用户名: 密码: 验证码:
高氡环境下钚气溶胶连续监测技术研究及设备研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
放射性气溶胶主要通过吸入的途径对人体产生内照射损伤,一种常用的监测手段是使用放射性气溶胶连续监测仪(简称连续监测仪)在现场进行连续监测。目前有多款商品化连续监测仪可供选择。但是这些仪器仅适用于天然氡浓度环境;在氡浓度很高的环境中,氡子体对测量的干扰很严重,这些商品化仪器对钚气溶胶的监测判断限(简称判断限)很高,远超过其浓度限值。本文系统分析了影响连续监测仪判断限的各种因素,在此基础上,提出了高灵敏度连续监测仪的设计方案,解决了相关关键技术,最终研制成功HS-CAM连续监测仪,并监测了一个山体坑道内的钚气溶胶浓度。主要内容包括:
     (1)系统分析了影响连续监测仪判断限的各种因素。包括五个方面:氡子体能谱拖尾程度、氡子体分离技术、运行模式、监测时间设置、能谱处理技术。
     (2)通过理论分析和实验解决了仪器研制所涉及的三个关键技术问题,包括:滤纸性能测试及选型、真空室设计及测试、氡子体粒度分离采样器研制。
     (3)在解决关键技术问题的基础上,完成了仪器总体设计、机械设计加工、电路测控系统研制、控制软件开发四项工作。研制了实用化的连续监测仪。
     (4)在不同的氡浓度环境下,设置不同的监测模式,对仪器的本底能谱进行测试。以此为基础,建立了可变拖尾比例系数法和能谱拟合剥离法相结合的氡子体扣除算法,编写了完整的能谱处理程序。
     (5)使用该能谱处理程序对获取的本底能谱进行处理,得到了该仪器在不同氡浓度和监测模式下的判断限指标。并根据多次重复测量的统计结果检验了算法的正确性。最后,使用该仪器监测了一个山体坑道内的钚气溶胶浓度,达到了预期效果。
     HS-CAM连续监测仪在借鉴国内外已有研究成果的基础上,采用了一些新技术,其判断限指标达到了目前为止该类仪器的世界最优水平。在天然氡浓度环境下,监测周期1hour,判断限约为0.003Bq/m3,相当于一般商用仪器的1/30-1/150。在氡浓度10000~20000Bq/m3的环境下,设置相同的监测周期,判断限也可以达到0.03Bq/m3。
     目前,该仪器的相关技术已经成熟,可以推广应用到地下仓库、坑道等氡浓度很高的环境,用于监测各类人工α气溶胶。
Radioactive aerosols can cause internal exposure to human by inhalation, acommonly used monitoring technology is in-situ monitored by continuous radioactiveaerosol monitor(CAM). At present, there are many commercial CAMs can be used, butthose equipment can only be used in normal radon environment. in high radonenvironment, interference due to radon progeny is serious, decision limit of plutoniumaerosols(LCfor short) is too high, and exceeds the concentration limit. This articlesystemically analyze the factors influence LCfor CAM. Based on the analysis, designscheme of high sensitive CAM was made, key technologies were solved, finally,HS-CAM was developed, and plutonium aerosol concentration in a cave was monitoredby the the equipment.
     (1) Factors influence LC, and degrees of the influence were analyzed. There arefive factors: spectrum tailing of radon progeny, separation of radon progeny, runningmode, monitoring time set, spectrum analysis technology.
     (2) Three key technologies were solved by theoretical analysis and experiments,including: filter testing and selection, vacuum chamber design and testing, sizediscrimination sampler for radon progeny development.
     (3) Based on the key technologies that have been solved, four parts of work weredone, including: overall design, mechanical design and machining, electric circuit andcontrol software development. Finally, practical CAM was manufactured.
     (4) Background spectra of the HS-CAM were tested in different radonconcentration environments and in different running modes. Based on the acquiredspectra, methods used to deduct interference of radon progeny were established, it is thecombination of variable tailing parameters method and spectra fitting method, andcomplete program was written
     (5) The background spectra were processed by the spectra analysis program, andtheir accuracy was tested by the statistical results. LClevels in different radonconcentrations and running modes were acquired. Finally, the HS-CAM was used tomonitor plutonium aerosol in a cave, and achieve the anticipated results.
     HS-CAM absorbed research results that have been applied to commercial CAMs,and developed several new technologies, LCof the equipment is the best all over the world. In normal radon environment level, and the monitoring cycle is one hour, LCisabout0.003Bq/m3, about1/30~1/150of the LCof commercial CAMs. If radonconcentration is10000~20000Bq/m3, LCcan also reach0.03Bq/m3in the samemonitoring cycle.
     At present, technologies in the equipment have mature, it can be used in high radonenvironment to monitor artificial α aerosols. Such as underground storage, mountaincave, and so on.
引文
[1]罗文宗,张文青.钚的分析化学.北京:原子能出版社,1991:1-10.
    [2] William C H. Aerosol Technology: Properties, Behavior and Measurement. Second Edition.United States of America, New York: John Wiley and Sons. Inc,1999:53-55.
    [3]卢正永.气溶胶科学引论.北京:原子能科学出版社.2002:12-23.
    [4] ICRP. ICRP Publication30.方军等译.工作人员摄入放射性核素的限值(1979-1982),北京:原子能出版社.1978.
    [5] ICRP. Human Respiratory Tract Model for Radiological Protection. ICRP Publication66,Pergamon Press, Oxford,1994.
    [6] Dorrian M D, Bailey M R. Particle Size Distributions of Radioactive Aerosols Measured inWorkplaces. Radiat Prot Dosim,1995,60(2):119-133
    [7] ICRP. Dose Coefficients for Intakes of Radionuclides by Workers. ICRP Publication68,Pergamon Press, Oxford,1994.
    [8] GB18871-2002,电离辐射防护与辐射源安全基本安全标准。2002.
    [9] Hoover M D, Newton G J. Performance Testing of Continuous Air Monitors forAlpha-Emitting Radionuclides. Radiat Prot Dosim,1998,79:499-504.
    [10]何希. XX实验钚气溶胶取样实验室α谱仪分析技术总结.内部资料,2004.
    [11]韩小元. XX实验钚气溶胶取样实验室质谱分析技术总结.内部资料,2004.
    [12]王引东. XX实验钚气溶胶连续监测技术总结.内部资料,2007.
    [13]于敏等.中国军用放射性核素衰变纲图.北京:原子能出版社.2001.
    [14] Moving filter monitor BAI9128. Technical report, Berthold.https://www.berthold.com/en/system/asset/bai_9128_04-2008_38851pr2_rev._00.pdf
    [15] Alpha-Beta Particulates Monitor LB150D-R. Technical report, Berthold.https://www.berthold.com/en/system/asset/brochure_lb150_d-r_lb9000_ldm_rev02_dec_2010_e_0.pdf
    [16] Alpha-7A Alpha Particulate Continuous Air Monitor. Technical report, Thermohttps://static.thermoscientific.com/images/D10058~.pdf
    [17] FHT59Si Alpha/Beta Aerosol Monitor.user Technical report, Thermohttp://www.thermoscientific.com/ecomm/servlet/productsdetail_11152_L11354_81899_11961500_-1
    [18] iCAM. Alpha/Beta Air Monitor user guild. Technical report, CANBERRAhttp://www.canberra.com/products/env_rad_monitoring/pdf/iCAM-SS-C37970.pdf
    [19] Alpha Beta EnvironmentalContinuous Air Monitor (ECAM) user guild. Technical report,CANBERRAhttp://www.canberra.com/products/env_rad_monitoring/pdf/ECAM-SS-C36529.pdf
    [20] Alpha Sentry CAM System user guide. Technical report, CANBERRAhttp://www.canberra.com/products/env_rad_monitoring/pdf/Alpha-Sentry-CAM-SS-C26929.pdf
    [21] Justus A L. Derivation of Continuous Air Monitor Equations for DAC and DAC-H. HealthPhys,2010,98(5):735-740.
    [22] Robert B H, Marsha L B. Alpha CAM Alarm Set Points in a Salt Dust Environment. HealthPhys,2002,82(6):887-897.
    [23]李爱武,毛永,傅翠明,等. QLM-1型放射性气溶胶连续监测仪研制.核电子学与探测技术,1998,18(3):216-220.
    [24]黄宪果,涂俊,穆龙,等.钚气溶胶快速测量技术研究.全国放射性流出物和环境监测与评价研讨会
    [25]郑仁圻,汪佳明,胡二邦,等.测量长寿命α放射性气溶胶浓度的双道能量补偿装置的研制.中国辐射防护研究院,内部文献,1976.
    [26]胡玉新,王新赤,朱文凯,等.高氡背景下人工核素气溶胶快速监测装置.核电子学与探测技术,2007,27(2):271-275.
    [27]中国辐射防护研究院. CAM-II气溶胶连续监测仪操作手册,2004.
    [28] McFarland A R, Bethel E L, Ortiz C A, et al. A CAM Sampler for Collecting and AssessingAlpha-emitting Aerosol Particles. Health Phys,1991,61(1):97-103.
    [29] McFarland A R, Ortiz C A, Rodgers J C. Performance Evaluation of Continuous Air Monitor(CAM) Sampling Heads. Health Phys,1990,58(3):275-281.
    [30] Yule T J. An On-Line Monitor for Alpha-Emitting Aerosols. IEEE Transactions on NuclearScience,1978,25(1):762-766.
    [31] Moore M E, McFarland A R, Rodgers J C. Factors That Affect Alpha Particle Detection inContinuous Air Monitor Applications Health Phys,1993,65(1):69-81.
    [32] Flier introduction. Technique report Canberra corporation
    [33] Robert B H, Marsha L B. Alpha CAM Alarm Set Points in a Salt Dust Environment. HealthPhys,2002,82(6):887-897.
    [34] Huang S, Schery S D, Alcantara R E, et al. Influence of Dust Loading on the Alpha-ParticleEnergy Resolution of Continuous Air Monitors for Thin Deposits of Radioactive Aerosols.Health Phys,2002,83(6):884-891.
    [35] Stevens D C, Toureau A. The effect of dust loading on the shape of alpha pulse height spectraof air sample filters, Atomic Energy Research Establishment Report. Berkshire, UK: AERE;Report No. AERE-R4249;1963.
    [36] Seiler F A, Newton G J, Guilmette R A, et al. Continuous Monitoring for Airborne AlphaEmitters in a Dusty Environment. Health Phys,1988,54(5):503-515.
    [37] Pollanen R. and Siiskonen T. Minimum Detectable Activity Concentration in Dirtect AlphaSpectrometry From Outdoor Air Samples: Continuous Monitoring Versus Separate Samplingand Counting. Health Phys,2006,90(2):167-175.
    [38]卢正永等,气溶胶科学引论..北京:原子能科学出版社.2002:45-62.
    [39]苏旭军等, CAM-I气溶胶连续监测仪研制报告,1999年,内部资料
    [40] Robert B H, Marsha L B. Alpha CAM Alarm Set Points in a Salt Dust Environment. HealthPhys,2002,82(6):887-897.
    [41] Minami K., Sato N. A Plutonium Air Monitor with A Background Compensation System.Health Phys,1979,37(9):383-389.
    [42] Robert H. False CAM Alarms From Radon Fluctuations. Health Phys,2003,85(Suppl2):S81-S84.
    [43]卢正永,李爱武,张志龙,等.放射性气溶胶监测仪探测限检测方法研究.原子能科学技术,2001,35(6):518-524.
    [44] Konzen K, Brey R. A method of discriminating transuranic radionuclides from radonprogeny using low-resolution alpha spectroscopy and curve-fitting techniques.Health Phys;2012,102(Suppl2):S53-59.
    [45]陈建军.平洞坑道氡析出机制及通风降氡研究.内部资料,1992.
    [46]史淼.北山场区平洞氡的析出及降氡技术研究,内部资料,2001.
    [47]复旦大学,清华大学,北京大学合编.原子核物理实验方法.北京:原子能科学出版社.1997:30-42.
    [48] Ziegler J F. The Stopping of Energetic Light Ions in Elemental Matter. Applied PhysicsReviews/J. Applied Physics,1999,85:1249-1272.
    [49] SRIM-2011. The Stopping and Range of Ions in Matter.2012[2012-10-26].http://www.srim.org/SRIM/SRIMPICS/STOPPLOTS.htm
    [50] William C H. Aerosol Technology: Properties, Behavior and Measurement. Second Edition.United States of America, New York: John Wiley and Sons. Inc,1999:182-186.
    [51] William C H. Aerosol Technology: Properties, Behavior and Measurement. Second Edition.United States of America, New York: John Wiley and Sons. Inc,1999:10-12.
    [52] Porstendorfer C. and Zock A. R. Aerosol size distribution of the radon progeny in outdoor air.Journal of Environmental Radioactivity,51:37-48;2000.
    [53] Shimo M. and Saito H. Size distribution of radon progeny aerosols in indoor and outdoor air.Journal of Environmental Radioactivity,51:49-57;2000.
    [54] Huet C. et al. Size distribution, equilibrium ratio and unattached fraction of radon decayproducts under typical indoor domestic conditions. The Science of the Total Environment272:97-103;2001.
    [55]马江,龚新宇.坑道内不同通风状态下氡子体的平衡因子及活度中位直径研究.内部资料,2007.
    [56] Raabe O G. Instruments and Methods for Characterizing Radioactive Aerosols.
    [57] William C H. Aerosol Technology: Properties, Behavior and Measurement. Second Edition.United States of America, New York: John Wiley and Sons. Inc,1999:128-134
    [58] Elder J C, Gonzales M, Ettinger H J. Plutonium Aerosol Size Characteristics. Health Phys,1973,27(7):45-53.
    [59] Cheng Y S, Guilmette R A, Zhou Y, et al. Characterization of Plutonium Aerosol CollectedDuring An Accident. Health Phys,2004,87(6):596-605
    [60] Prasad K V, Balbudhe A Y, Srivastava G K, et al. Aerosol Size Distribution in A UraniumProcessing and Fuel Fabrication Facility. Radiat Prot Dosim,2010
    [61]卢正永.核工业系统部分生产场所的放射性气溶胶粒度分布.辐射防护,1991,11(3):193-200.
    [62]任天山,程建平,等.环境与辐射.北京:原子能出版社,2007:309-313.
    [63] CANBERA公司产品手册,2007,内部资料.
    [64] William C H. Aerosol Technology: Properties, Behavior and Measurement. Second Edition.United States of America, New York: John Wiley and Sons. Inc,1999:111-140.
    [65]李国申.钚气溶胶连续监测仪粒度分离采样器研究.西北核技术研究所,硕士论文,2007.
    [66] Model3450Vibrating Orifice Aerosol Generator. Technical report, TSIhttp://www.tsi.com/uploadedFiles/_Site_Root/Products/Literature/Spec_Sheets/3450VibOr1930086RevA.pdf
    [67] ELPI Classic DEKATI. http://dekati.com/cms/elpi_classic
    [68] DP4user manual. Amptek,2008.
    [69]庞巨丰. γ能谱数据分析.陕西西安:陕西科学技术出版社,1987:541-659.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700