadmium press was fast and the gene expression up regulated mainly in earlier stage, while the up-regulation of znu was gently and lasting.
     Both living and non-living cells of P.aeruginosa E1 can remove Cd from solution. After being treated for 24 h, the cadmium removal rates of the living cell and non-living cell reached 43.3% and 22.6%, respectively. It suggested that the biosorption ability of the living cell was better than the non-living cell. During the log phase, the cadmium removal by P.lilacinus M1 displayed a rising from 8.09%to 68.8%and reached a plateau phase on day 4. The biosorption amount also presented a increasing trend, from 17.98 mg/g on day 1 to 24.23 mg/g on day 3, and subsequently following a minimal decreasing. The result showed that the better cadmium adsorption by the fungus occurred on after culturing for 3-4 day.
     P.aeruginosa E1 and P.lilacinus M1 were single immobilized on bio-ceramic to adsorb cadmium ion from solution. The biosorptions both of batch and reactor confirmed that immobilized microbes could remove cadmium. The removal rates were 42.36% and 64.9% for P.aeruginosa E1 and M1. The EDX analysis confirmed the above result. Moreover,extracellular polysaccharide was presumed as the main role in M1 biosorption based on EDX analysis. FTIR spectrum suggested that biosorption of cadmium ion by biomass of strain E1 mainly related to C=O, C-O, C-H, O-H, C-N, N-H groups and phosphate functional groups, M1 related to C=O、C-H、N-H. The biosorption reactions occurred between cadmium ion and the above groups of biomass.
     Strain D2 resistance to high concentration mercury ion was isolated. Based on analysis of 16S rDNA the strain was identified as P. aeruginosa. It can grow in the soil medium containing 60 mg/L Hg2+. But when the concentration of mercuric ion in liquid medium reaches 60 mg/L, the strain hardly grows. Besides mercury, strain D2 can tolerant to other heavy metals Cu, Co, Mn, Zn, Cd, and Pb. Antibiotics disc tests demonstrated it could resistant to the 12 antibiotics. The resistance to mercuric ion of strain D2 was related to chromosome. The merRT and merA gene sequences were obtained. Sequence alignment demonstrated that the mer gene was high similar to R. Metallidurans CH34, Tn501 and so on.
引文
[1]曹斌,何松洁,夏建新.重金属污染现状分析及其对策研究[J].中央民族大学学报(自然科学版),2009,18:29-33
    [2]黄宝圣,镉的生物毒性及其防治策略[J].生物学通报,2005,40(11):26-28
    [3]黄秋婵,韦友欢.镉对人体健康的危害效应及其机理研究进展[J].黎晓峰安徽农业科学,2007,35(9):2528-2531
    [4]姜辉,叶庆春.部分金属污染物质对人体的危害[J].齐鲁医学杂志,2003(18)4:497-498
    [5]刘杰.镉的毒性和毒理学研究进展[J].中华劳动卫生职业病杂志,1998,16(1):2-4
    [6]余日安.镉与DNA损伤、癌基因表达、细胞凋亡[J].国外医学:卫生学分册,2000,27(6):359-361.
    [7]愈萍,唐玲芳.氯化镉对人全血细胞程序外DNA合成的影响[J].癌变·畸变·突变,2005,17(1):41-44.
    [8]杨延军,刘建.浅谈水污染对人体健康的影响与危害[J].吉林水利,2003,3(11):37-40
    [9]吕新元,梁统玲.镉污染及其防治[J].上海环境科学,1997,(07):45-48
    [10]段玉梅,傅式洲.镉的污染及防治方法[J].陕西环境,2003,10(6):54-55
    [11]易建春,汪模辉,李锡坤.土壤中镉的污染及治理[J].广东微量元素科学,2006,13(9):11-15
    [12]孙淑兰.汞的来源、特性、用途及对环境的污染和对人类健康的危害[J].上海计量测试,2006,33:6-9
    [13]Barkay T, Miller SM, Summers AO. Bacterial mercury resistance from atoms to ecosystems [J]. FEMS microbiology reviews,2003,27:355-384
    [14]付晓萍.付晓萍重金属污染物对人体健康的影响[J].辽宁城乡环境科技,2004,8-9
    [15]马燕,崔旭光.重金属对环境的污染[J].内蒙古环境科学,2008,20:18-21
    [16]林宇岚,陈贻锴.细菌的汞抗性基因及其在生物修复中的应用[J].海峡预防医学杂志,2006,12:16-18
    [17]Canstein H, li Y. Timmis KN1 of all Removal of Mercury f rom Chloralkali Elect-rolysis Wastewater by a Mercury2Resistant Pseudomonas puti da St rain[J].Appl Environl Microbiol,1999,65,52792-52841
    [18]陈荣华,林鹏.红树幼苗对汞的吸收于净化[J].环境科学学报,1989,9(2):218-224
    [19]Adams TK, Saydam N, Steiner F, et al. Activation of Gene Expression by metal-Responsive Signal [J]. Environ Health Perspect.,2002,110:813-817
    [20]Kuroda K, Ueda M. Bioadsorption of cadmium ion by cell surface-engineered yeasts displaying metallothionein and hexa-His [J]. Appl Microbiol Biotechnol,2003,63:182-186
    [21]Bertini I, Hartmann H, Klein T, et al. High resolution solution structure of the protein part of Cu7 metallothionein [J].Eur J Biochem,2000,267:1008-1018
    [22]Eccles H. Treatment of metal-contaminated wastes:why select a biological process [J]. Trends Biotechnol,1999,17:462-465
    [23]张炳华,张彦琼,王吉伟,张阳德.微生物重金属抗性的研究进展[J].中国医学工程,2006,14:153-155
    [24]Hetzer A, Daughney CJ, Morgan HW. Cadmium Ion Biosorption by the Thermophilic Bacteria Geobacillus stearothermophilus and G. thermocatenulatus. Appl. Envir. Microbial,2006,72:4020-4027.
    [25]Tanja K, Ralph J. Silver2based crystalline nanoparticles, microbially fabricated[J]. Applied Physical Sciences/Microbiology,1996 (24):13611 - 13614
    [26]Jaeckel P, Krauss G, Menge S, et al. Cadmium induces a novel metallothionein and phytochelatin in an aquatic fungus [J]. Biochemical and Biophysical Research Communications,2005,333:150-155.
    [27]Mendoza-Cozatl D, Loza-Tavera H, Hernandez-Navarro A, et al. Sulfur assimilation and glutathione metabolism under cadmium stress in yeast, protists and plants [J]. FEMS Microbiol. Rev.,2005,29:653 - 671
    [28]夏立江,李楠,沈德中,等.原位生物修复治理汞害的机制及作用.环境科学进展,1998,6:48-52
    [29]Klaassen CD, Liu J, Choudhuri S. Metallothionein:An Intracellular Protein to Protect Against Cadmium Toxicity [J]. Annual Review of Pharmacology and Toxicology,1999,39:267-294
    [30]张玉秀,柴团耀,Burkard G植物耐重金属机理研究进展[J].植物学报,1999,41(5):453-457.
    [31]焦芳婵,毛雪,李润植.金属结合蛋白基因及其在清除重金属污染中的应用[J].遗传,2002,24(1):82-86
    [32]叶锦韶,尹华,彭辉.微生物抗重金属毒性研究进展.环境污染治理技术与设备,2002,3:1-4
    [33]Hammer DH, Thiele DJ, Lemontt JE. Function and autoregulation of yeast copperthionein [J]. Science,1985,228:685 -690.
    [34]Bellemare DR, Shaner L, Morano KA, et al. Ctr6, a vacuolarmembrane copper transporter in Schizosaccharom ycespombe [J]. Journal of Biological Chemistry,2002,277 (48):46676-46686.
    [35]李杰,贺纪正,马延和,等.生物耐铜的分子机理及铜污染环境的生物联合修复[J].生态学报,2007,7:2615-2626
    [36]Nies DH. Resistance to cadmium, cobalt, zinc and nickel in microbes [J]. Plasmid.1992,27(1):17-28.
    [37]Miersch J, Tschimedbalshir M, Barlocher F, et al. Heavy metals and thiol compounds in Mucor racemosus and Articulospora tetracladia [J]. Mycol. Res, 2001,105:883-889.
    [38]Pattanapipitpaisal P, Brown N, Macaskie L. Chromate reduction and 16S rRNA identification of bacteria isolated from a Cr (Ⅵ)-contaminated site [J]. App Microbiol Biotechnol,2001,57:257-261.
    [39]Myers CR,Carstens BP, Antholine WE. et al. MyersChromium(VI) reductase activity is associated with the cytoplasmic membrane of anaerobically grown Shewanella putrefaciens MR-1[J]. Journal of Applied Microbiology,2000, 88(1):98-106.
    [40]池振明.现代微生物生态学.北京:科学出版社,2005,279-281.
    [41]蔡林,王革娇.抗砷性微生物及其抗砷分子机制研究进展[J].微生物学通报,2009,36(8):1253-1259
    [42]Anderson GL, Williams J, Hille R. The purification and characterization of arsenite oxidase from Alcaligenes faecalis, a molybdenum-containing hydroxylase[J]. J Biol Chem,1992,267(33):23674-23682.
    [43]Santini JM, Sly LI, Schnagl RD, et al. A new chemolithoautotrophic arsenite-oxidizing bacterium isolated from a gold mine:phylogenetic, physiological, and preliminary Biochemical studies [J]. Appl Environ Microbiol,2000,66(1):92-97.
    [44]Kashyap DR, Botero LM, Franck WL, et al. Complex regulation of arsenite oxidation in Agrobacterium tumefaciens[J].J Bacteriol,2006,188(3):1081 - 1088.
    [45]Muller D, Medigue C, Koechler S, et al. A tale of two oxidation states: bacterial colonization of arsenic-rich environments [J]. PLoS Genet,2007,3(4): 518-530.
    [46]Oremland RS, Stolz JF. Arsenic, microbes and contaminated aquifers [J]. Trends Microbiol,2005,13(2):45-49.
    [47]陈晋阳,黄卫.无定形氢氧化铁吸附水溶液中镉离子机理的XPS研究[J].分析测试学报,2002,21(3):70-72.
    [48]姜述芹,周保学,于秀娟,等.氢氧化镁处理含镉废水的研究[J].环境化学,2003,22(6):601-604.
    [49]马艳飞,王九思,宋光顺,等.氢氧化镁对废水中镉吸附性能的研究[J].兰州铁道学院学报(自然科学版),2003,22(4):120-122.
    [50]杨彤,曹文海,许耀生.化学法处理重金属离子废水的改进[J].电镀与精饰,1999,21(5):38-40.
    [51]陈阳,钟国清.电镀镉废水处理的实验研究[J].Planting and Finishing, 2004,26(5):36-38.
    [52]邱廷省,成先雄,郝志伟,等.含镉废水处理技术现状及发展[J].四川有色金属,2002,4:38-41.
    53]方云如,张智宏,杨建男,等.铁氧体法处理含铬和镉废水的研究[J].江苏石油化工学院学报,1999,11(4):8-10
    [54]杨智宽.污染控制化学[M].武汉:武汉大学出版社,1998,1:298-303.
    [55]张剑如,叶金武,徐立宏.含镉废水处理研究进展[J].广东化工,2007,34(2):28-30
    [56]耿振香,李云.用淀粉黄原酸盐处理含镉废水的研究[J].应用化工,2005,34(9):545-547.
    [57]吴艳林.活性炭纤维处理含镉废水的研究[J].辽宁城乡环境科技,2002,22(5):15-18.
    [58]王鲁敏,殷军港,邓昌亮,等.内蒙风化煤对镉离子溶液的吸附行为[J].化学研究与应用,2003,15(2):276-277.
    [59]陈晋阳,黄卫.用低成本的粘土矿物吸附水溶液中镉离子的研究[J].应用科技,2002,29(2):41-43
    [60]刘羽,胥焕岩,黄志良,等.羟基磷灰石吸附水溶液中Cd2+的影响因素的研究[J].岩石矿物学杂志,2001,20(4):583-584.
    [61]杨智宽,单崇新,苏帕拉.羧甲基壳聚糖对水中Cd2+的絮凝处理研究 [J].环境科学与技术,2000,1:10-12.
    [62]戴世明,吕锡武.镉污染的水处理技术研究进展[J].安全与环境工程,2006,13(3):63-65
    [63]成杰民.蚯蚓-菌根在植物修复镉污染土壤中的作用[J].生态学报,2005,25(6):1256-1263.
    [64]Salt D E, BlaylockM, Kumarnp B A, et al. Phytoremediation:a novel strategy for the removal of toxic metals fromthe environment using plants [J]. Biotechnology,1995,13:468-474.
    [65]王凯荣,张格丽.农田土壤镉污染及其治理研究进展.作物研究.2006(4):359-364
    [66]刘发欣,高怀友,伍钧.镉的食物链迁移及其污染防治对策研究.农业环境科学学报.2006,25:805-809
    [67]李硕.水葱修复土壤镉污染潜力的研究[J].环境污染与防治,2006,28(2):84-86.
    [68]吴双桃.美人蕉在镉污染土壤中的植物修复研究[J].工业安全与环保,2005,31(9):13-15.
    [69]Kuhn SP, Pfister RM. Adsorption of mixed metals and cadmium by calcium-alginate immobilized Zoogloea ramigera [J]. Appl.Environ. Microbio,1989, 31(5-6):613-618.
    [70]ButterTJ. The removal and recovery of cadmium from dilute aqueous solutions by biosorption and electrolysis at laboratory scale[J]. Water Res,1998, 32(2):400-405
    [71]曹德菊,程培.3种微生物对Cu Cd生物吸附效应的研究[J].农业环境科学学报.2004,23:471-474
    [72]Wu H, Peng Y. Metal extraction from municipal solid waste (MSW) incinerator flyash-Chemical leaching and fungal bioleaching [J]. Enzyme and Microbial technology,2006,38:839-847
    [73]李洪强,刘成伦,徐龙君.微生物吸附剂及其在重金属废水处理中的应用.材料保护,2006,39:48-52
    [74]Puranik and Paknikar KM. Biosorption of lead and zinc fromsolutions using streptoverticillium cinnamoneum waste biomass [J]. J Biotechnol,1997,55 (2): 113-124.
    [75]李霞,李风亭,张冰如.生物吸附法去除水中重金属离子[J].工业水处理,2004,24:1-5.
    [76]郑玉建,张杰,依不拉音.微生物在水体重金属污染治理中的应用[J].国外医学医学地理分册,2006,27:39-42
    [77]Thomas RAP, Beswick AJ, Basnakova G, et al. Growt h of naturally occurring microbial isolates in metal2cit rate medium and bioremediation of metal citrate wastes [J]. J Chem Technol Biotechnol,2000,75:187-195.
    [78]王建龙,文湘华.现代环境生物技术[M].北京:清华大学出版社,2002:306-315.
    [79]Sar P, Kazy SK, Asthana RK. Metal adsorption and desorption by lyophilized Pseudomonas aeruginosa[J]. International Biodeteri oration& Biodegradation,1999,44:101-110
    [80]Ozdemir G, Ozturk T, Ceyhan N, et al. Heavy metal biosorption by biomass of Ochrobactrum anthropi producing exopolysaccharide in activated sludge [J]. Bioresource Technology,2003,90:71-74
    [81]王亚雄,郭瑾珑,刘瑞霞。微生物吸附剂对重金属的吸附特性[J].环境科学,2001,22(6):72-75.
    [82]Wang BE, Hu YY, Xie L, et al. Biosorption behavior of azo dye by inactive CMC immobilized Aspergillus fumigatus beads [J]. Bioresource Technology,2008, 99(4):794-800
    [83]Rai LC, Dubey SK, Mallick N. Influence of chromium on some physiological variables of Anabaena doliolum:interaction wit h metabolic inhibitors [J]. Biometal s,1992,5:13-16.
    [84]Volesky B, Holan ZR. Biosorption of heavy metals[J]. Biotechnol Prog. 1995,11:235-250.
    [85]Schultze-Lam S, Urrutia-Mera M, Beveridge TJ. Metal and silicate sorption and subsequent mineral formation on bacterial surfaces:subsurface implications [J].Ann Arbor Press,1995:111 - 147.
    [86]Tangaromsuk J, Pokethitiyook P, Kruatrachue M, et al. Cadmium biosorption by Sphingomonas paucimobilis biomass [J]. Bioresource Technology, 2002,85:103-105
    [87]孙嘉龙,李梅,曾德华.微生物对重金属的吸附、转化作用[J].贵州农业科学,2007,35:147-150
    [88]Vasquez TGP, Botero AEC, Mesquita LMS. Biosorptive removal of Cd and Zn from liquid streams with a Rhodococcus opacus strain [J]. Minerals Engineering, 2007,20:939-944
    [89]Ziagova M, Dimitriadis G, Aslanidou D. Comparative study of Cd (II) and Cr (VI) biosorption on Staphylococcus xylosus and Pseudomonas sp. in single and binary mixtures [J].Bioresource Technology,2007,98:2859-2865
    [90]刘月英,傅锦坤,李仁忠,等.细菌吸附pb2+的研究[J].微生物学报,2000,20(5):535-539.
    [91]Lu W, Shi J, Wang C, Chang J. Biosorption of lead, copper and cadmium by an indigenous isolate Enterobacter sp. J1 possessing high heavy-metal resistance [J]. Journal of Hazardous Materials,2006,134:80-86
    [92]Augustoda CAC, Franca F. Cadmium up take by Spirulina maxima:toxicity and mechanism [J]. World Journal of Microbiology & Biotechnology,1998,14:579-581.
    [93]Rama R KU L. Biosorp tion of toxic metal ions by alkaliextracted biomass of a marine cyano 2bacterium, phormidium valderianum BDU 30501 [J]. World Journal of Microbiology& Biotechnology,1999,15:729-732.
    [94]Ozdemir G, Ceyhan N, Ozturk T, et al. Biosorption of chromium (VI), cadmium (Ⅱ) and copper(Ⅱ) by Pantoea sp. TEM18[J].Chemical Engineering Journal,2004,102:249-253
    [95]Ledin M. Accumulation of metals by microorganisms-processes and importance for soil systems [J]. Earth-Science Reviews,2000,51 (1):1-31.
    [96]姜烛, 张宝善,胡海霞.霉菌吸附重金属离子的研究进展[J].微生物学通报,2008,35(7):1129-1135
    [97]Kumar R, Bishnoi NR, Garima, et al. Biosorption of chromium (VI) from aqueous solution and electroplating wastewater using fungal biomass [J]. Chemical Engineering Journal,2008,135(3):202-208.
    [98]Zhou JL. Zn biosorption by Rhizopus arrhizus and ot her fungi [J]. Appl Microbiol Biotechnol,1999,51:686-693.
    [99]Chergui A, Bakhti MZ,Chahboub A, et al. Simultaneous biosorption of Cu2+, Zn2+ and Cr6+ from aqueous solution by Streptomyces rimosus biomass. Desalination,2007,206(1-3):179-184.
    [100]刘长风,刘桂萍,高峰,等.霉菌菌丝球吸附Cr(Ⅵ)的研究[J].化学工程师,2005,116(5):12-14.
    [101]黄民生,施华丽,郑乐平.曲霉对水中重金属的吸附去除[J].上海环境科学,2002,21(2):89-92.
    [102]Adhiya J, Cai X, SayreRT, et al. Binding of aqueous cadmium by the lyophilized biomass of Chlamydomonas reinhardtii[J].Colloids and Surfaces,2002, 210:1-11
    [103]Schiewer S. Modelling comp lexation and electrostatic attraction in heavy metal biosorp tion by Sargassum biomass[J]. Journal of Applied Phycology,1999, 11:79-87.
    [104]EstevesA JP, Valdman E, Leite SGF. Repeated removal of cakmium and zine from and industrial effluent by waste biomass Sargassum sp [J]. Biotechnology Letters,2000,22:499-502.
    [105]Cruz CCV, Costa ACA, Henriques CA, et al. Kinetic modeling and equilibrium studies during cadmium biosorption by dead Sargassum sp. biomass.Bioresource Technology,2004,91:249-257
    [106]Costa ACA, Franca FD. The behavior of the microalgae Tetraselis chuii in cadmiumcontaminated solutions[J]. Aquaculture International,1998 (6):57-66.
    [107]Lodeiro P, Cordero B, Barriada JL, et al. Biosorption of cadmium by biomass of brown marine macroalgae. Bioresource Technology,2005,96:1796-1803
    [108]Ridvan SE, Sivaci A, Sookmen M. Biosorption of cadmium by Myriophyllum spicatum L.and Myriophyllum triphyllum orchard. Chemosphere, 2004,56:1043-1048
    [109]骆永明,滕应.我国土壤污染退化状况及防治对策[J].土壤,2006,38(5):505-508.
    [110]杨苏才,南忠仁,曾静静.土壤重金属污染现状与治理途径研究进展[J].安徽农业科学,2006,34(3):549-552.
    [111]戴军,刘腾辉.广州菜地生态环境的污染特征[J].土壤通报,1995,26(3):102-104.
    [112]俄胜哲,杨思存,崔云玲,等.我国土壤重金属污染现状及生物修复技术研究进展.安徽农业科学,2009,37:9104-9106
    [113]茹淑华,孙世友,王凌,等.蔬菜重金属污染现状、污染来源及防治措施[J].河北农业科学,2006,10(3):88-91.
    [114]魏秀国,何江华,陈俊坚,等.广州市蔬菜地土壤重金属污染状况调查及评价[J].土壤与环境,2002,11(3):252-254.
    [115]谢建治,刘树庆,王立敏,等.保定市郊土壤重金属污染现状调查及其评价[J].河北农业大学学报,2002,25(1):38-41
    [116]唐书源,李传义,张鹏程,等.重庆蔬菜的重金属污染调查[J].安全 与环境学报,2003,3(6):74-75.
    [117]Deng X, Yi XE, Liu G. Cadmium removal from aqueous solution by gene-modified Escherichia coli JM109[J]. Journal of Hazardous Materials,2007, 139(2):340-344
    [118]Abou-Shanab R A I, Berkum P, Angle J S. Heavy metal resistance and genotypic analysis of metal resistance genes in gram-positive and gram-negative bacteria present in Ni-rich serpentine soil and in the rhizosphere of Alyssum murale [J]. Chemosphere,2007,68(2):360-367
    [119]Basta NT, Gradwohl R, Snethen KL, et al. Chemical Immobilization of Lead, Zinc, and Cadmium in Smelter-Contaminated Soils Using Biosolids and Rock Phosphate [J] Journal Environment Quality,2001(4),30:1222-1230
    [120]Filipic M, Fatur T, Vudrag M. Molecular mechanisms of cadmium induced mutagenicity [J]. Human and Experimental Toxicology,2006,25(2):67-77.
    [121]Gary G, Schwartz, Isildinha M. Is Cadmium a Cause of Human Pancreatic Cancer [J]. Cancer Epidemiol Biomarkers Prev,2000,9(2):139-145
    [122]BabuK R, Rajmohan HRR, RajanBKM, et al. Plasma lipid peroxidation and erythrocyte antioxidant enzymes status in workers exposed to cadmium [J]. Toxicology and Industrial Health,2006,22(8):329-335
    [123]Yang Z, Yang S, Qian S Y, et al. Cadmium-Induced Toxicity in Rat Primary Mid-brain Neuroglia Cultures:Role of Oxidative Stress from Microglia [J]. Toxicol.Sci,2007,98(2):488-494.
    [124]Malgorzata M, Brzoska, Janina MJ. Low-Level Exposure to Cadmium during the Lifetime Increases the Risk of Osteoporosis and Fractures of the Lumbar Spine in the Elderly:Studies on a Rat Model of Human Environmental Exposure [J]. Toxicol.Sci.,2004,82(2):468-477
    [125]Ana NA, Elizabeth S, Sharrett AR, Calderon E. Lead, Cadmium, Smoking, and Increased Risk of Peripheral Arterial Disease [J]. Circulation,2004, 109(6):3196-3201.
    [126]Shin HJ, Lee BH, Yeo MG, et al. Induction of orphan nuclear receptor Nur77 gene expression and its role in cadmium-induced apoptosis in lung [J]. Carcinogenesis,2004,25(8):1467-1475
    [127]Liu X, Umino T, Zhu Y, et al. A Study on the Effect of Cadmium on Human Lung Fibroblasts [J]. Chest,2000,117(3):247S.
    [128]Nishijo M, Morikawa Y, Nakagawa H, et al. Causes of death and renal tubular dysfunction in residents exposed to cadmium in the environment [J]. Occup. Environ. Med,2006,63(8):545-550.
    [129]Hinojosa MB, Carreira JA, Roberto GR, et al. Microbial Response to Heavy Metal-Polluted Soils:Community Analysis from Phospholipid-Linked Fatty Acids and Ester-Linked Fatty Acids Extracts [J]. J. Environ. Qual.,2005,34(5): 1789-1800.
    [130]Zouboulis AI, Loukidou MX, Matis KA. Biosorption of toxic metals from aqueous solutions by bacteria strains isolated from metal-polluted soils [J]. Process Biochemistry,2004,39(8):909-916
    [131]Ozdemir G, Ceyhan N, Ozturk T, et al. Biosorption of chromium (Ⅵ), cadmium (Ⅱ) and copper (Ⅱ) by Pantoea sp. TEM18 [J]. Chemical Engineering Journal,2004,102(3):249-253
    [132]Lebeau T, Bagot D, Jezequel B, et al. Cadmium biosorption by free and immobilised microorganisms cultivated in a liquid soil extract medium:effects of Cd, pH and techniques of culture [J]. The Science of the Total Environment,2002, 291(1-3):73-83
    [133]Yu X, Chai L, Min X. Removal of lead in wastewater by immobilized inactivated cells of Rhizopus oligosporus [J]. Journal of Central South University of Technology,2003,10(4):313-317
    [134]Zhou H, Zeng X, Liu F, et al. Screening, identification and desilication of a silicate bacteria [J]. Journal of Central South University of Technology,2006, 13(4):337-341.
    [135]东秀珠,蔡妙英.常见细菌系统鉴定手册[K].北京:科学出版社,2001.
    [136]Bundt M, Widmer F, and Pesaro M, et al. Preferential flow paths: biological 'hot spots'in soils [J]. Soil Biol. Biochem,2001,33:729-738.
    [137]Henry T, Iwen PC, and Hinrichs SH. Identification of Aspergillus species using internal transcribed spacer regions 1 and 2[J]. J. Clin. Microbiol.,2000,38: 1510-1515.
    [138]Guarro J, Gene J, and Stchigel AM. Developments in fungal taxonomy [J]. Clin. Microbiol. Rev.1999,12:454-500.
    [139]Green SJ, Freeman S, Hadar Y, et al. Molecular tools for isolate and community studies of Pyrenomycete fungi [J]. Mycologia.2004,96:439-451.
    [140]White MM, Robert W, Lichtward IT, et al. Confirmation and identification of parasitic stages of obligate endobionts (Harpellales) in blackflies (Simuliidae) by means of rRNA sequence data [J]. Mycol. Res.2006,110:1070-1079.
    [141]Mello A, Ghignone S, Vizzini A, et al. ITS primers for the identification of marketable boletes [J]. J. Biotechnol.2006,121:318-329.
    [142]Keeling PJ, Luker MA, and Palmer JD. Evidence from beta-tubulin phylogeny that microsporidia evolved from within the fungi [J]. Mol. Biol. Evol. 2000,17:23-31.
    [143]Zuccaro A, Schoch CL, Spatafora JW, et al. Detection and Identification of Fungi Intimately Associated with the Brown Seaweed Fucus serratus [J]. Appl.Environ. Microbio.2008,74:931 -941.
    [144]Seip ER, Woloshuk CP, Payne GA, et al. Isolation and sequence analysis of a 3-Tubulin gene from Aspergillus flavus and its use as a selectable marker [J]. Appl.Environ. Microbio.1990,56:3686-3692
    [145]赵培静,任文彬,缪承杜.淡紫拟青霉研究进展与展望[J].安徽农业科学,2007,35:9672-9674
    [146]Jacobs H, Gray SN and Crump DH. Interactions between nematophagous fungi and consequences for their potential as biological agents for the control of potato cystnematodes [J]. Mycol Res.2003,107:47-56.
    [147]Kiewnick S, Sikora RA. Biological control of the root-knot nematode meloidogyne incognita by Paecilomyces lilacinus strain 251 [J]. Biological Control, 2006,38:179-187.
    [148]Zou CS, Mo MH, Gu YQ, et al. Possible contributions of volatile-producing bacteria to soil fungistasis [J]. Soil Biology& Biochemistry,2007, 39:2371-2379.
    [149]Oda Y, Asari HY, Urakami TI, et al. Microbial degradation of poly (3-Hydroxybutyrate) and polycaprolactone by filamentous fungi [J]. Journal of Fermentation and Bioengineering.1995,80:265-269.
    [150]Sietmann R, Gesell M, Hammer E, et al. Oxidative ring cleavage of low chlorinated biphenyl derivatives by fungi leads to the formation of chlorinated lactone derivatives [J]. Chemosphere.2006,64:672-685.
    [151]周群英,高廷耀.环境工程微生物学[M].高等教育出版社.2002
    [152]O'Brien FG, Price C, Grubb WB, et al. Genetic characterization of the fusidic acid and cadmium resistance determinants of Staphylococcus aureus plasmid pUB 101 [J]. Journal of Antimicrobial Chemotherapy,2002,50,313-321.
    [153]Lee SW, Glickmann E, and DONALD A. Cooksey DA. Chromosomal locus for cadmium resistance in Pseudomonas putida consisting of a cadmium-transporting ATPase and a MerR family responser egulator [J]. Appl.Environ. Microbio.,2001,67:1437-1444.
    [154]Hetzer A, Daughney CJ, and Morgan HW.Cadmium Ion Biosorption by the Thermophilic Bacteria Geobacillus stearothermophilus and G. thermocatenulatus[J]. Appl.Environ. Microbio,2006,72:4020-4027.
    [155]Nies D, Mergeay M, Friedrich B, et al.Cloning:of plasmid genes encoding resistance to cadmium, zinc, and cobalt in Alcaligenes eutrophus CH34[J].Journal of Bacteriology,1987,169:4865-4868
    [156]Yoon KP and Silver S. A Second Gene in the Staphylococcus aureus cadA cadmium resistance determinant of plasmid pI258. Journal of Bacteriology,1991, 173:7636-7642.
    [157]Lebrun MY, Loulergue J, Chaslus-Dancla E, et al. Plasmids in listeria monocytogenes in relation to cadmium resistance. Appl.Environ. Microbio,1992,58: 3183-3186
    [158]Dressler C, Kues U, Nies DH, et al. Determinants encoding resistance to several heavy metals in newly isolated copper-resistant bacteria. Appl.Environ. Microbio.,1991,57:3079--3085
    [159]Tanous C, Chambellon E, Bars DL, et al. Glutamate dehydrogenase activity can be transmitted naturally to Lactococcus lactis strains to stimulate amino acid conversion to aroma compounds. Appl.Environ. Microbio.,2006,72:1402-1409.
    [160]Baldrian P, Gabriel J. Intraspecific variability in growth response to cadmium of the wood-rotting fungus Piptoporus betulinus. Mycologia,2002,94: 428-436
    [161]Yilmaz EI. Metal tolerance and biosorption capacity of Bacillus circulars strain EB1 [J]. Research in Microbiology,2003,154(6):409-415.
    [162]Hu Q, Dou M, Qi H, et al. Detection isolation, and identification of cadmium-resistant bacteria based on PCR-DGGE [J]. Journal of Environmental Sciences,2007,19(9):1114-1119.
    [163]Abou-Shanab RAI, Berkum P, Angle JS. Heavy metal resistance and genotypic analysis of metal resistance genes in gram-positive and gram-negative bacteria present in Ni-rich serpentine soil and in the rhizosphere of Alyssum murale [J].Chemosphere,2007,68(2):360-367.
    [164]刘爱民.耐镉细菌筛选与吸附镉机理研究及其在镉污染土壤修复中的应用:[博士学位论文].南京:南京农业大学,2005.
    [165]Zamorano PL, Mahesh VB, Brann DW. Quantitative Real-time PCR for neuroendocrine studies [J]. Neuroendocrinology,1996,63:397-401.
    [166]Yuan A, Yu CJ. Quantification of VEGF mRNA expression in non-small cell lung cancer using a Real-time quantitative reverse transcription-PCR assay and a comparison with quantitative competitive reverse transcription-PCR [J]. Lab Invest, 2000,80(11):1671-1678.
    [167]Ramachandran C, Melnick SJ. ultidrug resistance in human tumorsmolecular diagnosis and clinical significance [J]. Molecular Diagnosis,1999, 4:81-86.
    [168]Bustin S.A., Dorudi S. Molecular assessment of tumour stage and disease recurrence using PCR-based assays [J]. Molecular Medicine Today,1998,4:389-342.
    [169]包俊英,余新炳,吴忠道.比较基因的表达分析[J].热带医学杂志,2001,2(1):172-175.
    [170]叶锦韶,尹华,彭辉.微生物抗重金属毒性研究进展[J].环境污染治理技术与设备,2002,3:1-4.
    [171]金冬雁译.分子克隆实验指南[M].北京:科学出版社,1992.
    [172]呼庆,齐鸿雁,窦敏娜,等.强抗镉蜡状芽孢杆菌的分离鉴定及其抗性机理[J],环境科学,2007,28:427-430.
    [173]李钧敏,金则新.银离子抗性细菌质粒的分离与鉴定.应用生态学报,2006,17(2):305-308.
    [174]Bencheikh-Latmani R, Williams SM, Haucke L, et al.Global Transcriptional Profiling of Shewanella oneidensis MR-1 during Cr (VI) and U(VI) Reduction [J]. Appl.Environ. Microbio.,2005,71 (11):7453-7460.
    [175]Franke S, Grass G and Nies D H. The product of the ybdE gene of the Escherichia coli chromosome is involved in detoxification of silver ions [J]. Microbiology,2001,147:965-972.
    [176]焦芳婵,毛雪,李润植.金属结合蛋白基因及其在清除重金属污染中的应用[J].遗传.2002,24:82-86.
    [177]Kitabatake M, So MW, Tumbula DL, et al.Cysteine Biosynthesis Pathway in the Archaeon Methanosarcina barkeri Encoded by Acquired Bacterial Genes [J]. Journal of Bacteriology,2000,182:143-145.
    [178]Filutowicz M, Wiater A, Hulanicka D. Delayed Inducibility of Sulphite Reductase in cys M Mutants of Salmonella typhimurium Under Anaerobic Conditions [J]. Journal of General Microbiology,1982,128.1791 - 1794.
    [179]Reva ON, Weinel C, Weinel M. Functional Genomics of Stress Response in Pseudomonas putida KT2440 [J]. Journal of Bacteriology,2006,188.4079-4092
    [180]Saffen DW, Presper KA, Doering TL. Sugar Transport by the Bacterial Phosphotransferase System [J].The Journal of Bacteriology Chemistry.1987, 262:16241-16253.
    [181]Sirko AE, Zatyka M, Hulanicka MD. Identification of the Escherichia coli cys M Gene Encoding o-A cetylserine Sulphydrylase B by Cloning with Mini-Mu-lac Containing a Plasmid Replicon [J]. Journal of General Microbiology,1987,133, 2719-2725.
    [182]Nie DH. The Cobalt, Zinc, and Cadmium Efflux System CzcABC from Alcaligenes eutrophus Functions as a Cation-Proton Antiporter in Escherichia coli [J]. Journal of Bacteriology,1995,177,2707-2712.
    [183]Hudek L, Rai LC, Freestone D. Bioinformatic and Expression Analyses of Genes Mediating Zinc Homeostasis in Nostoc punctiforme [J]. Appl.Environ. Microbio., Feb.2009,75:784-791.
    [184]Ferianc P, Farewell A. The cadmium-stress stimulon of Escherichia coli K-12[J]. Microbiology.1998,144:1045-1050.
    [185]Smith KF, Bibb LA, Schmitt M P. Regulation and Activity of a Zinc Uptake Regulator, Zur, in Corynebacterium diphtheriae [J]. Journal of Bacteriology.2009,191:1595-1603.
    [186]Yu J, Tong M, Sun X, et a et al.l. Biomass grafted with polyamic acid for enhancement of cadmium (Ⅱ) and lead (Ⅱ) biosorption [J]. Biochemical Engineering Journal,2007,33(2):126-133.
    [187]Yu X, Chai L, Min X. Removal of lead in wastewater by immobilized inactivated cells of Rhizopus oligosporus [J]. Journal of Central South University of Technology,2003,10(4):313-317.
    [188]Kefala MI, Zouboulis AI, Matis K A. Biosorption of cadmium ions by Actinomycetes and separation by flotation [J]. Environmental Pollution,1999, 104(2):283-293.
    [189]Tangaromsuk J, Pokethitiyook P, Kruatrachue M, et al. Cadmium biosorption by Sphingomonas paucimobilis biomass [J]. Bioresource Technology, 2002,85(1):103-105.
    [190]Rangsayatorn N, Upatham ES, Kruatrachue M,etal. Lanza.Phytoremediation potential of Spirulina (Arthrospira) platensis:biosorption and toxicity studies of cadmium [J]. Environmental Pollution,2002,119:45-53.
    [191]Yu JX, Tong M, Sun X.M, et al. Biomass grafted with polyamic acid for enhancement of cadmium (Ⅱ) and lead(Ⅱ) biosorption [J]. Reactive& Functional Polymers.2007,67:564-572.
    [192]Kapoor A, Viraraghavan T. Heavy metal biosorption sites in Aspergillus Niger. Bioresource Technology,1997,61:221-227.
    [193]Holtze mS, Nielsen P, Ekelund F, et al. Mercury affects the distribution of culturable species of pseudomonas in soil [J]. Applied Soil Ecology,2006,31: 228-238.
    [194]Takeuchi F, Negishi A, Maeda T, et al. Volatilization and recovery of mercury from mercury wastewater produced in the course of laboratory work using acidithiobacillus ferrooxidans sug 2-2 cells [J]. Journal of Bioscience And Bioengineering,2003,95, (3):239-244.
    [195]Kafilzadeh F, Mirzaei N. Growth pattern of Hg resistant bacteria isolated from Kor River in the presence of mercuric chloride [J]. Pak J Biol Sci,2008, 11(18):2243-2248.
    [196]Von CH, Li Y, Timmis KN, et al. Removal of mercury from chloralkali electrolysis wastewater by a mercury-resistant pseudomonas putida strain [J]. Appl.Environ. Microbio.,1999,65 (12):5279-5284.
    [197]De J, Ramaiah N, Vardanyan L. Detoxification of toxic heavy metals by marine bacteria highly resistant to mercury [J]. Mar Biotechnol,2008,10(4):471 -477.
    [198]Gupta A, Rai V, Bagdwal N, et al. In situ characterization of mercury-resistant growth-promoting fluorescent pseudomonads [J]. Microbiological Research,2005,160:385-388.
    [199]Hassen A, Saidi N, Cherif M, et al.. Resistance of environmental bacteria to heavy metals [J]. Bioresource Technology,1998,64:7-15.
    [200]Barkay T, Miller SM, Summers AO, Bacterial mercury resistance from atoms to ecosystems. FEMSMicrobiol Rev,2003,27:355-384.
    [201]陈丹丹,林建强,刘相梅,等.细菌抗汞分子机制与进化的研究及应用[J].微生物学通报,2006,33(5):129-133.
    [202]Kannan SK, Krishnamoorthy R. Isolation of mercury resistant bacteria and influence of abiotic factors on bioavailability of mercury - A case study in Pulicat Lake North of Chennai, South East India [J]. Science of the Total Environment,2006,367:341-353.
    [203]Monchy S, Benotmane MA, Janssen P, et al. Plasmids pMOL28 and pMOL30 of cupriavidus metallidurans are specialized in the maximal viable response to heavy metals [J].J. Bacterial.,2007,189:7417-7425.
    [204]Barbieri P, Bestetti G, Reniero D, et al. Mercury resistance in aromatic compound degrading Pseudomonas strains [J]. FEMS Microbiology Ecology,1996, 20:185-194.
    [205]S(?)rensen SJ, Bailey M, Hansen LH, et al. Studying plasmid horizontal transfer in situ:a critical review [J]. Nat. Rev. Microbiol, 5,3:700-710.
    [206]Shoemaker NB, Vlamakis H, Hayes K. Evidence for Extensive Resistance Gene Transfer among Bacteroides spp. and among Bacteroides and Other Genera in the Human Colon [J]. Appl Environ Microbiol,2001,67 (2):561-568.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700