用户名: 密码: 验证码:
新型透明阻燃耐热聚甲基丙烯酸甲酯材料的设计、制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚甲基丙烯酸甲酯(PMMA),俗称“有机玻璃”,是一种典型的透明聚合物材料。它应用广泛却极易燃烧且耐热性差。本论文在综述PMMA阻燃方法的基础上,发现目前最为常用的物理添加阻燃剂方法在阻燃PMMA时往往会牺牲材料本身的热性能和透明性;而另一种常见方法——化学引入普通反应型阻燃剂法,虽能协调阻燃性与透明性间的矛盾,却易造成材料热性能的降低。因此,制备兼具阻燃、耐热、透明等性能的PMMA既是材料本身应用的客观要求,同时也是目前材料设计制备环节所面临的一大挑战。
     硅烷交联技术能有效改善材料热性能,同时对材料透明性影响较小;纳米复合技术能实现高效阻燃,且对材料其它性能影响小。基于以上考虑,本论文—方面从分子设计角度出发制备含磷、氮、硅等阻燃元素的反应型阻燃剂,通过硅烷交联技术将其引入PMMA中,并进一步研究该类阻燃剂对PMMA的阻燃及热性能的影响机理;另一方面,从纳米复合材料设计入手,将具有催化作用的层状磷酸铝和耐高温的二维石墨烯材料用于PMMA基纳米复合材料的制备,并研究这两类二维纳米粒子对PMMA热降解机理及燃烧性能的影响,探讨其中存在的阻燃耐热机理。为了建立更为高效的阻燃体系,我们还将硅烷交联和纳米复合技术相结合,选取效果最佳的反应型阻燃剂和纳米粒子,共同引入PMMA中,制备出新型含磷氮硅PMMA基纳米复合材料,且细致研究纳米粒子和反应型阻燃剂在阻燃PMMA时存在的协同效应。主要研究工作如下:
     1.以二氯化磷酸苯酉旨(PDCP)和亚磷酸二甲酯(DMPP)为磷源,二乙胺、3-氨基丙基三乙氧基甲硅烷(APTES)为硅、氮源,丙烯酸羟乙酯(HEA)为“双键源”,通过两步取代反应或Kabachnik-Fields反应成功合成了三种含磷反应型阻燃剂——(丙烯酸羟乙酯基氨丙基)三乙氧硅基-苯基磷酸酯(SNP)、(四甲基(3)-三乙氧硅基氨丙基)二磷酸酯(TMSAP)和丙烯酸羟乙基-苯氧基-二乙基磷酰胺(APEEA);并制备出各自低聚物。结果显示三种低聚物不仅起始热降解温度(T01)和PMMA相近,且燃烧热释放速率低、热释放容量低、高温成炭效果好。以上表明三种阻燃剂均适用于PMMA阻燃。其中TMSAP低聚物成炭效果最好,因此具备最低燃烧性能。
     2.以APEEA和甲基丙烯酸甲酯(MMA)为原料,通过自由基本体共聚法成功制备线型含磷、氮PMMA基共聚物。热重分析仪、微型燃烧量热仪及极限氧指数结果显示共聚物具有较好的热稳定性和阻燃性,这归功于共聚物中含磷部分在材料燃烧过程中促进PMMA基体生成炭层。炭层能隔热隔氧进而延缓聚合物基体发生进一步燃烧或降解。但是,APEEA的引入也使得共聚物硬度和玻璃化转变温度发生了明显下降,这和线型共聚物分子链柔性及自由体积的增加不无关系。
     3.通过硅烷交联技术(溶胶凝胶法)分别将SNP和TMSAP引入PMMA中,得到两类新型含磷、氮、硅PMMA基有机无机杂化材料。两类杂化材料均表现为显著改善的热性能、硬度及较高透明度;这是由于杂化材料内部经硅烷的水解缩合过程形成了交联网络结构和氧化硅纳米粒子;纳米粒子结合交联作用能增强聚合物分子链间相互作用从而提高材料热与力学性能;此外,纳米粒子的良好分散性使得材料透明度受影响较小。两类杂化材料均表现为显著改善的阻燃性能,这是由杂化材料内部含磷单元的“催化成炭效应”及“磷-硅阻燃协同效应”引起的。对比APEEA与SNP,TMSAP在PMMA阻燃方面具有更好的阻燃效率,因为TMSAP具备更高的磷含量以及催化成炭效率。
     4.基于纳米复合技术的优点,通过溶剂热法一步合成有机改性层状磷酸铝(DDA-LAP),并利用原位聚合法制备PMMA/DDA-LAP纳米复合材料;DDA-LAP在PMMA基体中成功实现插层且分散良好。以丙烯酸羟乙酯、氯化亚砜、氧化石墨为原料成功实现氧化石墨的一步还原改性,制备出表面接枝双键的功能化石墨烯(FGN);通过乳液技术对FGN进行表面包覆处理,制备PMMA/FGN复合材料;包覆处理有效抑制了FGN片层在PMMA中团聚堆叠,改善其分散性。结果显示少量层状磷酸铝(≤5.0wt%)和FGN (≤1.0wt%)便能显著提高了PMMA的热性能及力学性能;力学性能的增强主要来源于无机片层自身优异力学性能和无机片层与基体间强的相互作用(如PMMA/DDA-LAP中以氢键、范德华力为主,PMMA/FGN中以共价键为主);热性能的提高除了相互作用因素外还受益于无机片层的“物理阻隔效应”。阻燃性能方面,DDA-LAP效果明显优于FGN,这是由于LAP具备“片层阻隔”及“催化成炭”双重效应,而石墨烯不仅没有催化成炭效应且自身高热导率不利于材料阻燃。此外,DDA-LAP对PMMA透明度影响较小,这是由于DDA-LAP本身颜色浅且在PMMA中分散较好的缘故。
     5.通过溶胶凝胶法成功将TMSAP和DDA-LAP一起引入PMMA基体中,制备新型含磷、氮、硅PMMA基有机无机杂化纳米复合材料。复合材料在保持较高透明性的同时,硬度、玻璃化转变温度、热稳定性等都得了显著改善,这是由于材料内部不仅具备均匀分散的层状磷酸铝片层,且形成了稳固的交联网络,二者相互结合导致上述性能的改善。DDA-LAP与TMSAP混合物对比等量TMSAP阻燃效果更明显,主要表现在极限氧指数的提升和热释放速率的进一步下降;由此说明二者在提高PMMA材料的阻燃性能方面存在着协同效应;机理分析表明磷酸铝的片层阻隔效应、催化基体生成石墨碳作用及TMSAP的催化成炭作用对于材料阻燃性能的提高均有帮助。此外,等量LAP比TMSAP催化成炭作用高。
As a typical transparent amorphous polymer, polymethyl methacrylate (PMMA) has been widely used in building construction, plastic optical fibers and optical lenses because of its excellent characteristics including high strength, good flexibility, weather resistance, and dimension stability. However, the poor thermal stability and flammability limits its further application. Consequently, improving the thermal properties and flame retardancy of PMMA has been attracting increasing attention. To avoid environmental pollution, there is a trend toward using halogen-free flame retardants (FRs) in PMMA resins. Phosphorus-, nitrogen-, or silicon-containing compounds as promising "green" flame retardants are mostly used to replace halogenated compounds in polymers.
     In this dissertation, different reactive FRs containing phosphorus, nitrogen and/or silicon (APEEA, SNP and TMSAP) were synthesized by the way of molecular design and well characterized. The non-halogenated FRs were added into PMMA matrix by chemical incorporation including copolymerization or/and silane cross-linking method to improve the flame retardancy, thermal property and mechanical property. By comparison, TMSAP exhibits the best flame-retardant efficiency. Considering the advantage of nanocomposite technique, two layered nanoaddtives comprising layed aluminophosphate (LAP) and graphene was firstly organic-modified and then dispersed into PMMA. Compared to heat-conductive graphene, the addition of small amounts of non-conductive LAP nanolayers better improve the flame retardancy and thermal stability. To achieve higher flame-retardant efficiency, chemical incorporation method and nanocomposite technique are combined. The research work of this dissertation is composed of the following parts:
     1. Three phosphorus-, nitrogen-and/or silicon-containing reactive flame retardants, noted as APEEA, SNP and TMSAP, were synthesized and well characterized using FTIR,'H NMR,31P NMR and29Si NMR. The APEEA and SNP were synthesized by the esterification of phenyl dichlorophosphate (PDCP) with hydroxyethyl acrylate (HEA), and followed by the reaction with diethylamine (APEEA) or3-aminopropyltriethoxysilane (APTES). The TMSAP was synthesized by a Kabachnik-Fields reaction. The oligomers of these three compounds were prepared by homopolymerization and/or silane cross-linking. The thermal stability and flammability of the oligomers were evaluated by TGA and MCC. The TGA results showed that the char residues of Olig-APEEA, Olig-SNP and Olig-TMSAP were18.6%,34.6%and63.5%, respectively. The HRC of the three oligomers are304J/K-g,93J/K-g and75J/K-g respectively. Both the TGA and MCC results showed the three monomers had high char formation and low flammability.
     2. The phosphorus-and nitrogen-containing flame retardant, APEEA, was copolymerized with MMA monomers to prepare a novel linear PMMA-based copolymer. The morphology and structure of the copolymers were characterized using FTIR. The copolymers exhibit relatively high transparency and significant improvements to the thermal stability and fire retardancy when compared to PMMA. However, the mechanical properties and glass transition temperature (Tg) are reduced remarkably. From the mechanism analysis, the char formation of copolymers caused by APEEA during degradation plays a key role in the flame retardancy enhancement. The increased molecular flexibility and copolymer free volume is responsible for the deterioration of mechanical properties and Tg.
     3. Two novel reactive flame retardants (SNP and TMSAP) containing phosphorus, nitrogen, and silicon were incorporated into PMMA matrix through copolymerization and the sol-gel method to produce PMMA based organic-inorganic hybrids. The29Si MAS NMR results for the hybrid materials suggested the formation of cross-linked networks in the hybrids. A morphological study showed that the inorganic particles were well distributed in the PMMA matrix. The hybrids retained a high transparency and exhibited a significant improvement in glass transition temperature, thermal stability, hardness, and flame retardancy upon the incorporation of flame retardants into the PMMA matrix. The network structure, homogeneous distribution, and char formation during degradation were proposed as three key reasons for the improved properties.
     4. PMMA/DDA-LAP intercalated nanocomposites are prepared by in situ bulk polymerization of MMA. The intercalated structure is characterized by XRD and TME. With the intercalation of DDA-LAP in PMMA matrix, the Tg obtained from DSC are increased. From UV-vis, TGA and MCC results, the nanocomposites obtained keep relatively high transparency in optical property and have a significant improvement in mechanical properties, thermal stability and flame retardancy. The mechanism for the properties enhancement is investigated. The strong interfacial interaction between the aluminophosphate layers and the PMMA chains, the homogeneously distribution and the graphitized char formation during heating are three key roles for the properties improvement.
     Graphene is a kind of very promising filler for polymer composites, but its irreversible aggregation when introduced into polymers is a challenge for property enhancements and limits its industrial application. To address this, we report one-step covalent functionalization and simultaneous reduction of graphite oxide (GO) with hydroxyethyl acrylate (HEA), resulting in a functionalized graphene with double bonds. The functionalized graphene obtained, noted as FGN, is successfully incorporated into polymethyl meth-acrylate (PMMA) matrix by latex technology and melt blending. Latex technology is used for the pretreatment of FGN through emulsion copolymerization between methyl methacrylate (MMA) monomers and FGN double bonds. After pretreatment of FGN, covalent attachment of PMMA particles to the edges of FGN sheets can effectively prevent their agglomeration and markedly improve their dispersion in the polymer matrix. Since these PMMA particles act as good compatibilizers in the interface between FGN and PMMA matrix during the melt mixing process, the PMMA/FGN composites obtained exhibit exfoliated morphology and very good dispersion, as evinced by the results from X-ray diffraction (XRD) and transmission electron microscopy (TEM). When even a small amount of FGN (<1.0wt%) is incorporated, the thermal properties and mechanical properties of PMMA/FGN composites are enhanced significantly. The Tg increases from103.8to110.5℃, while the tensile strength increases by31.0%(1.0wt%FGN addition). Moreover, the storage modulus of PMMA/FGN composites increases by27%(1.0wt%FGN addition) at room temperature. These enhancements are attributed to the strong chemical interaction between the FGN sheets and PMMA and the good distribution of FGN sheets in the PMMA matrix. However, due to the high heat conductivity of FGN sheets, the flammability of composites is a little decreased, which suggest that the graphene sheets do not exhibits good flame-retardant effect on PMMA resin.
     5. To further improve the flame-retardant efficiency,15%DDA-LAP/TMSAP mixture with different DDA-LAP contents was incorporated into PMMA matrix by sol-gel method to prepare a novel PMMA based composite (poly (MMA-co-MSMA)/TMSAP/DDA-LAP). XRD and TEM results showed that the LAP nanolayers were intercalative or/and exfoliated in the composites, exhibiting high dispersion degree. The29Si MAS NMR results for the composites suggested the formation of cross-linked networks. From hardness test, DSC, TGA, LOI, UV-vis and MCC results, the composites obtained possess enhanced hardness, glass transition temperature, thermal stability and flame retardancy, and keep high transparency. The degradation process of composites was studied by RTIR. Raman and SEM were used to study the components and structure of char residue. Possible mechanisms for the performance enhancements of composites are proposed. Moreover, it may be observed that much more PHRR reduction and LOI increment were observed in the composites with the addition of15%DDA-LAP/TMSAP than those with the addition of15%TMSAP, suggesting that a synergistic effect occurs between DDA-LAP and TMSAP in enhancing flame retardancy of PMMA. The physical barrier effect of LAP nanolayers combining with the graphitized char catalyzed by DDA-LAP and TMSAP during combustion plays key roles in the significantly enhanced flame retardancy.
引文
[1]Lyon RE. Fire-safe aircraft cabin materials. ACS Symposium Series:ACS Publications; 1995. p.618-38.
    [2]Lomakin SM, Zaikov GE. Ecological aspects of polymer flame retardancy:Vsp; 1999.
    [3]Irvine DJ, McCluskey JA, Robinson IM. Fire hazards and some common polymers. Polymer Degradation and Stability.2000;67:383-96.
    [4]Horrocks AR, Price D. Fire retardant materials:woodhead Publishing; 2001.
    [5]Green J. Mechanisms for Flame Retardancy and smoke Suppression-A review. Journal of fire sciences.1996; 14:426-42.
    [6]Camino G, Costa L, Luda di Cortemiglia MP. Overview of fire retardant mechanisms. Polymer Degradation and Stability.1991;33:131-54.
    [7]Grand AF, Wilkie CA. Fire retardancy of polymeric materials:CRC Press; 2000.
    [8]Laoutid F, Bonnaud L, Alexandre M, Lopez-Cuesta JM, Dubois P. New prospects in flame retardant polymer materials:From fundamentals to nanocomposites. Materials Science and Engineering:R:Reports.2009;63:100-25.
    [9]Wenger R, Van Gurp M, Coenen EJ, Roovers WA, Wessels E. Flame-retarded laser-markable polyester composition. US Patent 20,020,134,771; 2002.
    [10]Wang S, Hu Y, Zong R, Tang Y, Chen Z, Fan W. Preparation and characterization of flame retardant ABS/montmorillonite nanocomposite. Applied Clay Science. 2004;25:49-55.
    [11]Weil ED, Levchik SV. Flame retardants in commercial use or development for polyolefins. Journal of fire sciences.2008;26:5-43.
    [12]Law RJ, Herzke D, Harrad S, Morris S, Bersuder P, Allchin CR. Levels and trends of HBCD and BDEs in the European and Asian environments, with some information for other BFRs. Chemosphere.2008;73:223-41.
    [13]Klein J, Dorge S, Trouve G, Venditti D, Durecu S. Behaviour of antimony during thermal treatment of Sb-rich halogenated waste. Journal of Hazardous Materials. 2009;166:585-93.
    [14]Levchik GF, Vorobyova SA, Gorbarenko VV, Levchik SV, Weil ED. Some mechanistic aspects of the fire retardant action of red phosphorus in aliphatic nylons. Journal of fire sciences.2000; 18:172-82.
    [15]Ballistreri A, Montaudo G, Puglisi C, Scamporrino E, Vitalini D, Calgari S. Mechanism of flame retardant action of red phosphorus in polyacrylonitrile. Journal of Polymer Science:Polymer Chemistry Edition.1983;21:679-89.
    [16]Levchik SV, Levchik GF, Balabanovich AI, Camino G, Costa L. Mechanistic study of combustion performance and thermal decomposition behaviour of nylon 6 with added halogen-free fire retardants. Polymer Degradation and Stability. 1996;54:217-22.
    [17]Braun U, Schartel B. Flame Retardant Mechanisms of Red Phosphorus and Magnesium Hydroxide in High Impact Polystyrene. Macromolecular Chemistry and Physics.2004;205:2185-96.
    [18]Zhao C-S, Huang F-L, Xiong W-C, Wang Y-Z. A novel halogen-free flame retardant for glass-fiber-reinforced poly(ethylene terephthalate). Polymer Degradation and Stability.2008;93:1188-93.
    [19]Braun U, Schartel B. Effect of red phosphorus and melamine polyphosphate on the fire behavior of HIPS. Journal of fire sciences.2005;23:5-30.
    [20]Du L, Qu B, Xu Z. Flammability characteristics and synergistic effect of hydrotalcite with microencapsulated red phosphorus in halogen-free flame retardant EVA composite. Polymer Degradation and Stability.2006;91:995-1001.
    [21]Jian R-K, Chen L, Hu Z, Wang Y-Z. Flame-retardant polycarbonate/acrylonitrile-butadiene-styrene based on red phosphorus encapsulated by polysiloxane:Flame retardance, thermal stability, and water resistance. Journal of Applied Polymer Science.2012; 123:2867-74.
    [22]Liu Y, Wang Q. Preparation of microencapsulated red phosphorus through melamine cyanurate self-assembly and its performance in flame retardant polyamide 6. Polymer Engineering & Science.2006;46:1548-53.
    [23]Wu K, Wang Z, Hu Y. Microencapsulated ammonium polyphosphate with urea-melamine-formaldehyde shell:preparation, characterization, and its flame retardance in polypropylene. Polymers for Advanced Technologies.2008; 19:1118-25.
    [24]Ni J, Chen L, Zhao K, Hu Y, Song L. Preparation of gel-silica/ammonium polyphosphate core-shell flame retardant and properties of polyurethane composites. Polymers for Advanced Technologies.2011;22:1824-31.
    [25]Levchik SV, Weil ED. Flame retardancy of thermoplastic polyesters—a review of the recent literature. Polymer International.2005;54:11-35.
    [26]Feng J, Hao J, Du J, Yang R. Flame retardancy and thermal properties of solid bisphenol A bis (diphenyl phosphate) combined with montmorillonite in polycarbonate. Polymer Degradation and Stability.2010;95:2041-8.
    [27]Shih Y-F, Wang Y-T, Jeng R-J, Wei K-M. Expandable graphite systems for phosphorus-containing unsaturated polyesters. I. Enhanced thermal properties and flame retardancy. Polymer Degradation and Stability.2004;86:339-48.
    [28]Ji Y, Kim J, Bae J-Y. Flame-retardant ABS resins from novel phenyl isocyanate blocked novolac phenols and triphenyl phosphate. Journal of Applied Polymer Science.2006;102:721-8.
    [29]He Q, Song L, Hu Y, Zhou S. Synergistic effects of polyhedral oligomeric silsesquioxane (POSS) and oligomeric bisphenyl A bis(diphenyl phosphate) (BDP) on thermal and flame retardant properties of polycarbonate. J Mater Sci. 2009;44:1308-16.
    [30]Pawlowski KH, Schartel B. Flame retardancy mechanisms of triphenyl phosphate, resorcinol bis(diphenyl phosphate) and bisphenol A bis(diphenyl phosphate) in polycarbonate/acrylonitrile-butadiene-styrene blends. Polymer International. 2007;56:1404-14.
    [31]Finocchiaro P, Consiglio GA, Imbrogiano A, Failla S. Synthesis and Characterization of New Organic Phosphonates Monomers as Flame Retardant Additives for Polymers. Phosphorus, Sulfur, and Silicon and the Related Elements. 2007;182:1689-701.
    [32]Finocchiaro P, Consiglio GA, Imbrogiano A, Failla S, Samperi F, Sebastiano B, et al. Synthesis and characterization of novel polyamides from new aromatic phosphonate diamine monomer. European Polymer Journal.2008;44:2639-51.
    [33]Klatt M, Leutner B, Nam M, Fisch H. Flame-retardant polyester molding compositions containing flame retardant nitrogen compounds and diphosphinates. Google Patents; 2003.
    [34]Alongi J. Investigation on flame retardancy of poly(ethylene terephthalate) for plastics and textiles by combination of an organo-modified sepiolite and Zn phosphinate. Fibers Polym.2011;12:166-73.
    [35]Braun U, Bahr H, Sturm H, Schartel B. Flame retardancy mechanisms of metal phosphinates and metal phosphinates in combination with melamine cyanurate in glass-fiber reinforced poly(1,4-butylene terephthalate):the influence of metal cation. Polymers for Advanced Technologies.2008;19:680-92.
    [36]Braun U, Schartel B. Flame Retardancy Mechanisms of Aluminium Phosphinate in Combination with Melamine Cyanurate in Glass-Fibre-Reinforced Poly(1,4-butylene terephthalate). Macromolecular Materials and Engineering. 2008;293:206-17.
    [37]Babushok V, Tsang W. Inhibitor rankings for alkane combustion. Combustion and Flame.2000; 123:488-506.
    [38]Korobeinichev OP, Ilyin SB, Shvartsberg VM, Chernov AA. The destruction chemistry of organophosphorus compounds in flames—Ⅰ:quantitative determination of final phosphorus-containing species in hydrogen-oxygen flames. Combustion and Flame.1999; 118:718-26.
    [39]Korobeinichev OP, Shvartsberg VM, Chernov AA. The destruction chemistry of organophosphorus compounds in flames—Ⅱ:structure of a hydrogen-oxygen flame doped with trimethyl phosphate. Combustion and Flame.1999; 118:727-32.
    [40]Lu S-Y, Hamerton I. Recent developments in the chemistry of halogen-free flame retardant polymers. Progress in Polymer Science.2002;27:1661-712.
    [41]Levchik SV, Weil ED. A review of recent progress in phosphorus-based flame retardants. Journal of fire sciences.2006;24:345-64.
    [42]Betts KS. New thinking on flame retardants. Environmental Health Perspectives. 2008;116:A210.
    [43]Horacek H, Grabner R. Advantages of flame retardants based on nitrogen compounds. Polymer Degradation and Stability.1996;54:205-15.
    [44]Weil ED, Choudhary V. Flame-retarding plastics and elastomers with melamine. Journal of fire sciences.1995; 13:104-26.
    [45]Levchik S, Balabanovich A, Levchik G, Costa L. Effect of melamine and its salts on combustion and thermal decomposition of polyamide 6. Fire and Materials. 1997;21:75-83.
    [46]Levchik GF, Grigoriev YV, Balabanovich AI, Levchik SV, Klatt M. Phosphorus-nitrogen containing fire retardants for poly (butylene terephthalate). Polymer International.2000;49:1095-100.
    [47]Levchik SV, Levchik GF, Balabanovich AI, Weil ED, Klatt M. Phosphorus oxynitride:a thermally stable fire retardant additive for polyamide 6 and poly (butylene terephthalate). Die Angewandte Makromolekulare Chemie. 1999;264:48-55.
    [48]Van Der Spek PA, Bos ML, Roovers WA, Van Gurp M, Menting HN. Halogen-free flame-retardant composition. Google Patents; 2004.
    [49]Jahromi S, Gabrielse W, Braam A. Effect of melamine polyphosphate on thermal degradation of polyamides:a combined X-ray diffraction and solid-state NMR study. Polymer.2003;44:25-37.
    [50]Jayakody C, Nelson GL, Sorathia U, Lewandowski S. A cone calorimetric study of flame retardant elastomeric polyurethanes modified with siloxanes and commercial flame retardant additives. Journal of fire sciences.1998;16:351-82.
    [51]Zaikov GE, Lomakin SM. Polymer flame retardancy:a new approach. Journal of Applied Polymer Science.1998;68:715-25.
    [52]Lomakin S, Zaikov G, Artsis M. New types of ecologically safe flame retardant systems for polymethylmethacrylate. International Journal of Polymeric Materials. 1996;32:213-20.
    [53]Lomakin S, Zaikov G, Artsis M. Polypropylene flame retardant system based on Si-SnC12. International Journal of Polymeric Materials.1996;32:203-11.
    [54]Iji M, Serizawa S. New flame-retarding polycarbonate resin with silicone derivative for electronics products:Environmentally friendly products and manufacturing technologies. NEC research & development.1998;39:82-7.
    [55]Schwab JJ, Lichtenhan JD. Polyhedral oligomeric silsesquioxane (POSS)-based polymers.1998.
    [56]Hsiue G-H, Wang W-J, Chang F-C. Synthesis, characterization, thermal and flame-retardant properties of silicon-based epoxy resins. Journal of Applied Polymer Science.1999;73:1231-8.
    [57]Hsiue GH, Liu YL, Tsiao J. Phosphorus-containing epoxy resins for flame retardancy Ⅴ:Synergistic effect of phosphorus-silicon on flame retardancy. Journal of Applied Polymer Science.2000;78:1-7.
    [58]Gilman JW, Kashiwagi T, Lichtenhan JD. Nanocomposites:a revolutionary new flame retardant approach. Sampe Journal.1997;33:40-6.
    [59]Alagar M, Thanikai Velan T, Ashok Kumar A, Mohan V. Synthesis and characterization of high performance polymeric hybrid siliconized epoxy composites for aerospace applications. Materials and manufacturing processes.1999;14:67-83.
    [60]Benrashid R, Nelson GL. Flammability Improvement of Polyurethanes by incorporation of a silicone moiety into the structure of block copolymers. ACS symposium series:ACS Publications; 1995. p.217-35.
    [61]Bourbigot S, Bras ML, Dabrowski F, Gilman JW, Kashiwagi T. PA-6 clay nanocomposite hybrid as char forming agent in intumescent formulations. Fire and Materials.2000;24:201-8.
    [62]Bertelli G, Camino G, Marchetti E, Costa L, Casorati E, Locatelli R. Parameters affecting fire retardant effectiveness in intumescent systems. Polymer Degradation and Stability.1989;25:277-92.
    [63]Camino G, Costa L, Martinasso G. Intumescent fire-retardant systems. Polymer Degradation and Stability.1989;23:359-76.
    [64]Bourbigot S, Le Bras M, Duquesne S, Rochery M. Recent advances for intumescent polymers. Macromolecular Materials and Engineering. 2004;289:499-511.
    [65]Kim S, Wilkie CA. Transparent and flame retardant PMMA nanocomposites. Polymers for Advanced Technologies.2008; 19:496-506.
    [66]Laachachi A, Leroy E, Cochez M, Ferriol M, Lopez Cuesta J. Use of oxide nanoparticles and organoclays to improve thermal stability and fire retardancy of poly (methyl methacrylate). Polymer Degradation and Stability.2005;89:344-52.
    [67]Wilkie CA, Leone JT, Mittleman ML. Interaction of poly (methyl methacrylate) and manganese chloride. Journal of Applied Polymer Science.1991;42:1133-41.
    [68]Xiong M, You B, Zhou S, Wu L. Study on acrylic resin/titania organic-inorganic hybrid materials prepared by the sol-gel process. Polymer.2004;45:2967-76.
    [69]Guo YN, Qiu JJ, Tang HQ, Liu CM. High transmittance and environment-friendly flame - resistant optical resins based on poly (methyl methacrylate) and cyclotriphosphazene derivatives. Journal of Applied Polymer Science. 2011;121:727-34.
    [70]Price D, Pyrah K, Hull TR, Milnes GJ, Ebdon JR, Hunt BJ, et al. Flame retardance of poly (methyl methacrylate) modified with phosphorus-containing compounds. Polymer Degradation and Stability.2002;77:227-33.
    [71]Wang G-A, Wang C-C, Chen C-Y. The flame-retardant material-1. Studies on thermal characteristics and flame retardance behavior of phosphorus-containing copolymer of methyl methacrylate with 2-methacryloxyethyl phenyl phosphate. Polymer Degradation and Stability.2006;91:2683-90.
    [72]Tai Q, Chen L, Song L, Nie S, Hu Y, Yuen RK. Preparation and thermal properties of a novel flame retardant copolymer. Polymer Degradation and Stability. 2010;95:830-6.
    [73]Tai Q, Song L, Hu Y, Yuen RK, Feng H, Tao Y. Novel styrene polymers functionalized with phosphorus-nitrogen containing molecules:Synthesis and properties. Materials Chemistry and Physics.2012;134:163-9.
    [74]Giannelis EP. Polymer Layered Silicate Nanocomposites. Advanced Materials. 1996;8:29-35.
    [75]Gilman JW. Flammability and thermal stability studies of polymer layered-silicate (clay) nanocomposites. Applied Clay Science.1999; 15:31-49.
    [76]Zanetti M, Kashiwagi T, Falqui L, Camino G. Cone calorimeter combustion and gasification studies of polymer layered silicate nanocomposites. Chemistry of Materials.2002; 14:881-7.
    [77]Lewin M. Reflections on migration of clay and structural changes in nanocomposites. Polymers for Advanced Technologies.2006;17:758-63.
    [78]Song R, Wang Z, Meng X, Zhang B, Tang T. Influences of catalysis and dispersion of organically modified montmorillonite on flame retardancy of polypropylene nanocomposites. Journal of Applied Polymer Science. 2007;106:3488-94.
    [79]Jang BN, Costache M, Wilkie CA. The relationship between thermal degradation behavior of polymer and the fire retardancy of polymer/clay nanocomposites. Polymer. 2005;46:10678-87.
    [80]Chen W, Feng L, Qu B. In situ synthesis of poly (methyl methacrylate)/MgAl layered double hydroxide nanocomposite with high transparency and enhanced thermal properties. Solid State Communications.2004; 130:259-63.
    [81]Li B, Hu Y, Liu J, Chen Z, Fan W. Preparation of poly (methyl methacrylate)/LDH nanocomposite by exfoliation-adsorption process. Colloid and Polymer Science.2003;281:998-1001.
    [82]Trobajo C, Khainakov SA, Espina A, Garcia JR. On the synthesis of a-zirconium phosphate. Chemistry of Materials.2000; 12:1787-90.
    [83]Noisong P, Danvirutai C, Srithanratana T, Boonchom B. Synthesis, characterization and non-isothermal decomposition kinetics of manganese hypophosphite monohydrate. Solid State Sciences.2008;10:1598-604.
    [84]Sue HJ, Gam KT, Bestaoui N, Spurr N, Clearfield A. Epoxy Nanocomposites Based on the Synthetic a-Zirconium Phosphate Layer Structure. Chemistry of Materials.2003; 16:242-9.
    [85]Wang D-Y, Liu X-Q, Wang J-S, Wang Y-Z, Stec AA, Hull TR. Preparation and characterisation of a novel fire retardant PET/a-zirconium phosphate nanocomposite. Polymer Degradation and Stability.2009;94:544-9.
    [86]Yang D, Hu Y, Song L, Nie S, He S, Cai Y. Catalyzing carbonization function of a-ZrP based intumescent fire retardant polypropylene nanocomposites. Polymer Degradation and Stability.2008;93:2014-8.
    [87]Kashiwagi T, Du F, Winey KI, Groth KM, Shields JR, Bellayer SP, et al. Flammability properties of polymer nanocomposites with single-walled carbon nanotubes:effects of nanotube dispersion and concentration. Polymer. 2005;46:471-81.
    [88]Schartel B, Potschke P, Knoll U, Abdel-Goad M. Fire behaviour of polyamide 6/multiwall carbon nanotube nanocomposites. European Polymer Journal. 2005;41:1061-70.
    [89]Bocchini S, Frache A, Camino G, Claes M. Polyethylene thermal oxidative stabilisation in carbon nanotubes based nanocomposites. European Polymer Journal. 2007;43:3222-35.
    [90]Kashiwagi T, Grulke E, Hilding J, Groth K, Harris R, Butler K, et al. Thermal and flammability properties of polypropylene/carbon nanotube nanocomposites. Polymer.2004;45:4227-39.
    [91]Chiang C-L, Chiu S-L. Synthesis, characterization and properties of halogen-free flame retardant PMMA nanocomposites containing nitrogen/silicon prepared from the Sol-Gel method. Journal of polymer research.2009; 16:637-46.
    [92]Gheysari D, Behjat A. The effect of high-energy electron beam irradiation and content of ATH upon mechanical and thermal properties of EVA copolymer. European Polymer Journal.2002;38:1087-93.
    [93]Lu H, Hu Y, Kong Q, Chen Z, Fan W. Gamma irradiation of high density poly (ethylene)/ethylene - vinyl acetate/clay nanocomposites:possible mechanism of the influence of clay on irradiated nanocomposites. Polymers for Advanced Technologies. 2005; 16:688-92.
    [94]Smedberg A, Hjertberg T, Gustafsson B. Effect of molecular structure and topology on network formation in peroxide crosslinked polyethylene. Polymer. 2003;44:3395-405.
    [95]Azizi H, Barzin J, Morshedian J. Silane crosslinking of polyethylene:The effects of EVA, ATH and Sb2O3 on properties of the production in continuous grafting of LDPE. Express Polymer Letters.2007;1:378-84.
    [96]Wang Z, Hu Y, Gui Z, Zong R. Halogen-free flame retardation and silane crosslinking of polyethylenes. Polymer Testing.2003;22:533-8.
    [97]Shultz A, Roth P, Berge J. Radiation degradation of polymethacrylates. Dose rate and medium effects. Journal of Polymer Science Part A:General Papers. 1963;1:1651-69.
    [98]El-Salmawi K, Abu Zeid M, El-Naggar A, Mamdouh M. Structure-property behavior of gamma - irradiated poly (styrene) and poly (methyl methacrylate) miscible blends. Journal of Applied Polymer Science.1999;72:509-20.
    [99]Liu J, Gao Y, Wang F, Wu M. Preparation and characteristics of nonflammable polyimide materials. Journal of Applied Polymer Science.2000;75:384-9.
    [1]Kim S, Wilkie CA. Transparent and flame retardant PMMA nanocomposites. Polymers for Advanced Technologies.2008; 19:496-506.
    [2]Cui L, Tarte NH, Woo SI. Effects of modified clay on the morphology and properties of PMMA/clay nanocomposites synthesized by in situ polymerization. Macromolecules.2008;41:4268-74.
    [3]Wang L, Xie X, Su S, Feng J, Wilkie CA. A comparison of the fire retardancy of poly (methyl methacrylate) using montmorillonite, layered double hydroxide and kaolinite. Polymer Degradation and Stability.2010;95:572-8.
    [4]Laachachi A, Cochez M, Leroy E, Ferriol M, Lopez-cuesta JM. Fire retardant systems in poly (methyl methacrylate):Interactions between metal oxide nanoparticles and phosphinates. Polymer Degradation and Stability.2007;92:61-9.
    [5]Laachachi A, Cochez M, Leroy E, Gaudon P, Ferriol M, Cuesta JML. Effect of Al2O3 and TiO2 nanoparticles and APP on thermal stability and flame retardance of PMMA Polymers for Advanced Technologies.2006; 17:327-34.
    [6]Chiang C-L, Chiu S-L. Synthesis, characterization and properties of halogen-free flame retardant PMMA nanocomposites containing nitrogen/silicon prepared from the Sol-Gel method. Journal of polymer research.2009;16:637-46.
    [7]Tai Q, Song L, Hu Y, Yuen RK, Feng H, Tao Y. Novel styrene polymers functionalized with phosphorus-nitrogen containing molecules:Synthesis and properties. Materials Chemistry and Physics.2012; 134:163-9.
    [8]Wang G-A, Wang C-C, Chen C-Y. The flame-retardant material-1. Studies on thermal characteristics and flame retardance behavior of phosphorus-containing copolymer of methyl methacrylate with 2-methacryloxyethyl phenyl phosphate. Polymer Degradation and Stability.2006;91:2683-90.
    [9]Shi Y, Kashiwagi T, Walters RN, Gilman JW, Lyon RE, Sogah DY. Ethylene vinyl acetate/layered silicate nanocomposites prepared by a surfactant-free method: Enhanced flame retardant and mechanical properties. Polymer.2009;50:3478-87.
    [10]Price D, Pyrah K, Hull TR, Milnes GJ, Ebdon JR, Hunt BJ, et al. Flame retarding poly(methyl methacrylate) with phosphorus-containing compounds:comparison of an additive with a reactive approach. Polymer Degradation and Stability.2001;74:441-7.
    [11]Price D, Pyrah K, Hull TR, Milnes GJ, Ebdon JR, Hunt BJ, et al. Flame retardance of poly (methyl methacrylate) modified with phosphorus-containing compounds. Polymer Degradation and Stability.2002;77:227-33.
    [12]Tai Q, Chen L, Song L, Nie S, Hu Y, Yuen RK. Preparation and thermal properties of a novel flame retardant copolymer. Polymer Degradation and Stability. 2010;95:830-6.
    [13]Kabachnik M, Medved TY. New synthesis of aminophosphonic acids. Dokl Akad Nauk SSSR1952. p.689-92.
    [14]Fields EK. The Synthesis of Esters of Substituted Amino Phosphonic Acids la. Journal of the American Chemical Society.1952;74:1528-31.
    [15]Tai Q. Synthesis and Investigation of Novel Phosphorus and Nitrogen-containing Compounds and Their Flame Retardancy Polystyrene:City University of Hong Kong; 2012.
    [16]Larkin P. Infrared and Raman spectroscopy; principles and spectral interpretation: Elsevier; 2011.
    [17]Qian X, Pan H, Yi Xing W, Song L, Yuen RK, Hu Y. Thermal properties of novel 9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide-based organic/inorganic hybrid materials prepared by sol-gel and UV-curing processes. Industrial & Engineering Chemistry Research.2011;51:85-94.
    [18]Kim J, Seidler P, Fill C, Wan LS. Investigations of the effect of curing conditions on the structure and stability of amino-functionalized organic films on silicon substrates by Fourier transform infrared spectroscopy, ellipsometry, and fluorescence microscopy. Surface Science.2008;602:3323-30.
    [19]Van Krevelen D. Some basic aspects of flame resistance of polymeric materials. Polymer.1975;16:615-20.
    [20]Horrocks AR, Price D. Fire retardant materials:woodhead Publishing; 2001.
    [21]Kandola BK, Horrocks AR. Complex char formation in flame-retarded fibre-intumescent combinations—Ⅱ. Thermal analytical studies. Polymer Degradation and Stability.1996;54:289-303.
    [22]Lyon RE. Heat release kinetics. Fire and Materials.2000;24:179-86.
    [23]Lyon RE, Walters RN. Pyrolysis combustion flow calorimetry. Journal of Analytical and Applied Pyrolysis.2004;71:27-46.
    [24]Yang CQ, He Q, Lyon RE, Hu Y. Investigation of the flammability of different textile fabrics using micro-scale combustion calorimetry. Polymer Degradation and Stability.2010;95:108-15.
    [25]Lyon RE, Takemori MT, Safronava N, Stoliarov SI, Walters RN. A molecular basis for polymer flammability. Polymer.2009;50:2608-17.
    [26]Lyon RE, Walters R, Stoliarov S. Screening flame retardants for plastics using microscale combustion calorimetry. Polymer Engineering & Science. 2007;47:1501-10.
    [1]Huang Z, Shi W. Synthesis and properties of poly (bisphenol A acryloxyethyl phosphate) as a UV curable flame retardant oligomer. European Polymer Journal. 2006;42:1506-15.
    [2]Wang Q, Shi W. Photopolymerization and thermal behaviors of acrylated benzenephosphonates/epoxy acrylate as flame retardant resins. European Polymer Journal.2006;42:2261-9.
    [3]Chen X, Song L, Hu Y. Flammability and thermal degradation of epoxy acrylate modified with phosphorus-containing compounds. Journal of Applied Polymer Science.2010; 115:3332-8.
    [4]Gaan S, Sun G, Hutches K, Engelhard MH. Effect of nitrogen additives on flame retardant action of tributyl phosphate:phosphorus-nitrogen synergism. Polymer Degradation and Stability.2008;93:99-108.
    [5]Leu TS, Wang CS. Synergistic effect of a phosphorus-nitrogen flame retardant on engineering plastics. Journal of Applied Polymer Science.2004;92:410-7.
    [6]Ma H, Tong L, Xu Z, Fang Z, Jin Y, Lu F. A novel intumescent flame retardant: Synthesis and application in ABS copolymer. Polymer Degradation and Stability. 2007;92:720-6.
    [7]Kandola BK, Horrocks AR. Complex char formation in flame-retarded fibre-intumescent combinations—Ⅱ. Thermal analytical studies. Polymer Degradation and Stability.1996;54:289-303.
    [8]Chen X, Chen J, Qiao X, Wang D, Cai X. Performance of nano-Co3O4/peroxymonosulfate system:Kinetics and mechanism study using Acid Orange 7 as a model compound. Applied Catalysis B:Environmental. 2008;80:116-21.
    [9]Chiang C-L, Chiu S-L. Synthesis, characterization and properties of halogen-free flame retardant PMMA nanocomposites containing nitrogen/silicon prepared from the Sol-Gel method. Journal of polymer research.2009;16:637-46.
    [10]Spirckel M, Regnier N, Mortaigne B, Youssef B, Bunel C. Thermal degradation and fire performance of newphosphonate polyurethanes. Polymer Degradation and Stability.2002;78:211-8.
    [11]Youssef B, Lecamp L, Khatib WE, Bunel C, Mortaigne B. New Phosphonated Methacrylates:Synthesis, Photocuring and Study of their Thermal and Flame- Retardant Properties. Macromolecular Chemistry and Physics.2003;204:1842-50.
    [12]Chen X, Hu Y, Song L, Xing W. Thermal properties and combustion behaviors of UV-cured phosphate triacrylate/star poly (urethane acrylate) oligomer blends. Polymers for Advanced Technologies.2008; 19:393-8.
    [13]Lu S-Y, Hamerton I. Recent developments in the chemistry of halogen-free flame retardant polymers. Progress in Polymer Science.2002;27:1661-712.
    [14]Chen H-B, Zhang Y, Chen L, Shao Z-B, Liu Y, Wang Y-Z. Novel inherently flame-retardant poly (trimethylene terephthalate) copolyester with the phosphorus-containing linking pendent group. Industrial & Engineering Chemistry Research.2010;49:7052-9.
    [15]Tai Q, Chen L, Song L, Nie S, Hu Y, Yuen RK. Preparation and thermal properties of a novel flame retardant copolymer. Polymer Degradation and Stability. 2010;95:830-6.
    [16]Tai Q, Song L, Hu Y, Yuen RK, Feng H, Tao Y. Novel styrene polymers functionalized with phosphorus-nitrogen containing molecules:Synthesis and properties. Materials Chemistry and Physics.2012; 134:163-9.
    [17]Chiang C-L, Ma C-CM. Synthesis, characterization, thermal properties and flame retardance of novel phenolic resin/silica nanocomposites. Polymer Degradation and Stability.2004;83:207-14.
    [18]Lyon RE, Walters R, Stoliarov S. Screening flame retardants for plastics using microscale combustion calorimetry. Polymer Engineering & Science. 2007;47:1501-10.
    [19]Shi Y, Kashiwagi T, Walters RN, Gilman JW, Lyon RE, Sogah DY. Ethylene vinyl acetate/layered silicate nanocomposites prepared by a surfactant-free method: Enhanced flame retardant and mechanical properties. Polymer.2009;50:3478-87.
    [20]Dong Y, Gui Z, Hu Y, Wu Y, Jiang S. The influence of titanate nanotube on the improved thermal properties and the smoke suppression in poly (methyl methacrylate). Journal of Hazardous Materials.2012;209:34-9.
    [21]Taylor HS, Tobolsky AV. Radical chain processes in vinyl and diene reactions. Journal of the American Chemical Society.1945;67:2063-7.
    [22]Jiang DD, Levchik GF, Levchik SV, Dick C, Liggat JJ, Snape C, et al. Thermal degradation of cross-linked polyisoprene and polychloroprene. Polymer Degradation and Stability.2000;68:75-82.
    [1]Wang L, Xie X, Su S, Feng J, Wilkie CA. A comparison of the fire retardancy of poly (methyl methacrylate) using montmorillonite, layered double hydroxide and kaolinite. Polymer Degradation and Stability.2010;95:572-8,
    [2]Laachachi A, Cochez M, Leroy E, Gaudon P, Ferriol M, Cuesta JML. Effect of Al2O3 and TiO2 nanoparticles and APP on thermal stability and flame retardance of PMMA Polymers for Advanced Technologies.2006;17:327-34.
    [3]Laachachi A, Cochez M, Leroy E, Ferriol M, Lopez-cuesta JM. Fire retardant systems in poly (methyl methacrylate):Interactions between metal oxide nanoparticles and phosphinates. Polymer Degradation and Stability.2007;92:61-9.
    [4]Chen CH, Yen WH, Kuan HC, Kuan CF, Chiang CL. Preparation, characterization, and thermal stability of novel PMMA/expandable graphite halogen-free flame retardant composites. Polymer Composites.2010;31:18-24.
    [5]Wang X, Hu Y, Song L, Xing W, Lu H. Thermal degradation behaviors of epoxy resin/POSS hybrids and phosphorus-silicon synergism of flame retardancy. Journal of Polymer Science Part B:Polymer Physics.2010;48:693-705.
    [6]Li Q, Jiang P, Su Z, Wei P, Wang G, Tang X. Synergistic effect of phosphorus, nitrogen, and silicon on flame-retardant properties and char yield in polypropylene. Journal of Applied Polymer Science.2005;96:854-60.
    [7]Gerard C, Fontaine G, Bourbigot S. Synergistic and antagonistic effects in flame retardancy of an intumescent epoxy resin. Polymers for Advanced Technologies. 2011;22:1085-90.
    [8]Wang Z, Leng S, Wang Z, Li G, Yu H. Nanostructured Organic-Inorganic Copolymer Networks Based on Polymethacrylate-Functionalized Octaphenylsilsesquioxane and Methyl Methacrylate:Synthesis and Characterization. Macromolecules.2011;44:566-74.
    [9]Sanchez C, Julian B, Belleville P, Popall M. Applications of hybrid organic-inorganic nanocomposites. Journal of Materials Chemistry.2005;15:3559-92.
    [10]Qian X, Pan H, Yi Xing W, Song L, Yuen RK, Hu Y. Thermal properties of novel 9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide-based organic/inorganic hybrid materials prepared by sol-gel and UV-curing processes. Industrial & Engineering Chemistry Research.2011;51:85-94.
    [11]Schubert U, Huesing N, Lorenz A. Hybrid inorganic-organic materials by sol-gel processing of organofunctional metal alkoxides. Chemistry of Materials. 1995;7:2010-27.
    [12]Chiang C-L, Ma C-CM. Synthesis, characterization, thermal properties and flame retardance of novel phenolic resin/silica nanocomposites. Polymer Degradation and Stability.2004;83:207-14.
    [13]Wu K, Chang T, Wang Y, Chiu Y. Organic-inorganic hybrid materials. I. Characterization and degradation of poly (imide-silica) hybrids. Journal of Polymer Science Part A:Polymer Chemistry.1999;37:2275-84.
    [14]Jang J, Bae J, Kang D. Phase-separation prevention and performance improvement of poly (vinyl acetate)/TEOS hybrid using modified sol - gel process. ournal of Applied Polymer Science.2001;82:2310-8.
    [15]Kim HK, Kang S-J, Choi S-K, Min Y-H, Yoon C-S. Highly efficient organic/inorganic hybrid nonlinear optic materials via sol-gel process:synthesis, optical properties, and photobleaching for channel waveguides. Chemistry of Materials.1999; 11:779-88.
    [16]Mascia L, Tang T. Curing and morphology of epoxy resin-silica hybrids. J Mater Chem.1998;8:2417-21.
    [17]Kim DS, Park HB, Lee YM, Park YH, Rhim JW. Preparation and characterization of PVDF/silica hybrid membranes containing sulfonic acid groups. Journal of Applied Polymer Science.2004;93:209-18.
    [18]Joseph R, Zhang S, Ford WT. Structure and dynamics of a colloidal silica-poly (methyl methacrylate) composite by 13C and 29Si MAS NMR spectroscopy. Macromolecules.1996;29:1305-12.
    [19]Chang T, Wang Y, Hong Y, Chiu Y. Organic-inorganic hybrid materials. V. Dynamics and degradation of poly (methyl methacrylate) silica hybrids. Journal of Polymer Science Part A:Polymer Chemistry.2000;38:1972-80.
    [20]Dong Y, Gui Z, Hu Y, Wu Y, Jiang S. The influence of titanate nanotube on the improved thermal properties and the smoke suppression in poly (methyl methacrylate). Journal of Hazardous Materials.2012;209:34-9.
    [21]Kashiwagi T, Harris Jr RH, Zhang X, Briber R, Cipriano BH, Raghavan SR, et al. Flame retardant mechanism of polyamide 6-clay nanocomposites. Polymer. 2004;45:881-91.
    [22]Lyon RE, Walters R, Stoliarov S. Screening flame retardants for plastics using microscale combustion calorimetry. Polymer Engineering & Science. 2007;47:1501-10.
    [23]Shi Y, Kashiwagi T, Walters RN, Gilman JW, Lyon RE, Sogah DY. Ethylene vinyl acetate/layered silicate nanocomposites prepared by a surfactant-free method: Enhanced flame retardant and mechanical properties. Polymer.2009;50:3478-87.
    [24]Taylor HS, Tobolsky AV. Radical chain processes in vinyl and diene reactions. Journal of the American Chemical Society.1945;67:2063-7.
    [25]Wang G-A, Wang C-C, Chen C-Y. The flame-retardant material-1. Studies on thermal characteristics and flame retardance behavior of phosphorus-containing copolymer of methyl methacrylate with 2-methacryloxyethyl phenyl phosphate. Polymer Degradation and Stability.2006;91:2683-90.
    [26]Kim J, Seidler P, Fill C, Wan LS. Investigations of the effect of curing conditions on the structure and stability of amino-functionalized organic films on silicon substrates by Fourier transform infrared spectroscopy, ellipsometry, and fluorescence microscopy. Surface Science.2008;602:3323-30.
    [27]Larkin P. Infrared and Raman spectroscopy; principles and spectral interpretation: Elsevier;2011.
    [28]Gao F, Tong L, Fang Z. Effect of a novel phosphorous-nitrogen containing intumescent flame retardant on the fire retardancy and the thermal behaviour of poly (butylene terephthalate). Polymer Degradation and Stability.2006;91:1295-9.
    [29]Chiang C-L, Chiu S-L. Synthesis, characterization and properties of halogen-free flame retardant PMMA nanocomposites containing nitrogen/silicon prepared from the Sol-Gel method. Journal of polymer research.2009;16:637-46.
    [1]Chen W, Feng L, Qu B. In situ synthesis of poly (methyl methacrylate)/MgAl layered double hydroxide nanocomposite with high transparency and enhanced thermal properties. Solid State Communications.2004; 130:259-63.
    [2]Ding Y, Gui Z, Zhu J, Hu Y, Wang Z. Exfoliated poly (methyl methacrylate)/ MgFe-layered double hydroxide nanocomposites with small inorganic loading and enhanced properties. Materials Research Bulletin.2008;43:3212-20.
    [3]Dong Y, Gui Z, Hu Y, Wu Y, Jiang S. The influence of titanate nanotube on the improved thermal properties and the smoke suppression in poly (methyl methacrylate). Journal of Hazardous Materials.2012;209:34-9.
    [4]Wilson ST, Lok BM, Messina CA, Cannan TR, Flanigen EM. Aluminophosphate molecular sieves:a new class of microporous crystalline inorganic solids. Journal of the American Chemical Society.1982;104:1146-7.
    [5]Peng L, Yu J, Li J, Li Y, Xu R. Lamellar Mesostructured Aluminophosphates:Intercalation of n -Alkylamines into Layered Aluminophosphate by Ultrasonic Method. Chemistry of Materials.2005;17:2101-7.
    [6]Gilman JW. Flammability and thermal stability studies of polymer layered-silicate (clay) nanocomposites. Applied Clay Science.1999; 15:31-49.
    [7]Nikolaidis AK, Achilias DS, Karayannidis GP. Effect of the type of organic modifier on the polymerization kinetics and the properties of poly (methyl methacrylate)/organomodified montmorillonite nanocomposites. European Polymer Journal.2012;48:240-51.
    [8]Nikolaidis AK, Achilias DS, Karayannidis GP. Synthesis and characterization of PMMA/organomodified montmorillonite nanocomposites prepared by in situ bulk polymerization. Industrial & Engineering Chemistry Research.2010;50:571-9.
    [9]Giannelis EP. Polymer Layered Silicate Nanocomposites. Advanced Materials. 1996;8:29-35.
    [10]Nyambo C, Songtipya P, Manias E, Jimenez-Gasco MM, Wilkie CA. Effect of MgAl-layered double hydroxide exchanged with linear alkyl carboxylates on fire-retardancy of PMMA and PS. Journal of Materials Chemistry.2008;18:4827-38.
    [11]Chen CH, Yen WH, Kuan HC, Kuan CF, Chiang CL. Preparation, characterization, and thermal stability of novel PMMA/expandable graphite halogen -free flame retardant composites. Polymer Composites.2010;31:18-24.
    [12]Alongi J, Frache A. Flame retardancy properties of a-zirconium phosphate based composites. Polymer Degradation and Stability.2010;95:1928-33.
    [13]Vaughan B, Peter J, Marand E, Bleha M. Transport properties of aluminophosphate nanocomposite membranes prepared by in situ polymerization. Journal of Membrane Science.2008;316:153-63.
    [14]Jeong H-K, Krych W, Ramanan H, Nair S, Marand E, Tsapatsis M. Fabrication of Polymer/Selective-Flake Nanocomposite Membranes and Their Use in Gas Separation. Chemistry of Materials.2004;16:3838-45.
    [15]Covarrubias C, Quijada R. Preparation of aluminophosphate/polyethylene nanocomposite membranes and their gas permeation properties. Journal of Membrane Science.2010;358:33-42.
    [16]Sarkar K, Bhaumik A. Hydrothermal transformation of a layered aluminophosphate into a mesoporous structure. Journal of Porous Materials. 2007;15:445-50.
    [17]Lim YT, Park OO. Phase morphology and rheological behavior of polymer/layered silicate nanocomposites. Rheologica Acta.2001;40:220-9.
    [18]Tamor M, Vassell W. Raman "fingerprinting" of amorphous carbon films. Journal of Applied Physics.1994;76:3823-30.
    [19]Novoselov K, Geim AK, Morozov S, Jiang D, Katsnelson M, Grigorieva I, et al. Two-dimensional gas of massless Dirac fermions in graphene. nature. 2005;438:197-200.
    [20]Lee C, Wei X, Kysar JW, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science.2008;321:385-8.
    [21]Geim AK, Novoselov KS. The rise of graphene. Nature materials. 2007;6:183-91.
    [22]Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, et al. Graphene and graphene oxide:synthesis, properties, and applications. Advanced Materials.2010;22:3906-24.
    [23]Xu Z, Gao C. In situ polymerization approach to graphene-reinforced nylon-6 composites. Macromolecules.2010;43:6716-23.
    [24]Kotov NA. Materials science:Carbon sheet solutions. nature.2006;442:254-5.
    [25]Park S, Ruoff RS. Chemical methods for the production of graphenes. Nature nanotechnology.2009;4:217-24.
    [26]Bai H, Li C, Shi G. Functional composite materials based on chemically converted graphene. Advanced Materials.2011;23:1089-115.
    [27]Kim H, Abdala AA, Macosko CW. Graphene/polymer nanocomposites. Macromolecules.2010;43:6515-30.
    [28]Zhao F-G, Li W-S. Dendronized graphenes:remarkable dendrimer size effect on solvent dispersity and bulk electrical conductivity. Journal of Materials Chemistry. 2012;22:3082-7.
    [29]Verdejo R, Bernal MM, Romasanta LJ, Lopez-Manchado MA. Graphene filled polymer nanocomposites. Journal of Materials Chemistry.2011;21:3301-10.
    [30]Kim H, Kobayashi S, AbdurRahim MA, Zhang MJ, Khusainova A, Hillmyer MA, et al. Graphene/polyethylene nanocomposites:effect of polyethylene functionalization and blending methods. Polymer.2011;52:1837-46.
    [31]Potts JR, Dreyer DR, Bielawski CW, Ruoff RS. Graphene-based polymer nanocomposites. Polymer.2011;52:5-25.
    [32]Yu C, Kim YS, Kim D, Grunlan JC. Thermoelectric behavior of segregated-network polymer nanocomposites. Nano letters.2008;8:4428-32.
    [33]Grossiord N, Loos J, Koning CE. Strategies for dispersing carbon nanotubes in highly viscous polymers. Journal of Materials Chemistry.2005; 15:2349-52.
    [34]Regev O, ElKati PN, Loos J, Koning CE. Preparation of conductive nanotube-polymer composites using latex technology. Advanced Materials. 2004; 16:248-51.
    [35]Wissert R, Steurer P, Schopp S, Thomann R, Miilhaupt R. Graphene nanocomposites prepared from blends of polymer latex with chemically reduced graphite oxide dispersions. Macromolecular Materials and Engineering. 2010;295:1107-15.
    [36]Yoonessi M, Gaier JR. Highly conductive multifunctional graphene polycarbonate nanocomposites. ACS nano.2010;4:7211-20.
    [37]Tkalya E, Ghislandi M, Alekseev A, Koning C, Loos J. Latex-based concept for the preparation of graphene-based polymer nanocomposites. Journal of Materials Chemistry.2010;20:3035-9.
    [38]Cao Z, Song P, Fang Z, Xu Y, Zhang Y, Guo Z. Physical wrapping of reduced graphene oxide sheets by polyethylene wax and its modification on the mechanical properties of polyethylene. Journal of Applied Polymer Science.2012; 126:1546-55.
    [39]Bao C, Guo Y, Yuan B, Hu Y, Song L. Functionalized graphene oxide for fire safety applications of polymers:a combination of condensed phase flame retardant strategies. Journal of Materials Chemistry.2012;22:23057-63.
    [40]Potts JR, Lee SH, Alam TM, An J, Stoller MD, Piner RD, et al. Thermomechanical properties of chemically modified graphene/poly (methyl methacrylate) composites made by< i> in situ polymerization. Carbon.
    2011;49:2615-23. [41] El Achaby M, Arrakhiz FE, Vaudreuil S, el Kacem Qaiss A, Bousmina M, Fassi Fehri O. Mechanical, thermal, and rheological properties of graphene - based polypropylene nanocomposites prepared by melt mixing. Polymer Composites. 2012;33:733-44.
    [42]Pham VH, Dang TT, Hur SH, Kim EJ, Chung JS. Highly conductive poly (methyl methacrylate)(PMMA)-reduced graphene oxide composite prepared by self-assembly of PMMA latex and graphene oxide through electrostatic interaction. ACS Applied Materials & Interfaces.2012;4:2630-6.
    [43]Singh V, Joung D, Zhai L, Das S, Khondaker SI, Seal S. Graphene based materials:past, present and future. Progress in Materials Science.2011;56:1178-271.
    [44]Schniepp HC, Li J-L, McAllister MJ, Sai H, Herrera-Alonso M, Adamson DH, et al. Functionalized single graphene sheets derived from splitting graphite oxide. The Journal of Physical Chemistry B.2006;110:8535-9.
    [45]Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon.2007;45:1558-65.
    [46]Treossi E, Melucci M, Liscio A, Gazzano M, Samori P, Palermo V. High-contrast visualization:of graphene oxide on dye-sensitized glass, quartz, and silicon by fluorescence quenching. Journal of the American Chemical Society. 2009;131:15576-7.
    [47]Ansari S, Giannelis EP. Functionalized graphene sheet—Poly (vinylidene fluoride) conductive nanocomposites. Journal of Polymer Science Part B:Polymer Physics.2009;47:888-97.
    [48]Paredes J, Villar-Rodil S, Solis-Fernandez P, Martinez-Alonso A, Tascon J. Atomic force and scanning tunneling microscopy imaging of graphene nanosheets derived from graphite oxide. Langmuir.2009;25:5957-68.
    [49]Pham TA, Choi BC, Jeong YT. Facile covalent immobilization of cadmium sulfide quantum dots on graphene oxide nanosheets:preparation, characterization, and optical properties. Nanotechnology.2010;21:465603.
    [50]Srinivas G, Burress JW, Ford J, Yildirim T. Porous graphene oxide frameworks: synthesis and gas sorption properties. Journal of Materials Chemistry. 2011;21:11323-9.
    [51]Ou J, Wang J, Liu S, Mu B, Ren J, Wang H, et al. Tribology study of reduced graphene oxide sheets on silicon substrate synthesized via covalent assembly. Langmuir.2010;26:15830-6.
    [52]Kong H, Gao C, Yan D. Functionalization of multiwalled carbon nanotubes by atom transfer radical polymerization and defunctionalization of the products. Macromolecules.2004;37:4022-30.
    [53]Kashiwagi T, Inaba A, Brown JE, Hatada K, Kitayama T, Masuda E. Effects of weak linkages on the thermal and oxidative degradation of poly (methyl methacrylates). Macromolecules.1986;19:2160-8.
    [54]Kuila T, Bose S, Khanra P, Kim NH, Rhee KY, Lee JH. Characterization and properties of in situ emulsion polymerized poly (methyl methacrylate)/graphene nanocomposites. Composites Part A:Applied Science and Manufacturing. 2011;42:1856-61.
    [1]Zhao X, Zhang QH, Chen DJ, Lu P. Enhanced Mechanical Properties of Graphene-Based Poly(vinyl alcohol) Composites. Macromolecules.2010;43:2357-63.
    [2]Quan H, Zhang B-q, Zhao Q, Yuen RKK, Li RKY. Facile preparation and thermal degradation studies of graphite nanoplatelets (GNPs) filled thermoplastic polyurethane (TPU) nanocomposites. Composites Part A:Applied Science and Manufacturing.2009;40:1506-13.
    [3]Bao C, Song L, Wilkie Ca, Yuan B, Guo Y, Hu Y, et al. Graphite oxide, graphene, and metal-loaded graphene for fire safety applications of polystyrene. Journal of Materials Chemistry.2012;22:16399.
    [4]Zhou K, Jiang S, Bao C, Song L, Wang B, Tang G, et al. Preparation of poly(vinyl alcohol) nanocomposites with molybdenum disulfide (MoS2):structural characteristics and markedly enhanced properties. RSC Advances.2012;2:11695.
    [5]Matusinovic Z, Shukla R, Manias E, Hogshead CG, Wilkie Ca. Polystyrene/molybdenum disulfide and poly(methyl methacrylate)/molybdenum disulfide nanocomposites with enhanced thermal stability. Polymer Degradation and Stability.2012;97:2481-6.
    [6]Giannelis EP. Polymer Layered Silicate Nanocomposites. Advanced Materials. 1996;8:29-35.
    [7]Cora F, Catlow CRA, Civalleri B, Orlando R. Acid strength of low-valence dopant ions in microporous zeolites and AlPOs. The Journal of Physical Chemistry B. 2003;107:11866-70.
    [8]Saha SK, Waghmode SB, Maekawa H, Komura K, Kubota Y, Sugi Y, et al. Synthesis of aluminophosphate molecular sieves with AFI topology substituted by alkaline earth metal and their application to solid acid catalysis. Microporous and Mesoporous Materials.2005;81:289-303.
    [9]Jiang S, Gui Z, Hu Y, Zhou K, Dong Y, Shi Y. The intercalation of poly(methyl methacrylate)/aluminophosphate nanocomposites and the properties improvement. Materials Chemistry and Physics.2013;141:95-100.
    [10]Bao C, Guo Y, Yuan B, Hu Y, Song L. Functionalized graphene oxide for fire safety applications of polymers:a combination of condensed phase flame retardant strategies. Journal of Materials Chemistry.2012;22:23057.
    [11]Wang S, Hu Y, Zong R, Tang Y, Chen Z, Fan W. Preparation and characterization of flame retardant ABS/montmorillonite nanocomposite. Applied Clay Science. 2004;25:49-55.
    [12]Pack S, Si M, Koo J, Sokolov JC, Koga T, Kashiwagi T, et al. Mode-of-action of self-extinguishing polymer blends containing organoclays. Polymer Degradation and Stability.2009;94:306-26.
    [13]Lu H, Hu Y, Li M, Song L. Effects of charring agents on the thermal and flammability properties of intumescent flame-retardant HDPE-based clay nanocomposites. Polymer-Plastics Technology and Engineering.2008;47:152-6.
    [14]Manzi-Nshuti C, Hossenlopp JM, Wilkie CA. Fire retardancy of melamine and zinc aluminum layered double hydroxide in poly (methyl methacrylate). Polymer Degradation and Stability.2008;93:1855-63.
    [15]Nyambo C, Kandare E, Wang D, Wilkie CA. Flame-retarded polystyrene: investigating chemical interactions between ammonium polyphosphate and MgAl layered double hydroxide. Polymer Degradation and Stability.2008;93:1656-63.
    [16]Jiang S, Gui Z, Bao C, Dai K, Wang X, Zhou K, et al. Preparation of functionalized graphene by simultaneous reduction and surface modification and its polymethyl methacrylate composites through latex technology and melt blending. Chemical Engineering Journal.2013;226:326-35.
    [17]Chang T, Wang Y, Hong Y, Chiu Y. Organic-inorganic hybrid materials. V. Dynamics and degradation of poly (methyl methacrylate) silica hybrids. Journal of Polymer Science Part A:Polymer Chemistry.2000;38:1972-80.
    [18]Saha SK, Waghmode SB, Maekawa H, Komura K, Kubota Y, Sugi Y, et al. Synthesis of aluminophosphate molecular sieves with AFI topology substituted by alkaline earth metal and their application to solid acid catalysis. Microporous and Mesoporous Materials.2005;81:289-303.
    [19]Sankar G, Gleeson D, Catlow CRA, Thomas JM, Smith AD. The architecture of Mg (II) centres in MAPO-36 solid acid catalysts. Journal of synchrotron radiation. 2001;8:625-7.
    [20]Yang D, Hu Y, Song L, Nie S, He S, Cai Y. Catalyzing carbonization function of a-ZrP based intumescent fire retardant polypropylene nanocomposites. Polymer Degradation and Stability.2008;93:2014-8.
    [21]Chen L, Wang Y-Z. A review on flame retardant technology in China. Part I: development of flame retardants. Polymers for Advanced Technologies.2010;21:1-26.
    [22]Alongi J, Frache A. Flame retardancy properties of α-zirconium phosphate based composites. Polymer Degradation and Stability.2010;95:1928-33.
    [23]Shi Y, Kashiwagi T, Walters RN, Gilman JW, Lyon RE, Sogah DY. Ethylene vinyl acetate/layered silicate nanocomposites prepared by a surfactant-free method: Enhanced flame retardant and mechanical properties. Polymer.2009;50:3478-87.
    [24]Lyon RE, Walters R, Stoliarov S. Screening flame retardants for plastics using microscale combustion calorimetry. Polymer Engineering & Science. 2007;47:1501-10.
    [25]Bao C, Song L, Wilkie CA, Yuan B, Guo Y, Hu Y, et al. Graphite oxide, graphene, and metal-loaded graphene for fire safety applications of polystyrene. Journal of Materials Chemistry.2012;22:16399-406.
    [26]Zhou K, Jiang S, Bao C, Song L, Wang B, Tang G, et al. Preparation of poly (vinyl alcohol) nanocomposites with molybdenum disulfide (MoS2):structural characteristics and markedly enhanced properties. RSC Advances.2012;2:11695-703.
    [27]Matusinovic Z, Shukla R, Manias E, Hogshead CG, Wilkie CA. Polystyrene/molybdenum disulfide and poly (methyl methacrylate)/molybdenum disulfide nanocomposites with enhanced thermal stability. Polymer Degradation and Stability.2012;97:2481-6.
    [28]Dervishi E, Li Z, Watanabe F, Courte A, Biswas A, Biris AR, et al. Versatile catalytic system for the large-scale and controlled synthesis of single-wall, double-wall, multi-wall, and graphene carbon nanostructures. Chemistry of Materials. 2009;21:5491-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700