用户名: 密码: 验证码:
基于MB-WCX及MALDI-TOF/TOF MS技术的胃癌及结直肠癌血清肽组学初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胃癌(Gastric Carcinoma, GC)与结直肠癌(Colorectal Carcinoma,CRC)是威胁人类健康的几大常见恶性肿瘤之一,在我国有着较高的发病率与死亡率。防治癌症措施中关键的一点在于防癌普查,以其尽早发现肿瘤,治疗癌症。但是目前临床缺乏效果明确的无创性检查手段,要确证肿瘤仍依赖内镜下病理活检。由于消化道肿瘤往往在癌症初期缺乏典型症状,上述侵入性检查难以作为常规筛查手段进行普及。因此,临床急需兼具灵敏度、特异性的非侵入性检查手段来弥补这一欠缺。血液来源广泛,获取容易,血液检查对于民众而言耐受度高,是最为理想的标本来源。血液肿瘤标志物的研究一直是肿瘤研究领域的热点。但经过数十年的研究,目前仍只有甲胎蛋白(alpha fetoprotein, AFP)、前列腺特异性抗原(prostate-specific antigen, PSA)等寥寥数种血清肿瘤标志物取得较为肯定的效果,而在消化道肿瘤方面,癌胚抗原(Carcinoembryonic antigen, CEA)、糖原19-9(carbohydrate antigen 19-9, CA19-9)等均缺乏足够的灵敏度和特异性。基于质谱技术的血清肽组学相关研究的发展为寻找新的消化道肿瘤血清标志物开辟了新的道路。
     1血清肽组学研究的方法学优化及偏倚研究
     血清肽组包含大量的生理与疾病相关的信息,吸引着研究人员从中寻找疾病相关多肽标记。高质量且表达稳定的血清多肽谱是血清肽组学研究的基础。血清成分却极其复杂,会对其质谱分析产生负面影响。因此选取合适的血清肽分离提纯方法很重要。此外,广泛的观点认为血清肽组的组成和含量会在体外发生改变,这种改变其与外部环境密切相关。这就涉及到与临床及分析化学、质谱仪,样本处理和质谱分析有关的偏差,例如:血液采集管,凝血时间和温度,冻融次数以及表面化学成分、质谱样本结晶以及激光强度都十分关键。此外,谱对齐被认为是信号处理中最大的挑战。如果恰当的对齐,则所产生的数据与那些基因表达分析所获得的数据就有了可比性,就可以运用现有的软件包进行分析。另外,我们想弄清楚,如性别、年龄等人口统计学参数差异到底对那些用我们的质谱平台绘制的血清多肽谱有些什么影响。在本研究中,我们比较分析了数种磁珠以及离心超滤管对血清肽分离提纯的效力,以及在血清采集、预处理、质谱处理和数据处理过程中的许多细节的影响,并对性别和年龄差异对血清肽组的影响加以分析,揭示了基于弱阳离子磁珠多肽固相分离技术(weak cation exchange magnetic beads, MB-WCX)和基质辅助激光解吸电离飞行时间质谱(Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight Mass Spectrometry, MALDI-TOF MS)的血清肽组学研究中各种非疾病变量对研究结果的影响。获得了研究所需的最佳的变量设置,为血清肽组学研究提供依据。本研究结果证明血清肽组学研究的每一个步骤都需要进行严格规范。
     2胃癌及结直肠癌的特异性血清肽组表达及诊断模型建立
     近年来血清肽组学方面的研究表明肿瘤状态下异常细胞的生长、侵袭以及免疫系统的改变伴随着酶和蛋白水解过程的变化,可引起机体血清肽组特异性的表达变化。对乳腺癌、前列腺癌、甲状腺癌、口腔癌等肿瘤的前期研究显示,构建特异性血清肽组合诊断模型,可以获得良好的诊断效能。本研究利用前期建立的以MB-WCX和高通量的MALDI-TOF MS技术为基础的标准化血清肽组学研究平台,对40例GC患者,40例CRC患者和40例正常人血清进行血清肽组学分析,利用flexAnalysisTM,和ClinProtTM生物信息学软件对质谱数据进行采集,获得173个标准化的血清肽谱峰数据。利用Wilcoxon test比较CRC组与正常组数据,发现其中81个峰具有显著差异(p<0.00001),约占血清肽谱的46.82%;GC组与正常组数据比较,发现有79个峰具有显著差异(p<0.00001),约占血清肽谱的45.7%。通过一种新型的统计学方法CARS,我们优化筛选出10个血清肽峰,并通过偏最小二乘判别分析法(partial leastsquares discriminant analysis, PLS-DA)利用其中5个峰(X13217.07m/z,X23890.71 m/z,X33972.74 m/z,X44963.99m/z和X55864.13m/z)构建了CRC判别方程:Z=0.5733X1+0.4129X2+0.5388X3-0.4420X4-0.4899X5。此方程的判别能力评估显示其十折交叉验证准确度达95.1%,双盲法对test group进行判别的灵敏度达89.9%,特异度达98%。用同样的统计学方法,我们使用另外5个峰构建了GC判别方程:Z=0.4835Y1+0.5390Y2+0.5189Y3-0.4614Y4-0.4317Y5(其中Y12311.37m/z,Y24210.40 m/z,Y35539.74m/z,Y46005.97 m/z,Y56666.69m/z),用十折交叉检验评估GC血清肽判别方程预测能力,提示其准确性高达96.6%,特异度为95.9%,灵敏度为95.3%。上述研究结果表明,GC患者以及CRC患者的血清肽表达谱与正常人血清肽表达谱存在显著差异,其肿瘤特异性的血清肽表达模式具有潜在的消化道肿瘤血清标志物的意义。本研究在严格标准化及优化的血清肽组学实验平台的基础上,利用新型的统计学手段筛选出一个优化的变量子集,大大提高了模型的预测能力,所建立的判别方程能够较为准确地区分癌症患者血清与正常人血清,显著提高胃癌和结直肠癌的诊断效能,为寻找新的肿瘤特异性血清标志物和开发简便易行的非侵入性癌症检查方法提供了新思路。
Gastric carcinoma (GC) and colorectal carcinoma (CRC) are two of the most commonly diagnosed and the leading cause of cancer death the world, as well as in China. The high incidence rates and mortality of both two cancers in China reflect the great risk to human healthy. The great majority of these cancers and deaths could be prevented by increasing the use of established screening tests. However, even more progress is possible by increasing access to and utilization of GC and CRC screening tests; currently, only half of people aged 50 or older, for whom screening is recommended, have received the recommended tests. Early colorectal cancer often has no symptoms, which is why screening is so important and also is why patients refuse the invasive examination, such as endoscope. Reasons cited by survey participants for not participating in gastroenterological cancer screening include lack of time, inconvenience, lack of interest, cost, fear of being diagnosed with cancer, embarrassment, and unpleasantness of the test.However, studies show that this method is the most sensitive for the detection of colorectal cancer or adenomatous polyps. Noninvasive examination with high sensitivity and specificity is required for gastroenterological cancer screening. Blood is the most ideal sample source as it can be collected easily with less reluctance. Detection of blood tumor biomarkers has been highlight for years. Although researchers have bent to these work, only few of tumor biomarkers used in clinic are of convinced efficiency, such as alpha fetoprotein(AFP) and prostate-specific antigen(PSA).Some biomarkers offer suggestion for gastroenterological carcinoma diagnosis is not powerful enough by themselves, such as carcinoembryonic antigen (CEA) and carbohydrate antigen 19-9 (CA19-9). Based on the mass technology advances in serum peptidome may indicate new direction of cancer biomarker detection.
     1 Methodology optimization and bias investigation of serum peptidome research
     Serum peptidome contains a large number of physiologic and disease-related information and attracts researchers'eyeballs in finding disease-related polypeptide markers. Stable serum peptidome profiles with high quality are the cornerstone of serum peptidome research. However, the serum composition is extremely complex that can adversely affect its mass spectrometric profiling. Moreover, it has been widely believed that the composition and abundance of serum polypeptides would change ex vivo, which is closely related with the outside environment. It is related to biases of clinical and analytical chemistries, mass spectrometry, sample handling, and spectral analysis. For instance, blood collection tubes, clotting times and temperature, and the number of freeze-thaw cycles are all critically important as well as surface chemistries and MALDI sample crystallization and laser irradiation, which were all major sources of variation. In addition, spectral alignment appeared to be the most challenging in terms of signal processing. When aligned properly, however, the resulting datasets are comparable to those obtained by common gene expression analysis, enabling the use of existing software packages. Besides, we wanted to address whether parameters such as gender and age influence peptidome profiles as obtained using our mass spectrometry-based serum peptide profiling platform. In this paper, we studied comparatively in the numerous details of the process of the sampling and treatment of blood, the pretreatment of serum (magnetic beads and ultra filtrate centrifugal Filters), the mass spectrometry and the data handling, and analyzed the effectiveness of gender and age differences on the serum peptidome. Effectiveness of variables on serum peptidome research based on MB-WCX and MALDI-TOF mass spectrometry was unfolded. The optimal variables setting was obtained, which provide evidence for serum peptidome research. The results demonstrated that each step of the serum peptidome experiment should be standardized.
     2 Specific expression of serum peptidome and foundation of diagno -stic model on gastric cancer and colorectal cancer
     Recent years studies of serum peptidome show that the state of exception tumor cell growth, invasion, and the change of immune system along with the change of enzyme and protein hydrolysis process, can cause the body's serum peptidome specific changes. The early studies of breast cancer, prostate cancer, thyroid cancer and oral cancer show that one can get good diagnosis efficiency by building model of combined specific serum peptides. In this study, we employed weak cation exchange magnetic beads (MB-WCX) to desalt samples and remove abundant proteins. Serum peptidomic profiles from 40 GC patients and 40 CRC patients without treatment and 40 healthy controls were obtained by using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. The serum peptidome research platform has been standardized and optimized in previous research. Comparing the CRC group and control group with Wilcoxon test, we discovered that 81 peaks were of significant differences (p<0.00001) between the two, about 46.82% of the total serum peptides; 79 peaks of marked difference were picked out by comparing GC group with control group (p<0.00001)。A novel strategy for selecting an optimal combination of key elements of multi-component spectral data, named competitive adaptive reweighted sampling (CARS), is adopted. Two optimal subsets of peaks were selects by using CARS method and pattern recognition equations were established through partial least squares-discriminant analysis (PLS-DA).One optimal subset of 5 peptide peaks (X1 3217.07m/z, X2 3890.71 m/z, X3 3972.74 m/z, X44963.99m/z和X5 5864.13m/z)selected by comparing CRC group and control group was used to set up a discriminant equation (Z=0.5733X1+0.4129X2+ 0.5388X3-0.4420X4-0.4899X5) to distinguish CRC from normal with a 10-fold cross validation accuracy of 95.1%,a sensitivity of 89.9% and specificity of 98% in double blind test on test group. Similarly, a GC discriminant equation was established to distinguish GC from normal: Z=0.4835Y1+0.5390Y2+0.5189Y3-0.4614Y4-0.4317Y5 (Y,2311.37m/z, Y24210.40 m/z, Y35539.74 m/z, Y46005.97 m/z, Y56666.69m/z) 10-fold cross validation shows the accuracy of this equation in GC diagnosis is 95.1%.Meanwhile, the equation was evaluated by double blind test on test group, a sensitivity of 89.9%and a specificity of 98% was acquired. The findings show that significant differences exist among serum peptide expression profiles of GC patients, CRC patients and normal controls.The tumor-specific expression patterns of serum peptide has the potential of gastrointestinal tumor markers. This study is based on strict standardized and optimized experimental platform, to take full advantage of new statistical means to filter out a subset variable. The discriminant equations can more accurately distinguish cancer patients with normal human; significantly improve the diagnostic efficiency of GC and CRC. This work provides researchers a new way to find novel tumor specific serum markers and to develop a simple but non-invasive cancers screening method.
引文
[1]Frudakis T, et al. DNA Print Genomics, Inc.:better drugs for segmented markets[J]. Pharmacogenomics.2008,9(2):247-51.
    [2]Higgs DR, Vernimmen D, Hughes J, et al. Using genomics to study how chromatin influences gene expression[J]. Annu Rev Genomics Hum Genet.2007, 8:299-325.
    [3]Andolfo I, De Falco L, Asci R, et al. Regulation of Divalent Metal Transporter 1 (DMT1) non-IRE isoform by the microRNA Let-7d in erythroid cells[J]. Haematologica,2010 Apr 21. [Epub ahead of print]
    [4]Joshi S, Kaur S, Kroczynska B, et al. Mechanisms of mRNA translation of interferon stimulated genes[J]. Cytokine.2010 Apr 19. [Epub ahead of print]
    [5]Gysi S, Roehon Y, Franza BR, et al. Correlation between Protein and Mrna Abundance in yeast[J]. Mol Cell Biol,1999,19:1720-1730.
    [6]Andersen JS, Lam YW, Leung AK, et al. Nucleolar proteome dynamics[J]. Nature,2005,433(7021):77-83.
    [7]Kahn P. From genome to ptoreome:looking at a cell's proteins[J]. Scienc,1995, 270:369-370.
    [8]Smit S, Stoychev S, Louw AI, et al. Proteomic Profiling of Plasmodium falciparum through Improved, Semiquantitative Two-Dimensional Gel Electrophoresis[J]. J Proteome Res,2010 Mar 30. [Epub ahead of print]
    [9]Hanash S, Cellis J E. The human proteome organization:a mission to advance proteome knowledge[J]. Mol Cell Proteomics,2002,1(6):413-414.
    [10]Omenn G S. The human proteome organization plasma proteome project pilot phase:reference specimens, technology plateform comparitons, and standardized data submissions and analyses[J]. Proteomics,2004,4(5):1235-1240
    [11]王英,赵晓航.血浆蛋白质组——人类蛋白质组计划的“探路者”[J].生物化学与生物物理进展.2004,31(8):673-678.
    [12]Anderson NL, Anderson NG. The human plasma proteome:history, character, and diagnostic prospects[J]. Mol. Cell. Proteomics,2002,1:845-867.
    [13]Petricoin EF, Fishman DA, Conrads TP, et al. Lessons from Kitty Hawk: from feasibility to routine clinical use for the field of proteomic pattern diagnostics[J]. Proteomics,2004,4:2357-2360.
    [14]Skates SJ, et al. Preoperative sensitivity and specificity for early-stage ovarian cancer when combining cancer antigen CA-125Ⅱ, CA 15-3, CA
    72-4, and macrophage colony-stimulating factor using mixtures of multivariate normal distributions[J]. J Clin Oncol,2004,22:4059-4066.
    [15]Petricoin EF, et al. Use of proteomic patterns in serum to identify ovarian cancer[J]. Lancet.2002,359:572-577.
    [16]Adam BL, et al. Serum protein fingerprinting coupled with a pattern-matching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy men[J]. Cancer Res,2002,62:3609-3614.
    [17]Li J, Zhang Z, Rosenzweig J, et al. Proteomics and bioinformatics approaches for identification of serum biomarkers to detect breast cancer[J]. Clin. Chem,2002,48:1296-1304.
    [18]Villanueva J, et al. Serum peptide profiling by magnetic particle-assisted, automated sample processing and MALDI-TOF mass spectrometry[J]. Anal. Chem,2004,76:1560-1570.
    [19]Hingorani SR, et al. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse[J]. Cancer Cell,2003,4:437-450.
    [20]Petricoin, E.F., et al. Serum proteomic patterns for detection of prostate cancer[J]. J Natl Cancer Inst,2002,94:1576-1578.
    [21]Stone JH, et al. Wegener's Granulomatosis Etanercept Trial Research Group. A serum proteomic approach to gauging the state of remission in Wegener's granulomatosis[J]. Arthritis Rheum,2005,52:902-910.
    [22]Diamandis EP. Point proteomic patterns in biological fluids:do they represent the future of cancer diagnostics[J]? Clin Chem,2003,49:1272-1275.
    [23]Sorace JM, Zhan MA. Data review and re-assessment of ovarian cancer serum proteomic profiling[J]. BMC Bioinformatics,2003,4:24.
    [24]Lance A. Liotta and Emanuel F. Petricoin, Serum peptidome for cancer detection:spinning biologic trash into diagnostic gold[J]. J Clin Invest, 2006,116(1):26-30.
    [25]Liotta LA, Ferrari M., Petricoin, E. Clinical proteomics:written in blood[J]. Nature,2003,425:905.
    [26]Lee H, Brandyberry M, Tudor A, et al. Three-dimensional reconstruction of statistically optimal unit cells of polydisperse particulate composites from microtomography[J]. Phys Rev E Stat Nonlin Soft Matter Phys,2009, 80:061-301.
    [27]Hsieh S Y, Chen R K, Pan Y H,et al.Systematical evaluation of the effects of sample collection procedures on low-molecular-weightserum/plasma proteome profiling, Proteomics,2006,6:3189-3198
    [28]Villanueva J, et al. Differential exoprotease activities confer tumor-specific serum peptidome[J], J Clin Invest.2006,116(1):271-284.
    [29]Lowenthal MS, et al. Analysis of albumin-associated peptides and proteins from ovarian cancer patients[J]. Clin. Chem,2005,51:1933-1945.
    [30]Lopez MF, et al. High-resolution serum proteomic profiling of Alzheimer disease samples reveals disease-specific, carrier-protein-bound mass signatures[J]. Clin. Chem,2005,51:1946-1954.
    [31]Anderson NL, Anderson NG. The Human Plasma Proteome:History, Character, and Diagnostic Prospects, Molecular & Cellular Proteomics,2002,1:845-867
    [32]Florescu O, Wang K, Au P, et al. On-chip magnetic separation of superparamagnetic beads for integrated molecular analysis[J]. J Appl Phys. 2010.107(5):54702.
    [33]Whiteaker JR, Zhao L, Zhang HY, et al. Antibody-based enrichment of peptides on magnetic beads for mass-spectrometry-based quantification of serum biomarkers[J], Analytical Biochemistry,2007,362(1):44-54
    [34]Jin-Woo Choi, Kwang W. Oh, Jennifer H. Thomas, et al. An integrated microfluidic biochemical detection system for protein analysis with magnetic bead-based sampling capabilities[J], Lab Chip,2002,2,27-30
    [35]Schoenherr RM, Zhao L, Whiteaker JR, et al. Automated screening of monoclonal antibodies for SISCAPA assays using a magnetic bead processor and liquid chromatography-selected reaction monitoring-mass spectrometry[J], Journal of Immunological Methods,2010,353,(1-2):49-61
    [36]Maria Careria, Lisa Elviri, Jesse Boquett Lagosa, et al.Selective and rapid immunomagnetic bead-based sample treatment for the liquid chromatography-electrospray ion-trap mass spectrometry detection of Ara h3/4 peanut protein in foods[J]. Journal of Chromatography A,2008,1206(2):89-94
    [37]Anderson NL, Jackson A, Smith D et al., SISCAPA Peptide Enrichment on Magnetic Beads Using an In-line Bead Trap Device[J]. MOLECULAR & CELLULAR PROTEOMICS,2009,8(5):995-1005
    [38]Zhuochun Huang, Yunying Shi, Bei Cai, MALDI-TOF MS combined with magnetic beads for detecting serum protein biomarkers and establishment of boosting decision tree model for diagnosis of systemic lupus erythematosus[J],
    Rheumatology,2009 48(6):626-631.
    [39]Qing-Tao Wang, Yong-Zhe Li, Yu-Fang Liang. Construction of A Multiple Myeloma Diagnostic Model by Magnetic Bead-Based MALDI-TOF Mass Spectrometry of Serum and Pattern Recognition Software, The Anatomical Record:Advances in Integrative Anatomy and Evolutionary Biology,2009, 292(4):604-610
    [40]Mirre E. de Noo, Rob A. E. M. Reliability of Human Serum Protein Profiles Generated with C8 Magnetic Beads Assisted Maldi-TOF Mass Spectrometry[J], Anal Chem,2005,77(22):7232-7241
    [41]Karas, M.; Hillenkamp, F., Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons[J]. Anal. Chem,1988,60:2299-2301
    [42]Zhou LH, Deng HM, Deng QY, et al. Analysis of oligonucleotide and protein via matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using 2-amino-5-nitrothiazole as an effective matrix[J]. CHEMICAL JOURNAL OF CHINESE UNIVERSITIES,2004,25(12):2242-2246
    [43]Borges-Alvarez M, Benavente F, Barbosa J, et al. Capillary electrophoresis/mass spectrometry for the separation and characterization of bovine Cu,Zn-superoxide dismutase[J]. Rapid Commun Mass Spectrom,2010,24(10):1411-1418.
    [44]Kemptner J, Marchetti-Deschmann M, Mach R. et al., Evaluation of matrix-assisted laser desorption/ionization (MALDI) preparation techniques for surface characterization of intact Fusarium spores by MALDI linear time-of-flight mass spectrometry[J]. Rapid Communications in Mass Spectrometry,2009,23(6):877-884.
    [45]Villanueva J, Philip J, Entenberg D, et al. Serum peptide profiling by magnetic particle-assisted, automated sample processing and MALDI-TOF mass spectrometry[J]. Anal. Chem,2004,76,1560-1570.
    [46]Villanueva J, Philip J, Chaparro CA, et al. Correcting common errors in identifying cancer-specific serum peptide signatures[J]. J Proteome Res,2005,4: 1060-1072.
    [47]Anderson NL, Anderson NG. The Human Plasma Proteome History, Character, and Diagnostic Prospects[J]. Molecular & Cellular Proteomics,2002,1:845-867.
    [48]ChahedK, KabbageM, SabatierLE, et al. ExPression of fibrinogen E-fragment and fibrin-fragmentlis inhibited in the human infiltrating duetal careinoma of the breast:The two-dimensional electrophoresis and MALDI-TOF mass spectrometry analyses[J]. International of oncology,2005,27:1425-1431.
    [49]Becker S, Cazares LH, Watson P, et al. Surfaced-enhanced laser Desorptio/ionization time-of-flight (SELDI-TOF) differentiation of serum Protein Profiles of BRCA1 and sporadie breast caneer[J]. Ann surgOnco,2004, 11:907-914.
    [50]Zhu H, Bilgin M, Bangham R, et al. Global analysis of ptotein actibities using proteome chips[J]. Science,2000,293(5537):2101-2105.
    [51]Schaub S, Wilkins J, Weiler T, et al. Urine protein pro fling with surface-enhanced laserp-desorption/ionization time of flight mass spectrometry [J]. Kidney,2004,65:23-32
    [52]Ho DW, Yang ZF, Wong BY, et al. Surface-enhanced laserp-desorption/ ionization time of flight mass spectrometry serum protein profiling to identify nasopharyngeal carcinoma[J], Cancer 2006,107:99-107
    [53]Koopmann J, Zhang Z, White N, et al. Serum diagnosisi of pancreatic adenocarcinoma using surface-enhanced laserp-desorption/ionization time of flight mass spectrometry [J]. Clin Cancer Res,2004,10:860-868
    [54]Yakes BJ, Etheridge SM, Mulvaney SP, et al. Fluidic force discrimination assays: a new technology for tetrodotoxin detection. Mar Drugs,2010,8(3):565-76.
    [55]Cekaite L., Haug O, Myklebost O, et al. Analysis of the humoral immune response to immunoselected phage-displayed peptides by a mictoarry-based method[J]. Proteomics2004,4(9):2572-2582
    [56]Chen SL, Ling T, Huang SW, et al. Photoacoustic correlation spectroscopy and its application to low-speed flow measurement[J]. Opt Lett.2010.35(8):1200-2.
    [57]Villanueva J, Philip J, Entenberg D, et al. Serum peptide profiling by magnetic paticle-assisted, automated sample processing and MALDI-TOF mass spectrometrey [J], Anal Chem,2004,76:1560-1570.
    [58]Baumann S, Ceglarek U, Fiedler GM, et al. Standardized approach to proteome profiling of human serum based on magnetic bead separation and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry[J]. Clin Chem 2005,51:973-980
    [59]Yu D, Van Antwerpen P, Patris S, et al. Enzyme Immobilized Magnetic Nanoparticles for in-line Capillary Electrophoresis and Drug Biotransformation Studies:Application to Paracetamol[J]. Comb Chem High Throughput Screen. 2010 Apr 20. [Epub ahead of print]
    [60]Brown KV, Walker JA, Cortez DS, et al. Earlier debridement and antibiotic administration decrease infection[J]. J Surg Orthop Adv.2010.19(1):18-22.
    [61]Djikaev YS, Ruckenstein E, et al. Effect of hydrogen bond networks on the nucleation mechanism of protein folding. Phys Rev E Stat Nonlin Soft Matter Phys.2009.80:061918
    [62]Vlahou A, Laronga C, Wilson L, et al. A novel approach toward decvelopment of a rapid blood test for breast cancer[J].Clin. Breast Cancer,2003,4:203-209.
    [63]Kim DJ, Kim KS, et al. Prediction of TiO2 thin film growth on the glass beads in a rotating plasma chemical vapor deposition reactor[J]. J Nanosci Nanotechnol. 2010,10(5):3211-5.
    [64]Kim K, Lee YM, Lee HB, et al. Silver-Coated Silica Beads Applicable as Core Materials of Dual-Tagging Sensors Operating via SERS and MEF[J]. ACS Appl Mater Interfaces.2009, 1(10):2174-2180.
    [65]Thomas A, Schanzer W, Delahaut P, et al. Sensitive and fast identification of urinary human, synthetic and animal insulin by means of nano-UPLC coupled with high-resolution/high-accuracy mass spectrometry. Drug Test Anal.2009, 1(5):219-227.
    [66]Chu YG, Shi J, Hu YH, et al. Serum proteomic study on hypertension patients with Gan-Dan damp-heat syndrome[J]. Zhongguo Zhong Xi Yi Jie He Za Zhi. 2010,30(1):37-41.
    [67]Zhao X, Zhao Y, Hu J, et al. Sintering photonic beads for multiplex biosensing. J Nanosci Nanotechnol,2010,10(1):588-94.
    [68]Qiu F, Liu HY, Zhang XJ, et al. Optimization of magnetic beads for MALDI-TOF MS analysis[J], Front Biosci,2009,14:3712-3723
    [69]Villanueva J, Philip J, Chaparro CA, et al. Correcting common errors in identifying cancer-specific serum peptide signatures[J]. J Proteome Res,2005, (4): 1060-1072.
    [70]Kassahun WT, Jonas S, et al. Spectrum of benign lesions mimicking a malignant stricture at the liver hilum[J]. Rev Recent Clin Trials,2009,4(3):185-194.
    [71]张伟东,苗树军.我国恶性肿瘤死亡率流行病学特征分析[J].中国健康教育2009,2(4):246-248.
    [72]Rockey DC, Paulson E, Niedzwiecki D, et al. Analysis of air contrast barium enema, computed tomographic colonography, and colonoscopy:prospective comparison[J]. Lancet,2005,365(9456):305311.
    [73]Abelev GI. Alpha-fetoprotein in ontogenesis and its association with malignant tumors[J]. Adv Cancer Res,1971,14:295-358.
    [74]Mizejewski GJ, et al. Therapeutic use of human alpha-fetoprotein in clinical patients:Is a cancer risk involved[J], Int J Cancer.2010 Mar 3. [Epub ahead of print]
    [75]Jeong W, Araki M, Park SY, et al. Robot-assisted laparoscopic radical prostatectomy in the Asian population:modified port configuration and ultradissection[J]. Int J Urol,2010,17(3):297-300.
    [76]Catalona, WJ, Loeb S. Prostate Cancer Screening and Determining the Appropriate Prostate-Specific Antigen Cutoff Values[J]. J Natl Compr Canc Netwv.2010 (8):265-270
    [77]Ilic D, Green S. Prostate specific antigen for detecting early prostate cancer[J]. BMJ,2009,339:b3572-b3572
    [78]Sidransky D. Emerging molecular markers of cancer[J]. Nat. Rev. Cancer,2002, 2:210-219.
    [79]Barbier A, Domont J, Magne N, et al. Coexpression of biological key modulators in primary colorectal carcinomas and related metastatic sites:implications for treatment with cetuximab[J]. Bull Cancer,2010,97(2):E9-E15.
    [80]Kayaba H.Tumor markers:essential diagnostic tools for radiologists[J]. Nippon lgaku Hoshasen Gakkai zasshi,2003,63(4):133-139
    [81]Emanuel F. Petricoin, Claudio Belluco, Robyn P. Araujo, The blood peptidome:a higher dimension of information content for cancer biomarker discovery[J]. Nature Reviews Cancer,2005,6:961-967
    [82]Donald J. Johann JR, Bih-Rong Wei, Combined Blood/Tissue Analysis for Cancer Biomarker Discovery:Application to Renal Cell Carcinoma[J]. Anal. Chem,2010,82 (5),1584-1588
    [83]Ebert MP, Meuer J, Wiemer JC, et al. Identification of gastric cancer patients by serum protein profiling[J]. J Proteome Res,2004,3:1261-1266.
    [84]Tirumalai RS, Chan KC, Prieto DA, et al. Characterization of the low molecular weight human serum proteome[J]. Mol. Cell Proteomics,2003,2:1096-1103.
    [85]Brouwers FM, Petricoin Ⅲ EF, Ksinantova L et al. Low molecular weight proteomic information distinguishes metastatic from benign pheochromocytoma [J]. Endocr Relat Cancer,2005,12:263-272.
    [86]Ornstein DK, Rayford W, Fusaro VA, et al. Serum proteomic profiling can
    discriminate prostate cancer from benign prostates in men with total prostate specific antigen levels between 2.5 and 15.0 ng/ml[J]. J Urol 2004, 172:1302-1305.
    [87]Li J, Zhang Z, Rosenzweig J, et al. Proteomics and bioinformatics approaches for identification of serum biomarkers to detect breast cancer[J]. Clin. Chem,2002, 48:1296-1304.
    [88]Zhukov TA, Johanson RA, Cantor AB, et al. Discovery of distinct protein profiles specific for lung tumors and pre-malignant lung lesions by SELDI mass spectrometry[J]. Lung Cancer,2003,40:267-279.
    [89]Idborg H, Zamani L, Edlund PO, et al. Metabolic fingerprinting of rat urine by LC/MS Part 2:Data pretreatment methods for handling of complex data[J]. J Chromatogr B Analyt Technol Biomed Life Sci,2005,828(1-2):14-20.
    [90]Arneberg R, Rajalahti T, Flikka K, et al. Pretreatment of mass spectral profiles: application to proteomic data[J]. Anal Chem,2007,79(18):7014-26.
    [91]American Cancer Society. Cancer Facts & Figures 2009. Atlanta:American Cancer Society; 2009.
    [92]Jones HB. On a new substance occurring in the urine of a patient with mollities ossium[J]. Phil Trans R Soc Lond,1848,138:55-62.
    [93]O'Malley AS, Beaton E, Yabroff KR, et al. Patient and provider barriers to colorectal cancer screening in the primary care safetynet[J]. Prev Med,2004, 39(1):5663.
    [94]Etzioni D, Ponce N, Babey S, et al. A populationbased study of colorectal cancer test use:results from the 2001 California Health Interview Survey[J]. Cancer 2004,101(11):2523232.
    [95]Walsh J, Kaplan C, Nguyen B, et al. Barriers to colorectal cancer screening in Latino and Vietnamese Americans. Compared with nonLatino white Americans[J]. Journal of General Internal Medicine,2004,19(2):15666.
    [96]Liotta L A, Ferrari M, Petricoin E F. Clinical proteomics written in blood[J]. Nature,2003,425(6961):905.
    [97]Weish JB, Sapinoso LM, Kern SG, et al. Largely scale delineation of secreted protein biomarkers overexpressed in cancer tissue and serum[J]. Proc Natl Acad Sci USA,2003,100:3410-3415.
    [98]Petricoin III EF, Ardekani AM, Hitt BA, et al. Use of proteomic patterns in serum to identify ovarian cancer[J]. Lancet,2002,359:572-5.
    [99]Powell K. Proteomics delivers on promise of cancer biomarkers[J]. Nat Med, 2003,9:980.
    [100]Isaaq HJ, Conrads TP, Prieto DA, et al. SELDI-TOF MS for diagnostic proteomics[J]. Anal Chem,2003,75:149A-55A.
    [101]Moomen JM, Li D, Xiao LC, et al. Direct tandem mass spectrometry reveals limitations in protein profiling experiments for plasma biomarker discovery[J]. J Proteome Res,2005,4:972-981.
    [102]Leal C. Henrique R. Monteiro P. Apocrine ductal carcinoma in situ of the breast: Histologic classification and expression of biologic markers[J]. Human Pathology,2001,32(5):487-493
    [103]Fracalanza S, Prayer-Galetti T, Pinto F, et al. Plasma chromogranin A in patients with prostate cancer improves the diagnostic efficacy of free/total prostate-specific antigen determination[J]. Urol Int,2005,75:57-61.
    [104]Chen KC, Peng CC, Chiu WT, et al, Peng RY. Action mechanism and signal pathways of Psidium guajava L. aqueous extract in killing prostate cancer LNCaP cells. Nutr Cancer.2010;62(2):260-70.
    [105]Markman M, Petersen J, Belland A, et al. CA-125 monitoring in ovarian cancer: patient survey responses to the results of the MRC/EORTC CA-125 Surveillance Trial. Oncology.2010;78(1):1-2.
    [106]Panzuto F, Severi C, Cannizzaro R, et al. Utility of combined use of plasma levels of chromogranin A and pancreatic polypeptide in the diagnosis of gastrointestinal and pancreatic endocrine tumors[J]. J Endocrinol Invest,2004, 27:6-11.
    [107]Lin YC, Chou YHW, Liao IC, et al. The expression of mammaglobin mRNA in peripheral blood of metastatic breast cancer patients as an adjunct to serum tumor markers[J]. Cancer Lett,2003,191:93-99.
    [108]Agranoff D, Fernandez-Reyes M, Papadopoulos S et al. Identification of diagnostic markers for tuberculosis by proteomic fingerprinting of serum[J]. The Lancet,2006,368(9540):1012-1021
    [109]Petricoin III EF, Ardekani AM, Hitt BA, et al. Use of proteomic patterns in serum to identify ovarian cancer[J]. Lancet,2002,359:572-575.
    [110]Hongdong Li, Yizeng Liang, Qingsong Xu, et al. Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration[J]. Analytica Chimica Acta,2009,648(1):77-84.
    [1]夏春.几种常见肿瘤标志物在胃肠道等恶性肿瘤中的临床意义国外医学消化系疾病分册,1998,18(3):139.
    [2]Soletormos G, Nielsen D, Schioler H, et al. Monitoringdifferent stages of breast cancer using tumor markers Cal5-3 CEA and TPA[J]. Eur J Cancer, 2004,40:481.
    [3]Sasaki A, Kawano K, Inomalr A M, et al. Value of serumcarbohydrate antigen 19-9 for Predicting ertrahepatic metastasisin patients will liver metastasis from colorectal carcinoma[J]. Hepatogastroenterolgy,2005,52:18-14.
    [4]MMiralles C, Orea M, Espana P, el al. Cancer antigen 125 associated with multiple benign and malignant pathologies[J]. Ann Surg Onc01.2003,10(2): 150-154.
    [5]陈国荣.恶性肿瘤患者血清TSGF测定的临床价值.医学研究通讯,1999,28(3):40-41
    [6]Kilic A, Schuchert MJ, Luketich JD, et al. Use of novel autoantibody and cancer-reLated protein arrays for the detection of esophagealadenocarcinoma in serum[J]. J Thorac Cardiovasc Surg,2008,136(1):199-204.
    [7]Paweletzcp CP, Cillespie jw, Omstein DK, et al. Rapid protein display profiling of cancer progression directly from human tissue using a protein biochip[J]. Deve Res,2000,49(1):34-37.
    [8]Eggeling F, Davies H, Lomas L, et al. Tissue-specific micro dissection couple with protein chip array technologies:applications in cancerresearch[J]. Biotechniques,2000,29(5):1066-1069.
    [9]Dacic S. Molecular profiling of lung carcinoma:identifying clinically useful tumor markes for diagnosis and prognosis[J]. Expert Rev Mol Diagn,2007, 7(1):77-86
    [10]Von Eggeling F, Davies H, lomas L, el al. Tissue-specific microdissecrion Coupled with proteinchip array technologies:applications in cancer research [J]. Biotechniques,2000,29(5):1066.
    [11]Weinberger SR,Dalmasso EA,Fung ET. Current achievements using ProteinChip array technologies[J]. Curr opin Chem Biol,2001,6(1):86.
    [12]Rubin RB, Merchant M. A rapid protein profiling system that speeds study Of cancer and other diseases[J]. Am Clin Lab,2000,19(8):28.
    [13]Su Y, Shen J, Qian H. et al. Diagnosis of gastric cancer using decision tree classification of mass spectral data[J]. Cancer Sei,2007,98(1):37-43.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700