用户名: 密码: 验证码:
牙釉质表面的功能化及其仿生矿化的应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
依据蛋白和有机基质调控生物矿化的机理,通过在牙釉质表面吸附牙釉基质蛋白和接枝不同活性基团等方法,系统研究了牙釉基质蛋白和不同活性基团对牙釉质表面生物矿化的影响,为深入探讨牙釉质的再矿化以及临床应用于治疗龋病提供理论基础和实验依据。
     本研究主要分为两部分:
     一、牙釉基质蛋白对牙釉质再矿化的影响
     采用乙酸法提取SD大鼠的牙釉基质蛋白并通过SDS-PAGE电泳对其分离纯化。利用石英晶体微天平技术研究牙釉基质蛋白在牙釉质表面的吸附行为以及在37℃模拟人工体液中诱导牙釉质表面羟基磷灰石晶体的形成和生长的作用效果。
     研究结果显示,大鼠牙釉基质蛋白主要为釉原蛋白和鞘蛋白。石英晶体微天平图像数据显示,共振频率随浓度的提高而降低;吸附量随浓度的提高稳定的增长;从D-F曲线中,可以得出在20μg/mL的蛋白溶液中,吸附蛋白成膜性表现出很好的附着力和膜刚性。定性分析和形貌表征显示,吸附牙釉基质蛋白的牙釉质表面矿化层含有羟基、磷酸根和碳酸根基团。牙釉质表面微球随着矿化时间的增长而增大,晶体表现出了良好的结晶度,组成上为含有少量Na~+和CO_3~(2-)取代的羟基磷灰石晶体。
     二、牙釉质表面功能化对牙釉质再矿化的影响
     通过巯基与羟基的键合作用,用水解法将HS(CH_2)_nX(-SO_3H,-PO_4H_2,-COOH,-OH,-CH_3)带有的不同活性基团接枝到牙釉质表面上形成自组装单层膜,然后浸入到37℃模拟人工体液中仿生矿化。
     研究结果证实了五种不同活性基团(-PO_4H_2,-SO_3H,-COOH,-OH,-CH_3)成功的接枝到牙釉质表面。除接枝甲基后的牙釉质表面表现了疏水性外,均表现了良好的亲水性。形貌表征显示,受自组装膜末端活性基团的静电控制作用,不同末端基团对羟基磷灰石晶体生长速率的影响依次为:-PO_4H_2>-SO_3H>-COOH>-OH>-CH_3;受自组装膜活性基团酸碱性的影响,带有-PO_4H_2、-SO_3H、-COOH活性基团的牙釉质表面矿化生成的晶体出现了多孔状形貌;受模拟体液中的离子类别和矿化外因的影响,晶体表面出现了若干碳酸钙方块形晶体。
     综上所述,通过石英晶体微天平和自组装技术,成功的将牙釉基质蛋白和不同活性基团接枝吸附到牙釉质表面。研究结果表明无论是表面吸附蛋白还是接枝活性基团都能够很好的诱导羟基磷灰石晶体成核、生长和聚集,从而在国际上首次证实了蛋白和有机基质在牙釉质矿化过程中都起到了一定的调控作用,为今后利用生物矿化法治疗龋病提供试验基础。
Enamel matrix proteins(EMPs) and different active groups were deposited on the enamel surface to study enamel matrix proteins and different active groups on the impact of the enamel surface's biomineralization by means of the mechanism of Control Biomineralization with protein and organic matrix,and it provided a theoretical foundation and experimental evidence for an in-depth study of the enamel remineralization in the treatment of dental caries.
     This research work is divided into two parts:
     Part 1.the impact of EMPs on enamel remineralization
     The EMPs of SD rats were extracted by Acetic Acid Process,separated and purified by SDS-PAGE electrophoresis.The technology of quartz crystal microbalance(QCM) was applied to research the adsorption behavior of EMPs,the formation and growth induction hydroxyapatite crystals on enamel surface in simulated body fluid(SBF) solutions at 37℃.
     The results showed that EMPs of rats were mainly amelogienin and aneloblastin. QCM image data showed that the frequency decreased with the increased concentration, but the adsorbed amount increased steeply with the increased concentration.It was also reflected in the D-f plot that adsorption at 20μg/mL exhibits a much more viscose outer-layer structure.Qualitative analysis and morphology characterization showed that the adsorbed EMPs biomimetic mineral layers on enamel surface contained hydroxyl, phosphate and carbonate groups.The nano-spheres on enamel surface grew with the mineralization time,and crystal showed a good degree of crystallinity and contained a small amount of Na~+ and CO_3~(2-)substituted hydroxyapatite crystals.
     Part 2.the impact of enamel surface functionalization on enamel remineralization
     Various active groups HS(CH_2)_nX(-SO_3H,-PO_4H_2,-COOH,-OH,-CH_3) were deposited on enamel surface by hydrolysis method,which is based on the bonding effects of sulfhydryl and hydroxyl groups,to form self-assembled monolayers(SAMs).Then they were soaked in SBF at 37℃for biomimetic mineralization.
     The results indicated that thealkanethiols were firmly deposited on the enamel surface.The treated enamel surface showed a good hydrophilic except the one treated by methyl group.Morphology characterization showed that the surface functional groups dependence on apatite formation determined were as follows:The growth rates decrease in the order -PO_4H_2>-SO_3H>-COOH>-OH>-CH_3;based on the acidic and alkaline property of active groups on the SAMs,the porous crystals were emerged on enamel surface with -PO_4H_2、-SO_3H、-COOH active groups;due to the impact of ion species in SBF and external cause of mineralization,crystal surface appeared a number of box-shaped crystals of calcium carbonate.
     To sum up,the EMPs and various active groups were deposited on the enamel surface by the technology of QCM and SAMs.The results showed that either the EMPs or active groups can induce the hydroxyapatite crystal,nucleation growth and aggregation.Thus it firstly confirmed that the protein and organic matrix played a key role in the regulative process of enamel mineralization,and provided an experimental basis for the treatment of caries with the method of biological mineralization in the futher.
引文
[1]樊明文主编.龋病牙髓病研究.武汉:湖北科学技术出版社,2004:133-149
    [2]崔福斋主编.生物矿化.北京:清华大学出版社,2007.5:19-20
    [3]于世风主编.口腔组织病理学.第5版,北京:人民卫生出版社,2004:41-51
    [4]Lowenstam H A,Weiner S.On Biomineralization.Oxford,UK:Oxford University Press,Inc.,1989
    [5]Ten Cate A R.Oral Histology,Development,Structure,and Function.5th ed.St.Louis,Missouri,USA:Mosby-Year Book Inc.,1998
    [6]Du C,Moradian-Oldak J.Tooth regeneration:challenges and oppittmities for biomedical materials research.Biomedical Materials,2006,1:10-17
    [7]Fincham A G,Moradian-Oldak J,Simmer J P.The Structural Biology of the Develoging Dental Enamel Matrix.J.Struct.Biol,1999,126:270-299
    [8]Angela L T,Amir H F,Anat Blumenfeld,et al.High yield of biologically active recombinant human amelogenin using the baculovirus expression system.Protein Expression and PuriWcation,2006,45:43-53
    [9]Du C,Falini G,Fermani S,Abbott C,Moradian-Oldak J.Supramolecular assembly of amelogenin nanospheres into birefringent microribbons.Science,2005,307:1450-1454
    [10]Dhamija S,Liu Y,Yamada Y,et al.Cloning and characterization of the murine amelobalstin promoter.Journal of Biological Chemistry,1999,174(29):13711-13717
    [11]Chu C,Hart T C,Dupont BR,et al.Cloning human enamelin cDNA,chromosomal localization,and analysis of expression during tooth development.J Dent Res.2000,79(4):912
    [12]Fincham A G;Simmer J P.Amelogenin proteins of developing dental enamel.In:Dental Enamel,Proceedings of Ciba Foundation Symposium 205.Chichester,UK:John Wiley&Sons Ltd,1997,118-130
    [13]Moradian-Oldak J,Simmer P J,Sarte P E,et al.Specific cleavage of a recombinant murine amelogenin by a protease fraction isolated from bovine tooth enamel.Arch Oral Biol., 1994, 39:647-656
    
    [14] Collier P M, Sank J J, Rosenbloom S J, et al. An amelogenin gene defect associated with human X-linked amelogenesis imperfecta. Arch Oral Biol, 1997, 42(3): 235
    
    [15] Robinson C, Kirkham K. Enamel matrix components, alterations during development and possible interactions with the mineral phase. In: Fearnhead R W, Suga S ed. Tooth enamel IV. New York: Acad. Press, 261-265
    
    [16] Meyer S C, Huerta C, Ghosh I. Single-Site Mutations in a Hyperthermophilic Variant of the B1 Domain of Protein G Result in Self-Assembled Oligomers. Biochemistry, 2005, 44: 2360-2368
    
    [17] Tanahashi M, Matsuda T. Surface functional group dependence on apatite formation on self-assembled monolayers in a simulated body fluid. J Biomed Mater Res, 1997, 34(3): 305-315
    [18] Liu Q, Ding J, Francis K, et al. The role of surface functional groups in calcium phosphate nucleation on titanium Foil.J biomaterials, 2002, 23: 3103-3111
    [19] Nakahara H, Goldberg V M, Caplan A I. Cultured-expanded periosteal derived cells exibit osteochondrogenic potential in porous calcium phosphate ceramics in vivo. Clin Orthop, 1992: 267-291
    [20] Li X M, Feng Q L, Cui F Z. In vitro degradation of porous Nano-hydroxyapatite/ collagen/PLLA scaffold reinforce by chitin Fibres. Materials Science & Engineering C-Biomimetic and Supramolecular Systems, 2006, 26: 716-720
    [21] Leng Y, Chen J Y, Qu S X. TEM examinations of calcium phosphate on HA/TCP, Biomaterials, 2003, 24: 2125-2131
    [22] Kawashita M, Nakao M, Minoda M, et al. Apatite-forming ability of carboxyl group-containing polymer gels in a simulated body fluid. Biomaterials, 2003, 24: 2499-2484
    [23] Stupp S. I., Braun P. V. Molecular manipulation of microstructures: Biomaterials, ceramics, and semiconductors. Science. 1997, 277: 1242-1248
    
    [24] Fincham A G, Moradian-Oldak J, Simmer J P. The structural biology of the developing dental enamel matrix . Journal of Structural Biology, 1999, 126: 270-299
    [25]Chen H F,Brian H Clarkson,Sun K,John F.Mansfield.Self-assembly of Synthetic Hydroxyapatite Nanorods into an Enamel Prism-like Structure.Journal of Colloid and Interface Science,2005,288:97-103
    [26]Aizenberg J,Black A J,whitesides G M.Control of nucleation by Self-assembled monolayers.Nature,1999,398:495-498
    [27]周长忍主编.生物材料学.北京:中国医药科技出版社,2004.3:194-208
    [28]刘源岗,周长忍.载溶菌酶聚乳酸-聚羟基乙酸共聚物微球的形成机制.中国组织工程研究与临床康复,2007,11(31):6198-6202
    [29]邢禹彬,李立华,周长忍.超临界CO_2反复循环萃取法制备PLA/TCP多孔组织工程支架材料.功能材料,2005,12(36):1909-1012
    [30]Brookes S J,Robinson C,Kirkham J,Bonass W A.Biochemistry and Molecular Biology of Amelogenin Proteins of Developing Dental Enamel,Arch,Oral Boil.,1995,40(1):1-14
    [31]Bonass W A,Robinson P A,Kirkham J,et al.Molecular cloning and DNA sequence of rat amelogenin and a comparative analysis of mammalian amelogenin protein sequence divergence.Biochem Biophys Res Commun,1994,198(2):755-763
    [32]Gibson C,Golub E,Heroid R,et al.Structure and expression of bovine amelogenin gene.Biochemistry,1991,30(4):1075-1079
    [33]Lau E C,Simmer J P,Bringas P,et al.Alternative splicing of the mouse amelogenin primary RNA transcript contributes to amelogenin heterogeneity.Biochem Biophys Res Commun,1992,188(3):1253-1260
    [34]Lekovic V,Camargo P M,Weinlaender M,et al.A combination between enamel matrix proteins used alone or in combination with bovine porous bone mineral in the treatment of intrabony periodontal defects in humans.J Periodontol,2000,71(11):1110
    [35]Moe D,Salling E,Kirkeby S.Extraction of enamel proteins.Scand J Dent Res.,1984,92:503
    [36]Hammarstrom L,HeijlL,Gestrelius S.Periodontal regeneration in a buccal dehiscencemodel inmonkeys after application of enamelmatrix p roteins.J Clin Periodontol,1997,24(9 Pt2):669
    [37]束蓉,李超伦,刘正,等.猪釉基质蛋白的提取及N末端氨基酸序列分析.口腔医学纵横杂志,1999,15(2):67
    [38]殷春一.人釉原蛋白真核表达载体PcDNA2.1-AMG,PsecTaq2A-AMG的构建及其在哺乳动物细胞系中表达的研究.四川大学博士学位论文,2001
    [39]Boyan B D,Hummert,Dean D D,et al.Role of material surfaces in regulating bone and cartilage cell response.Biomaterials,1996,17(2):127-146
    [40]Vogler E A.Structure and reactivity of water at biomaterial surface.Adv Colloid Interface Sci,1998,74(13):69-117
    [41]Barber T A,Golledge S L,Casitner D G,et al.Peptide-modified p(AAm-co- EG/AA c) IPNs grafted to vulk titaminu modulate osteoblast behabior in vitro.J Biomed Mater Res A,2003,64 A(1):38-47
    [42]Fincham A F,Moradian-Oldak J,Simmer J R The Structural Biology of the Developing Dental Enamel Matrix.J.Struct.Biol,1999,126:270-299
    [43]Fincham A G,Moradian-Oldak J,Diekwisch T G H,et al.Evidence for Amelogenin 'Nanospheres' as Functional Components of Secretory-stage Enamel Matrix.J.Struct.Biol.,1995,115:50-59
    [44]Wen H B,Fincham A G,Moradian-Oldak J.Progressive Accretion of Amelogenin Molecules During Nanospheres Assembly Revealed by Atomic Force Microscopy.Matrix Biol.,2001,20:387-395
    [45]杨晓芳,奚廷斐.生物材料生物相容性评价研究进展.生物医学工程学杂志,2001,18(1):123-128
    [46]Chen Y L,Zhang X F,Gong Y D,et al.Conformational changes of fibrinogen adsorption onto hydroxyapatite and titanium oxide nanoparticles.J.Colloid Interface Sci.,1999,214:38-45
    [47]Zhang X F,Ma Y,Liu H,Paula Sa FG,et al.Monitoring the formation of Maillard reaction products of glucosamine with fibrinogen and human serum albumin using capillary electrophoresis.Anal.Biochem.,2004,325:255-259
    [48]Endo T,Yamamura S,Nagatani N,et al.Localized surface plasmon resonance based optical biosensor using surface modified nanoparticle layer for label-free monitoring antigen-antibody reaction.Sci.Tech.Adv.,2005,6:491-500
    [49] Ombelli M, Composto R J, Meng Q C, Eckmann D M. Quantitative and selective chromatography method for determining coverages of multiple proteins on surfaces. J. Chromatogr., B 2005, 826: 198-205
    [50] Barry D. Fleming, Slavica Praporski, Alan M Bond, et al. Electrochemical Quartz Crystal Microbalance Study of Azurin Adsorption onto an Alkanethiol Self-Assembled Monolayer on Gold. Langmuir 2008, 24, 323-327
    [51] Bund A, Schwitzgebel G, Viscoelastic. Properties of low-viscosity liquids studied with thickness-shear mode resonators, Anal hem, 1993, 70(11):2584
    [52] Muoz J A. Deteraination of formic acid vapor using piezoelectric crystal with pyridipe coatings Analyst, 1993, 118(11):175
    [53] Hiller C R, Robinson C, Weatherell J A. Variations in the Composition of Developing Rat Incisor Enamel. Calcif. Tissue Res., 1975, 18: 1-12
    [54] Andersson M, Andersson J, Sellborn A, et al. Quartz crystal microbalance-with dissipation monitoring (QCM-D) for real time measurements of blood coagulation density and immune complement activation on artificial surfaces. Biosensors and Bioelectronics, 2005, 21:79-86
    [55] Hook F, Fant C, Sot K, Nylander T, Kasemo B, Elwing H. Variations in Coupled Water, Viscoelastic Properties, and Film Thickness of a Mefp-1 Protein Film during Adsorption and Cross-Linking: A Quartz Crystal Microbalance with Dissipation Monitoring, Ellipsometry, and Surface Plasmon Resonance Study. Anal. Chem., 2001,73:5796-5804
    [56] Fu Y, Finklea H O. Quartz Crystal Microbalance Sensor for Organic Vapor Detection Based on Molecularly Imprinted Polymers. Anal. Chem., 2003, 75(20): 5387-5393
    [57] Hook F, Rodaho M, Brzezinski P, Kasemo B. Energy Dissipation Kinetics for Protein and Antibody-Antigen Adsorption under Shear Oscillation on a Quartz Crystal Microbalance. Langmuir 1998, 14: 729-734
    [58] Camilla Fant, Hans Elwing, et al. The Influence of Cross-Linking on Protein-Protein Interactions in a Marine Adhesive: The Case of Two Byssus Plaque Proteins from the Blue Mussel. Biomacromolecules, 2002, 3: 732-741
    [59] Malmstrom J, Agheli H, Kingshott P, et al. Viscoelastic Modeling of Highly Hydrated Laminin Layers at Homogeneous and Nanostructured Surfaces: Quantification of Protein Layer Properties Using QCM-D and SPR. Langmuir, 2007, 23 (19): 9760-9768
    [60] Muratsugu M, Ohta F, Miya Y, Hosokawa T, Kurosawa S, Kamo N, Ikeda H. Quartz crystal microbalance for the detection of microgram quantities of human serum albumin: relationship between the frequency change and the mass of protein adsorbed. Anal. Chem., 1993, 65: 2933-2937
    [61] Xiang C, Xie Q, Yao S. Eletrochemical quartz crystal impedance study of glucose oxidation on a nickel hydroxide modified Au electrode in alkaline solution. Electroanalysis, 2003, 15: 987-990
    [62]Anselma K. Osteoblast adhesion on biomaterials. Biomaterials, 2002, 21(7): 667- 681
    [63] Lingyan Li, Shengfu Chen, and Shaoyi Jiang. Protein Adsorption on Alkanethiolate Self-Assembled Monolayers: Nanoscale Surface Structural and Chemical Effects. Langmuir 2003, 19: 2974-2982
    [64] Roddick-Lanzilotta A D, Conner P A, McQuillan A J. An in situ infrared spectroscopic study of the adsorption of lysine to TiO_2 fron an aqueous solution. Langmuir, 1998, 14: 6479-6484
    [65] Juffer A H, Argos P, Vlieg J D. Adsorption of proteins onto charged suarfces: a Monto Carlo approach with explicit ions. J. Compu. Genet, 1996, 17: 178-1803
    [66] Wen H B, Fincham A G, Moradian-Oldak. Progressive accretion of amelogenin molecules during nanospheres assembly revealed by atomic force microscopy. J. Matrix Biol. 2001, 20: 387-395
    [67] Moradian-Oldak J, Leung W, Fincham A G. Temperature and pH-Dependent Supramolecular Self-Assembly of Amelogenin Molecules: A Dynamic Light-Scattering Analysis J. Struct. Biol. 1998, 122:320-327
    [68] Fincham A G, Moradian-Oldak J, Simmer J P, Sarte P, Lau E C, Diekwisch T, Slavkin H C. Self-Assembly of a Recombinant Amelogenin Protein Generates Supramolecular Structures. J. Struct. Biol., 1994, 112: 103-109
    [69] Fincham A G, Moradian-Oldak J, Diekwisch T G, Lyaruu D M, Wright J T, Bringas P,Slavkin H C.Evidence for Amelogenin "Nanospheres" as Functional Components of Secretory-Stage Enamel Matrix.J.Struct.Biol.,1995,115:50-59
    [70]Wen H B,Moradian-Oldak J,Leung W,Bringas P J,Fincham A G.Microstructures of an Amelogenin Gel Matrix.J.Struct.Biol.,1999,126:42-51
    [71]Fincham A G,Moradian-Oldak J,Simmer J P.The Structural Biology of the Developing Dental Enamel Matrix.J.Struct.Biol.,1999,126:270-299
    [72]Moradian-Oldak J,Paine M L,Lei Y P,Fincham A G,Snead M L.Self-Assembly Properties of Recombinant Engineered Amelogenin Proteins Analyzed by Dynamic Light Scattering and Atomic Force Microscopy.J.Struct.Biol.,2000,131:27-37
    [73]Frances F,Portoles O,Gonzalez J I,et al.Amelogenin test:From forensics to quality control in clinical and biochemical genomics.Clinica Chimica Acta,2007,386:53-56
    [74]金关泰主编,高分子化学的理论和应用进展,中国石化出版社,1995:335-338
    [75]Brookes S J,Robinson C,Kirkham J,Bonass W.Biochemistry and Molecular Biology of Amelogenin Proteins of Developing Dental Enamel.Arch.Oral boil.,1995,40(1):1-14
    [76]LeGeros R Z,Sakae T,Bautista C,et al.Magnesium and carbonate in enamel and synthetic apatites.Adv Dent Res,1996,10:225-231
    [77]Messersmith P B,Starke S.Thermally triggered calcium phosphate formation from calcium-loaded liposomes.Chem Mater 1998,10(1):117-124
    [78]Hammerstrom L.Enamel matrix,cementum development and generation.J Clin Periodontol,1997,24:658
    [79]Hammerstrom L,Heijl L,Gestrelius S.Periodontal tissue regeneration in a buccal dehiscence model in monkeys after appficafion of enamel matrix proteins.J Clin Periodontol,1997,24:669
    [80]Sculean A,Donos N,Reich E,et al.Periodontal tisue regeneration of oxytolan fibres in different types of periodontal defects:a histological study in monkeys.J Periodontal Res.,1998,33(8):453
    [81]束蓉,刘正,葛琳华.猪釉基质蛋白对MC3T3-El成骨细胞增殖分化的影响.华 西口腔医学杂志,2000,18(4):226
    [82] Mathex M, Brown W E, Schroeder L W, Dickens B. Crystal Structure of Octacalcium bis(hydrogenphosphate) tetrakis(phosphate) pentahydrate, Ca8(HPO4)2(PO4)4·5H2O. J. Crystal Spectrosc. Res., 1988, 18: 235-250
    [83] Du C, Cui F Z, Zhang W, et al. Formation of calcium phosphate/collagen composites through mineralization of collagen matrix. J Biomed Mater Res, 2000, 50: 518-527
    [84] Dahlin S, Angstrom J, Linde A. Dentin Phosphoprotein Sequence Motifs and Moleeular Modeling: Conformational Adaptations to Mineral Crystals. Eur. J. Oral Sci., 1998, 106(suppl 1): 239-248
    [85] Aoba T, Moreno E C, Mechanism of Amelogenetic Mineralisation in Minipig Secretory Enamel, in Feamhead R. W. (Ed), Tooth Enamal V. Florence, Yokohama, 1997: 163-167
    [86] Michael L P, Zhu D H, Luo W, et al. Enamel Biomineralization Defects Result from Alterations to Amelogenin Self-Assembly. Journal of Structural Biology, 2000, 132: 191-200
    [87] Hermann Ehrlich, Barbara Krajewsk, Thomas Hanke, et al. Chitosan membrane as a template for hydroxyapatite crystal growth in a model dual membrane diffusion system. Journal of Membrane Science, 2006, 273: 124-128
    [88] Frank A. Muller, Lenka Muller, Daniel Caillard, Egle Conforto. Preferred growth orientation of biomimetic apatite crystals. Journal of Crystal Growth, 2007, 304 : 464-471
    [89] Iijima M, Tohda H, Moriwaki Y. Growth and Structure of Lamellar Mixed Crystals of Octacalcium Phosphate and Apatite in a Model System of Enamel Formation. J. Cryst. Growth, 1992, 116:319-326
    [90] Miake Y, Shimoda S, Fukae M, Aoba T. Epitaxial Overgrowth of Apatite Crystals on the Thin-ribbon Precursor at Early Stages of Porcine Enamel Mineralization. Calcif. Tissue Int., 1993, 53: 249-256
    [91] Osamu Suzuki, Shinji Kamakura, Takenobu Katagiri, et al. Bone formation enhanced by implanted octacalcium phosphate involving conversion into Ca-deficient hydrox- yapatite. Biomaterials, 2006, 27: 2671-2681
    [92]Stacy A.Hutchens,Roberto S.Benson,Barbara R.Evans,et al.Biomimetic synthesis of calcium-deficient hydroxyapatite in a natural hydrogel.Biomaterials,2006,27:4661-4670
    [93]Iijima M,Tohda H,Suzuki H,Yanagisawa T,Moriwaki Y.Effects of Fluotide on Apatite-octacalcium Phsphate Intergrowth and Crystal Morphology in a Model System of Tooth Enamel Formation.Calcif.Tissur Int.,1992,50:357-361
    [94]Diekwisch T G H,Berman B J,Gentner S,Slavkin H C.Initial Enamel Crystals are Spatially not Associated with Mineralized Dentine.Cell.Tissue Res,1994,279(1):149-167
    [95]LeGeros RZ.Calcium phosphates in oral biology and medicine,Monographs in Oral Science.1st ed.Basel(Switzerland):Karger,1991:108-128
    [96]陈智,樊明文.欧洲牙髓生物学研究进展.牙体牙髓牙周病学杂志,1997.7(4):283
    [97]Okazaki M,LeGeros R Z.Properties of heterogeneous apatites containing magnesium,fluoride,and carbonate.Adv Dent Res,1996,10:252-259
    [98]LeGeros R Z,Kijkowska R,Bautista C,et al.Synergistic effects of magnesium and carbonate on properties of biological and synthetic apatites.Connect Tissue Res,1995,33:203-209
    [99]Santosh Aryal,Shanta Raj Bhattarai,Remant Bahadur K.C.,et al.Carbon nanotubes assisted biomimetic synthesis of hydroxyapatite from simulated body fluid.Materials Science and Engineering A,2006,426:202-207
    [100]Iijima M,Moradian-Oldak J.Control of Octacalacium Phosphate and Apatite Crystal Growth by Amelogenin Matrices.J.Mater.Chem.,2004,14:2189-2199
    [101]Fincham A G,Moradian-Oldak J,Diekwich T G H,et al.Evidence for Amelogenin 'Nanospheres'as Functional Components of Secretory-stage Enamel Matrix.J.Struct.Biol.,1995,115:50-59
    [102]Weiner S,Dove P M.An overview of biomineralization processes and the problem of the vital effect.Rev Mineral Geochem,2003,54:1-29
    [103]Levi Y,Falini G,Addadi L,Weiner S.Structure of the nacreous organic matrix of a bivalve mollusk shell examined in the hydrated state using cryo-TEM.Journal of Structural Biology,2001,135:8-17
    [104]Toyasawa S,O'hUigin C,Figueroa F,et al.Identification and Characterization of Amelogenin Genes in Monotremes,Reptiles,and Amphibian,Proc.Natl Acad.Sci,1998,95:1356-1361
    [105]Dhamija S,Liu Y,Yamada Y,et al.Cloning and characterization of the murine ameloblastin promoter.Journal of Biological Chemistry,1999,274(29):20738-20743
    [106]Kawamoto T,Shimizu M.Changes of the Ratio of Calcium to Phosphate Transported into the Mineralizing Enamel,Dentin and Bone.Jpn,J,Oral Biol,1994,36:365-382
    [107]Tang R,Wang L,Nancollas G H.Size-effects in the dissolution of hydroxyapatite:an understanding of biological demineralization.J Mater Chem,2004,14:2141-2346
    [108]Pamela J.Hagrman,Robert C.Finn,Jon Zubieta.Molecular manipulation of solid state structure:influences of organic components on vanadium oxide architectures.Solid State Sciences,2001,3:745-774
    [109]Dalas E,Kallitsis J K,Koutsoukos P G.Crystallization of hydroxyapatite on polymers.Langmuir,1991,7:1822-1826
    [110]Bunker B C,Rieke P C,Tarasevich B J,Campbell A A,et al.Ceramic thin-film formation on functionalized interface through biomimetic processing.Science,1994,264:48-55
    [111]Derek E G,Amanda J K.Fossilization of soft tissue in the laboratory.Science,1993,259:1439-1442
    [112]Yau S T,Vekilov P G.Diect observation of mucleus structure and nucleation pathways.J Am Chem Soc,2001,123:1080-1089
    [113]Malcolm L.Snead,DanHong Zhu,Yaping Lei,et al.Protein self-assembly creates a nanoscale device for biomineralization.Materials Science and Engineering C,2006,26:1296-1300
    [114]Arias J L,Fernandez M S.Biomimetic processes through the study of mineralized shells. Materials Characterization, 2003, 50: 189-195
    [115] Dabis K J, Dove P M, De Yoreo J J. Resolving the controversial role of Mg~(2+) in calcite biomineral formation. Science, 2000, 290: 1134-1137
    [116] Astilleros J M, Pina C M, Fernndez-daz L, Putnis A. Molecular-scale surface processes during the growth of calcite in the presence of manganese. Geochim Cosmochim Acta, 2002, 66: 3177-3189
    [117] Tang R, Orme C A, Nancollas G H. Dissolution of crystallites: surface energetic control and size effects. J Phys Chem, 2004, 5: 688-696
    [118] Lee I, Han S W, Lee S J, et al. Formation of patterned continuous calcium caibonate films on self-assembled monolayers via nanoparticle-directed crystallization. Advanced Materials, 2002, 14(22): 1640-1643
    [119] Tang R, Nancollas G H. Interfacial free eneraies and crystallization in aqueous media. J Coll Interface Sci, 1996, 182:365-373
    [120] Zhu P X, Masuda Y, Koumoto K. The effect of surface charge on hydroxyapatite nucleation. Biomaterials, 2004, 25: 3915-3921
    
    [121] Creager S E, Clarke J. Contact-angle Titrations of Mixed co-mercaptoalkanoic acid/alkanethiol Monolayers on Gold. Reactive vs Nonreactive Spreading, and Chain Length Effects on Surface pKa values. Langmuir, 1994, 10: 3675-3683
    
    [122] 顾惕人,马季铭等.表面化学.科学出版社,北京,1994:368-373
    
    [123] Kawai T, Ohtsuki C, Kamitakahara M, et al. Coating of an apatite layer on polyamide films containing sulfonic groups by a biomimetic process. Biomaterials, 2004, 25(19): 4529-4534
    
    [124] Rong H T, Frey S, Yang Y J, et al. On the importance of the headgroup substrate bond in thiol monolayers: a study of biphenyl-based thiols on gold and silver. Langmuir, 2001, 17(5):1582-1593
    
    [125] Mann S. Molecular recognition in biomineralization. Mature, 1988, 332:119-124
    
    [126] Huang S P, Zhou K C, Liu Y, et al. Controlled crystallization of hydroxyapatite under hexadecylamine self-assembled monolayer. Transactions of Nonferrous Metals Society of China, 2003, 13(3): 595-599
    [127]Aksay I A,Trau M,Mann S,et al.Biomimetic pathway for assembling inorganic thin films.Sinence,1996,273(16):892-896
    [128]Kokuboo T,Ito S,Yamamuro T,et al.Formation of a high-strength bioactive glass-ceramic in the system MgO-CaO-SiO_2-P_2O_5.Journal of Materials Science,1986,21:536
    [129]Hats K,Kokubo T,Yamamuro T.Growth bone like apatite layer on a substrate by a biomimetic process.J Am Ceram Soc,1995,78:1049-1053
    [130]郑昌琼,冉均国.新型无机材料.北京:科学出版社,2003:578-585
    [131]赵玮,于世风等.碳酸基团(CO_3~(2-))在牙磷灰石中的定性定量分析.中山医科大学学报,2002,23(5S):7-8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700