用户名: 密码: 验证码:
钒基固溶体贮氢合金电极的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
V基贮氢合金电极具有较高的放电容量,是作为Ni-MH电池负极的核心材料。然而,较高的成本和较低的循环稳定性能限制了其产业化发展。本文是在全面综述V基贮氢合金电极研究进展的基础上,从降低成本和改善合金电极循环稳定性能出发,选择较低V含量的VTiCrNi四元合金为基础合金,以添加或取代的方式加入Mo、Mn、Sn元素以及V2O5金属氧化物。采用XRD、SEM等研究了合金电极的微观结构;采用高倍率放电、电化学阻抗、线性极化以及恒电位放电对合金电极的电化学性能进行表征;采用ICP分析了合金电极充放电后在电解液中的腐蚀成分。最后,通过在电解液中添加ZnO,研究其对合金电极性能的影响。
     对V2Ti1-xNiCrx(x=0.1-0.7)合金电极的组织结构及电化学性能进行了研究。结果表明,合金均由BCC结构的V基固溶体主相和TiNi二次相组成,BCC结构的V基固溶体呈树枝状均匀分布,而TiNi二次相则以三维网状结构分布在V基固溶体主相的周围。合金电极的活化性能以及最大放电容量均随着Cr替代Ti含量的增加有所减低;而合金电极经过30次充放电后的容量保持率C30/Cmax先升高而后降低,在x=0.5时达到最大值,为91.3%;高倍率放电性能先增大而后减小,适量的Cr替代Ti有利于降低合金电极表面阻抗,提高氢的扩散系数。因此,合金电极的性能和Ti、Cr比例有关,当Cr替代Ti含量x=0.5时,合金电极具有最佳的电化学性能。
     通过对V2Ti0.5Cr0.5Ni1-xMx(M=Mo、Sn、Mn)体系合金电极组织结构和电化学性能研究发现,所有合金均具有两相结构,即BCC结构的V基固溶体主相和TiNi二次相,V基固溶体主相呈树枝状分布,TiNi二次相以三维网络状分布在V基固溶体相的周围。Mo和Sn替代Ni对合金电极的最大放电容量Cmax影响不是很大,而Mn替代Ni后,合金电极的最大放电容量明显增大,在x=0.2时,最大放电容量达到429.3mAh/g。所有合金电极的容量保持率随着充放电循环过程的进行均有所降低,尤其是含Mn合金电极的容量衰退最为严重,这主要是由于含过多的Mn的合金在充放电循环过程中,易造成Mn的偏析,合金严重粉化,导致合金电极的循环稳定性能变差。电化学动力学研究表明,含Mo的合金电极电化学动力学性能随Mo替代Ni含量的增加先得到改善,而后降低,在x=0.04时,合金电极的高倍率放电性能,交换电流密度和氢扩散系数均得到最佳值。而Sn和Mn替代Ni之后,合金电极的交换电流密度和高倍率放电性能都降低,不利于合金电极的电化学动力学性能。
     对V2-xTi0.5Cr0.5NiOx(x=0-0.35)合金电极的组织结构和电化学性能研究,结果表明,当x=0时,合金由BCC结构的V基固溶体相和呈三维网状结构分布在主相周围的TiNi相组成,随着x值增加,合金中出现了Ti4Ni2O新相。电化学测试结果表明,随着合金电极中V2O5替代V含量的增加,合金电极的最大放电容量降低,由x=0时的366.8mAh/g减小到x=0.35时的225.3mAh/g。而合金电极的循环稳定性能得到了改善,经过100次充放电循环后,合金电极的容量保持率由x=0时的69.9%增大到x=0.2时的83.7%。电化学测试结果表明,随着合金电极中V2O5替代V含量的增加,合金电极的高倍率放电性能、交换电流密度和氢的扩散系数先增大后减小,合金电极在x=0.05时综合电化学性能较好,其最大放电容量Cmax为352mAh/g,合金电极经过100次充放电循环后的容量保持率为73.7%,放电电流密度为400mA/g时的倍率放电性能(C400/C60)为70.3%,氢的扩散系数D为6.51×10-11cm2/s。
     通过分析V2Ti0.5Cr0.5Ni0.9Mn0.1和V2Ti0.5Cr0.5Ni0.8Mn0.2合金电极在充放电循环过程中的电极表面形貌、电化学性能以及合金元素在电解中的腐蚀溶解量得出:随着充放电过程的进行,合金电极表面裂纹明显加宽、加深,这既增加了合金电极内阻,又阻碍了氢在合金体内的扩散,从而导致电荷转移电阻增大,交换电流密度减小,这些因素使得合金电极的放电容量降低,而合金电极中V和Ti元素的腐蚀溶解严重。结果表明,贮氢合金的容量衰退主要是由于合金电极在充放电过程中,活性吸氢元素在电解液中的腐蚀溶解、合金颗粒的粉化、合金电极表面元素的氧化腐蚀以及不可逆氢化物的形成。
     通过在电解液中添加不同含量的ZnO,分析了在添加不同含量ZnO的电解液中合金电极的表面形貌及电化学性能,发现电解液中添加ZnO明显改善了合金电极的循环稳定性能,当50mL KOH电解液中ZnO添加量为1.2g时,合金电极经30次充放电循环后的容量保持率最大,为97.8%。而随着电解液中ZnO含量的增加,合金电极的放电平台变窄,而且倾斜,表明电解液中添加过量的ZnO对合金电极的放电性能产生不利作用。合金电极的交流阻抗值随着电解液中ZnO含量的增加先减小而后增大,而相应的交换电流密度先增大后减小,在50mL KOH电解液中添加0.8g ZnO时,合金电极的动力学性能相对较好。
V-based hydrogen storage alloys were used in Ni/MH due to their high dischargecapacity. Whereas, the high costs and poor cycling stability of this type of alloys preventthem from developing in industry. In this thesis, in order to reduce costs and improvethe cycling stability, based on an overall review of the research and development ofV-based hydrogen storage alloy electrodes, The elements of Mo, Mn, Sn and V2O5metal oxides have been used as the additional element to VTiCrNi alloy, which iscomposed of lower O content. The microstructure and electrochemical properties of thealloy electrodes have been investigated by SEM, XRD, EIS, liner polarization andpotential step and ICP measurements. Moreover, the addition of ZnO to the alkalineelectrolyte has been investigated.
     The structural and electrochemical properties of the V2Ti1-xNiCrx(x=0.1-0.7)alloy electrodes have been systematically studied. The results show that all of the alloysmainly consist of a V-based solid solution phase with a BCC structure and a TiNisecondary phase. With increasing the content of Cr substitution for Ti, theelectrochemical activity and maximum discharge capacity is decreased, while thecharge/discharge cycling stability first increased and then decreased, and geting its bestvalue (91.3%) at x=0.5. Electrochemical kinetic measurements show that withincreasing the content of Cr substitution for Ti, the high rate dischargeability (HRD),the exchange current density I0and the hydrogen diffusion coefficient D in the alloyelectrodes are all first increased and then decreased. It is found that a moderate contentof Cr substitution for Ti is favorable for improving the electrochemical property of thealloy electrodes, and reaching a relatively good overall electrochemical properties atx=0.5.
     The effects of Mo, Sn and Mn element subsitution on microstructure andelectrochemical properties of V2Ti0.5Cr0.5Ni alloy electrodes are studied in this paper. Itis found that all of these alloys composed of V-based solid solution with BCC structureas main phase and TiNi secondary phase, and the TiNi phase precipitates along the grainboundary of the BCC main phase and forms a three-dimension network. Moreover, it isfound that an substitution of Mn for Ni can increase the maximum discharge capacity ofthe alloy electrodes obviously, and reach the maximum value429.3mAh/g at x=0.2, butdecrease the cycling stability at the same time. The electrochemical kinetic measurements show that a moderate content of Mo substitution for Ni can improve theHRD, exchange current density and hydrogen diffusion coefficient, and reach the bestperformance at x=0.04. With increasing the content of Mn and Sn subsitution for Ni, theHRD, exchange current density and hydrogen diffusion coefficient is decreased, so itnot benefit for improving the electrochemical properties of the alloy electrodes.
     The different content of V2O5substitution for V on the microstructure andelectrochemical properties of V2Ti0.5Cr0.5Ni alloy electrodes have been investigatedsystematically. It is found that the alloy V2Ti0.5Cr0.5Ni without V2O5consists of aV-based solid solution phase with BCC structure and TiNi secondary phase, withincreasing the content of V2O5substitution for V, a new phase Ti4Ni2O appears in thealloys. The electrochemical measurements show that with increasing the content ofV2O5the maximum discharge capacity of the alloy electrode decreases from366.8mAh/g (x=0) to225.3mAh/g (x=0.35); The cycling stabiling improves remarkably,when x=0.2, the ratio of remaining capacity after100cycles is83.7%; The high ratedischargeability (HRD), exchange current density and hydrogen diffusion coefficientfirst increased and then decreased. Among the alloys studied, the V1.95Ti0.5Cr0.5NiO0.05alloy electrode shows a relatively good overall electrochemical properties, of which theCmax, the C100/Cmax, the HRD400, the I0and D are352mAh/g,73.7%,70.3%,33.31mA/gand6.51×10-11cm2/s, respectively.
     In order to explain the cycling degradation mechanism of the V-based hydrogenstorage alloy electrode, V2Ti0.5Cr0.5Ni0.9Mn0.1and V2Ti0.5Cr0.5Ni0.8Mn0.2alloy electrodeshave been studied by means of XRD, SEM and EIS measurements. It is found that thedegradation of the discharge capacity is mainly caused by the pulverization alloyparticles and the oxidation/corrosion of the alloys during cycling in the KOH alkalineelectrolyte. The results of ICP analysis on the electrolyte indicate that the dissolutioncontent of main hydrogen absorbing elements V and Ti increasing with charge/dischargecycling, which is responsible for the cycling degradation mechanism of the alloyelectrode.
     The effects of introducing ZnO into electrolyte on the surface and electrochemicalproperties of alloy electrodes have been investigated. It is found that introducing ZnOinto electrolyte can improve the cycling stability and electrochemical kinetic propertiesof the alloy electrode. When1.2g ZnO is added into50mL KOH electrolyte, the ratio ofremaining capacity of the alloy electrode is97.8%after30cycles charge/discharge.With increasing the content of ZnO, the EIS decreases first and then increases, while the exchange current density first increased and then decreased. When0.8g ZnO is addedinto50mL KOH electrolyte, the alloy electrode shows a relatively good overallelectrochemical properties.
引文
[1]毕道治.21世纪电池技术展望[J].电池工业,2002,7(3,4):205-210.
    [2] Feng F, Geng M, Northwood D O. Electrochemical behavior of intermetallic-based metalhydrides used in Ni/metal hydride (MH) batteries: a review [J]. Int J hydrogen energy,2001,26:725-734.
    [3] Zhu Y F, Liu Y F, Hua F. Effect of rapid solidification on the structural and electrochemicalproperties of the Ti-V-based hydrogen storage electrode alloy[J]. Alloys compd,2008,463:528-532.
    [4]陈昌国,王常江.贮氢材料钒固溶体合金的研究进展[J].材料导报,2007,21(11):68-71.
    [5] Santos D M F, Sequeira C A C, Lobo R F M. Effect of alloys modified by sodium borohydridealkaline solutions on the kinetics of hydrogen evolution reaction at Mm(Ni3.6Co0.7Mn0.4Al0.3)1.15hydride electrodes[J]. Int J hydrogen energy,2010,35:9901-9909.
    [6] Justi W, Ewe H H, Kalberlan A W, et al. Electrocatalysis in the nickel-titanium system[J].Energy Conversion,1970,10:183.
    [7] Sakai T, Uehara I, Ishikawa H. R&D on metal hydride materials and Ni-MH batteries inJapan[J]. Alloys Compd,1999,293-295:762-769.
    [8]国家发改委.中国材料研究协会编写,中国新材料产业发展报告[R].北京:化学工业出版社,2004:58.
    [9]岳增武,王德州.新型能源材料-贮氢合金的研究进展[J].山东电力高等专科学校校报,2003,6(4):22-24.
    [10]张旻昱,吴锋,穆道斌,等. Ni-MH动力用电池负极材料的研究现状[J].材料导报,2008,22(12):40-43.
    [11] Linden D, Reddy T B. Handbook of Batteries.3rd ed. New York: McGraw-Hill,2002.
    [12]陈景贵.化学与物理电源——信息装备的动力之源[M].北京:国防工业出版社,1999.
    [13]李书存. Ti-Zr-V-Mn-Ni固溶体贮氢合金结构好电化学性能研究[D].北京:燕山大学环境与化学工程学院,2010:2.
    [14]胡子龙.贮氢材料[M].北京:化学工业出版社.2002:61-62.
    [15]张云什.负极贮氢合金材料[M].电源技术,1996,20(1):36-40.
    [16]李全安,陈云贵,涂铭旌,等.高性能贮氢合金电极的成分设计[J].电源技术,2000,24(4):246-250.
    [17]雷永泉主编.新能源材料[M].天津:天津大学出版社,2000:29-53.
    [18] Sakai T, Hazama T, Miyamura H. Rare-earth-based alloy electrodes for a nickel-metal hydridebattery[J]. Less-common Met,1991,172:1175-1178.
    [19] Willems J J G, Buschow K H J. From permanent magnets to rechargeable hydrideelectrodes[J]. Less-Common Mer,1987,129:13-30.
    [20] Van Vucht J H N, Kuijpers F A, Bruning H C A M. Reversible room-temperature absorptionof large quantities of hydrogen by intertallic compounds[J]. Philips Res Pepts,1970,25:133-140.
    [21] Willems J J G. Metal hydride electrode of LaNi5-related compounds[J]. Philips journal ofResearch,1984,39:54-70.
    [22]王启东,吴京,陈长聘,等.镧稀土金属-镍贮氢材料[J].稀土,1984,3:8-13.
    [23] Lei Y Q, Li Z P, Chen C P.The cycling behaviour of misch metal-nickel-based metal hydrideelectrodes and the effectes of copper plating on their performance[J]. Less-Common Met,1991,172:1265-1272.
    [24] Sakai T, Hazama T, Miyamura H, et al. Rare-earth-based alloy electrodes for a nickel-metalhydride battery[J].Less-Common Met,1991,172:1175-1184.
    [25] Lei Y Q, Zhang S K, Lv G L, et al. Influence of the material processing on theelectrochemical properties of cobalt-free Ml(NiMnAlFe)5alloy[J]. Alloys Compd,2002,330:861-865.
    [26] Iwakura C, Ohkawa K, Senoh H,et al.A Co-Free AB5-Type Hydrogen Storage Alloy forNickel-Metal Hydride Batteries: LmNi4.0Al0.3Si0.1Fe0.6[J]. Electrochem. Soc,2002,149(4):462-465.
    [27]马建新.合金化热处理及磁化处理对AB5型贮氢电极合金微结构与电化学性能的影响
    [D].博士学位论文,浙江大学,2002.
    [28] Ovshinsky S R, Fetcenko M A, Venkatesan S, et al. The13th international seminar onprimaryand secondary battery technology and application[C]. March1996.
    [29] Wang Q D, Chen C P, Lei Y Q. The recent research, development applications of metalhydrides in the People's Republic of China[J]. Alloys,1997,253-254:629-634.
    [30]杨晓光. Zr-Cr-Ni系AB2型Laves相贮氢合金及其电化学性能的研究[D].博士学位论文,浙江大学,1995.
    [31] Antonio R, Ambrosio R C, Ticianelli E A. Electrochemical and structural studies onnonstoichiometric AB2-type metal hydride alloys[J]. Int J Hydrogen Energy,2004,29(12):1253-1261.
    [32] Matsuoka M, Tamura K. Effects of mechanical grinding on initial activation and ratecapability of Zr-Ti based Laves phase alloy electrode[J]. Journal of applied electrochemistry,2007,37(6):759-764.
    [33] Visintin A, Peretti H A, Ruiz F. Effect of additional catalytic phases improsed by sintering onthe hydrogen absorption behavior of AB2type Zr-based alloys[J]. Alloys compd,2007,428(1-2):244-251.
    [34] Gamo T, Moriwaki Y, Yanagihara N, et al. Formation and properties of titanium-manganesealloy hydrides[J]. Int J Hydrogen Energy,1985,10:39-47.
    [35] Dunlap B D, Viccaro P J, Shenoy CK. Structural relationships in rare earth-transition metalhydrides[J]. Less-Common Met,1980,74(1):75-79.
    [36] Kadir K, Uehara I, Sakai T. Synthesis and structure determination of a new series of hydrogenstorage alloys; RMg2Ni9(R=La, Ce, Pr, Nd, Sm and Gd) built from MgNi2Laves-type layersalternating with AB5layers[J]. Alloys compd,1997,257:115-121.
    [37] Kadir K, Noreus D, Yamashita I. Structural determination of AMgNi4(where A=Ca, La, Ce,Pr, Nd and Y) in the AuBe5type structure[J]. Alloys compd,2002,345(1/2):140-143.
    [38] Kadir K, Sakai T, Uehara I. Structural inverstigation and hydrogen storage capacity ofLaMg2Ni9and (La0.65Ca0.35)(Mg1.32Ca0.68)Ni9of the AB2C9type structure[J]. Alloys compd,2000,302(1/2):112-117.
    [39] Wang Z M, Zhou H Y, Gu Z F, et al. Preparation of LaMgNi4alloy and its electrodeproperties[J]. Alloys compd,2004,377(1/2): L7-9.
    [40] Liao B, Lei Y Q, Lu G L, et al. Phase structure and electrochemical properties of La-Mg-Nisystem AB3type hydrogen storage electrode alloys[J]. Acta Met Sinica,2005,41(1):41-48.
    [41] Kohno T, Yoshida H, Kawashima F, et al. Hydrogen storage properties of new ternary systemalloys: La2MgNi9, La5Mg2Ni23, La3MgNi14[J]. Alloys Compd,2000,311(2):5-7.
    [42] Chiang C H, Chin Z H, Perng T P. Hydrogenation of TiFe by high-energy ball milling[J].Alloys compd,2000,307:259-265.
    [43] Drenchev B, Spassov T. Electrochemical hydriding of amorphous and nanocrystallineTiNi-based alloys[J]. Alloys compd,2007,441(1-2):197-201.
    [44] Drenchev B, Spassov T, Radev D. Influence of alloying and microstructure on theelectrochemical hydriding of TiNi-based ternaryalloys[J]. Journal of Applied electrochemistry,2007,38(4):437-444.
    [45]张耀.以多元合金化改进球磨Mg基贮氢电极合金循环稳定性的研究[D].博士学位论文,浙江大学,2002.
    [46]张耀,孙俊才,季士军,等. Mg-Ni非晶合金吸氢形成焓随Ni含量的变化及其对自放电的影响[J].中国有色金属学报,2000,10(6):882-886.
    [47]张耀,李寿权,应窕,等.球磨表面包覆对镁基贮氢合金电化学性能的影响[J].中国有色金属学报,2001,11(4):582-586.
    [48] Nohara S, Fujita N, Zhang S G, et al. Electrochemical characteristics of a homogeneousamorphous alloy prepared by ball-milling Mg2Ni with Ni[J]. Alloys compd,1998,267:76-78.
    [49] Zhang Y, Zhang S K, Chen L X, et al.The study on the electrochemical performance ofmechanically alloyed Mg-Ti-Ni-based ternary and quaternary hydrogen storage electrodealloys[J]. Int J Hydrogen Energy,2001,26(8):801-806.
    [50] Zhang Y, Liao B,Chen L X, et al. The effect of Ni content on the electrochemical and surfacecharacteristics of Mg90-xTi10Nix(x=50,55,60) ternary hydrogen storage electrode alloys[J].Alloys compd,2001,327:195-200.
    [51] Abdellaoui M, Mokbli S, Cuevas F, et al. Structural and electrochemical properties ofamorphous rich MgxNi100-xnanomaterial obtained by mechanical alloying[J]. Alloys compd,2003,356-357:557-561.
    [52] Wang F X, Gao X P, Lu Z W, et al. Electrochemical properties of Mg-based alloys containingcarbon nanotubes [J]. Alloys compd,2004,370:326-330.
    [53] Meng M W, Liu X Y, Cheng J, et al. Electrochemical characteristics of the Mg1-xLaxNi(x=0,0.05,0.10) alloy synthesized by mechanical alloying[J]. Alloys compd,2004,372:285-289.
    [54] Wang L B, Wang J B, Yuan H T, et al. An electrochemical investigation of Mg1-xA1xNi(0≤x≤0.6) hydrogen storage alloys[J]. Alloys compd,2004,385:304-308.
    [55] Wang M H, Zhang L Z, Zhang Y, L, et al. Effects of partial substitution by Fe and Co for Ni inthe Mg1.75Al0.25Ni electrode alloy on their electrochemical performances[J]. Int J HydrogenEnergy,2006,31:775-779.
    [56] Lei Y Q,Wu Y M, Yang Q M, et al. Electrochemical behaviour of somemechanically alloyedMg-Ni-based amorphous hydrogen storage alloys[J]. Phys.Chem.,Bd.,1994,183:379-384.
    [57] Sun D L, Lei Y Q, Liu W H, et al. The relation between the discharge capacity and cyclingnumber of mechanically alloyed MgxNi100-xamorphous electrode alloys[J]. Alloys compd,1995,231:621-624.
    [58] Li Q, Chou K C, Xu K D, et al. The structural and kinetic characteristics of Mg1.9Al0.1Ni alloysynihesized by mechanical alloying [J]. Intermetallies,2006,14:1386-1390.
    [59] Imamura H, Sakasai N. Characterization and hydriding properties of Mg-graphite compositesprepared by mechanical grinding as new hydrogen storage materials[J]. Alloys compd,1997,253:34-37.
    [60] Holtz R L, Iman M A. Hydrogen storage capacity of submicron magnesiym-nickel alloys[J].Mater Sci,1997,32:2267-2274.
    [61]李景虹.先进电池材料[M].化学工业出版社,2004.
    [62] Tsukahara M, Takahashi K, Mishima T, et al. Metal hydride electrodes based on solid solutiontype alloy TiV3Nix(0≤x≤0.75)[J]. Alloys compd,1995,226:203-207.
    [63] Tsukahara M, Takahashi K, Mishima T, et al.Vanadium-based solid solution alloys withthree-dimensional network structure for high capacity metal hydride electrodes[J]. Alloyscompd,1997:583-586.
    [64] Tsukahara M, Takahashi K, Mishima T, et al. Hydrogen storage and electrode properties ofV-based solid solution type alloys prepared by a thermic process[J]. Electrochem.Soc,2000,147(8):2941-2944.
    [65]张庆安. Laves相贮氢电极合金的相结构和电化学性能[D].博士学位论文,浙江大学,2000.
    [66]李荣,周上祺,梁国明,等.钒基固溶体型贮氢材料的研究进展[J].材料导报,2004,18(5):89-91.
    [67] Singh Arvind K, Singh Ajay K, Srivastava O N. On the synthesis, characterization andhydrogenation behavior of V-Ti-Fe alloy[J]. Int J Hydrogen Eenergy,1995,20:647-651.
    [68] Kuriyama N, Tsukahara M, Takahashi K, et al. Deterioration behavior of a multi-phasevanadiym-based solid solution alloy electrode[J]. Alloys Compd,2003,356-357:738-741.
    [69] Justi E W, Ewe H H, Kalberlan A W, et al. Electrocatalysis in the nickel-titanium system[J].Energy conversion,1970,10:183-187.
    [70]陈军,陶占良.镍氢二次电池[M].北京:化学工业出版社,2006:13.
    [71] Iwakura C, Choi W K, Miyauchi R,et al. Electrochemical and structural characterization ofTi-V-Ni hydrogen storage alloys with BCC structure [J]. Journal of the electrochemicalsociety,2000,147:2503-2506.
    [72] Lee H H, Lee K Y, Lee J Y. Ti-based metal hydride electrode for Ni-MH rechargeablebatteries [J]. Alloys Compd,1996,239:63-70.
    [73] Yu X B, Walkerb G S, Grant D M, et al. Electrochemical hydrogen storage of Ti–V-basedbody-centered-cubic phase alloy surface-modified with AB5nanoparticles[J]. Applied PhysicsLetters2005,87:133121(1-3).
    [74]董清海,颜广炅,余成洲.提高MH-Ni电池循环寿命的研究[J].电源技术,2000,24(5):306-310.
    [75] Hu W, Wang L D, Wang L M. Quinary icosahedral quasicrystalline Ti-V-Ni-Mn-Cr alloy: Anovel anode material for Ni-MH rechargeable batteries[J].2011,65:2868-2871.
    [76] Inoue H S, Koyama S S, Higuchi E J.Charge-discharge performance of Cr-substitutedV-based hydrogen storage alloy negative electrodes for use in nickel-metal hydridebatteries[J]. Electrochimica acta,2012,59:23-31.
    [77] Kabutomori T, Takeda H, Wakisaka Y, et al. Hydrogen absorption properties of Ti-Cr-A (A-V,Mo or other transition metal) BCC solid solution alloys [J]. Alloys compd,1995,231:528-532.
    [78] Kumar S, Balasubramaniam R. Theoretical analysis of hysteresis during hydrogentransformation in the vanadium-hydrogen system[J]. Int J Hydrogen Energy,1995,20(3):211-220.
    [79] Tsukahara M, Takahashi K, Mishima T, et al. Phase structure of V-based solid solutionscontaining Ti and Ni and their hydrogen sbsorption-desorption properties[J], Alloys compd,1995,224:162-167.
    [80] Kuriyama N, Chartouni D, Tsukahara M, et al. Scanning tunneling microscopy in situobservation of phase-selective caghodic hydrogenation of a V-Ti-Ni-based multiphase alloyelectrode[J]. Electrochem solid-state let,1998,1(1)37:38.
    [81] Lynch J F, Maeland A J, Libowitz G G. Lattice parameter variation and thermodynamics ofdihydride formation in the vanadium-rich V-Ti-Fe/H2system [J]. Zeitschrift fur PhysikalischeChemie, Neue Folge,1985:51-59.
    [82] Tsukahara M, Takahashi K, Isomura A, et al. Influence of various additives invanadium-based alloys V3TiNi0.56on secondary phase formation, hydrogen storage propertiesand electrode properties[J]. Alloys compd,1996,245:59-65.
    [83] Tsukahara M, Takahashi K, Isomura A, et al.Improvement of the cycle stability ofvanadium-based alloy for nickel metal hydride (Ni-MH) battery[J]. Alloys compd,1999,287:215-220.
    [84] Jin-Ho Kim, Ho Lee, Paul S Lee, et al. A study on the improvement of the cyclic durability byCr substitution in V-Ti alloy and surface modification by the ball-milling process[J]. Alloyscompd,2003,348:293-300.
    [85] Chai Y J, Zhao M S. Structure and electrochemical properties of Ti0.25V0.35Cr0.40xNix(x=0.05–0.40) solid solution alloys[J]. International Journal of Hydrogen Energy,2005,30:279-283.
    [86] Chai Y J, Zhao M S, Wang N. Crystal structural and electrochemical properties ofTi0.17Zr0.08Cr0.1Ni0.3-xMnx(x=0-0.12) alloys [J]. Materials Science and Engineering,2008,147:47-51.
    [87] Liang H, Chen Y G, Yan Y G, et al. Influence of Ni or Mn on hydrogen absorption–desorptionperformance of V–Ti–Cr–Fe alloys [J]. Materials Science and Engineering A,2007,459:204-208.
    [88]王国元,徐艳辉,潘洪革,等.铬替代锰对Ti0.8Zr0.2V1.6Mn0.8Ni0.6多相贮氢电极合金结构和电化学放电性能的影响[J].稀有金属材料与工程,2004,33(12):1308-1311.
    [89] Miao H, Gao M X, Liu Y F. Microstructure and electrochemical properties of Ti-V-basedmutiphase hydrogen storage electrode alloys Ti0.8Zr0.2V2.7Mn0.5Cr0.8-xNi1.25Fex(x=0-0.8)[J].Int J Hydrogen energy,2007,32:3947-3953.
    [90]曾华勇,陈云贵,陶明大,等. Al对V-Fe-Ti三元贮氢合金电化学性能的影响[J].功能材料,2008,39(5):824-826.
    [91]曾华勇,陈云贵,陶明大,等. V2.46TiFe0.54Six(x=0.03~0.15)贮氢合金电化学性能的研究[J].功能材料,2008,39(7):1140-1143.
    [92]曾华勇,陈云贵,陶明大,等. V2.46TiFe0.54-Ni烧结电极电化学性能的研究[J].稀有金属材料与工程,2009,38(6):1100-1103.
    [93]李书存. Ti-Zr-V-Mn-Ni固溶体贮氢合金结构好电化学性能研究[D].北京:燕山大学环境与化学工程学院,2010.
    [94] Li S C, Zhao M S, Wang L M,et al. Structures and electrochemical characteristics ofTi0.26Zr0.07V0.24Mn0.1Ni0.33Mox(x=0~0.1) hydrogen storage alloys[J]. Materials Science andEngineering B,2008,150:168.
    [95] Li S C, Zhao M S, Zhai J. Fengyan Wang. Effect of substitution of chromium for nickel onstructure and electrochemical characteristic of Ti0.26Zr0.07V0.24Mn0.1Ni0.33alloy[J]. MaterialsChemistry and Physics,2009,113:96.
    [96]罗永春,张铁军,王锋,等.球磨改性对(TiCr)0.497V0.42Fe0.083/30%(w)(LaRMg)(NiCoAl)3.5合金复合电极材料储氢和电化学性能的影响[J].物理化学学报,2010,26(9):2397-2404.
    [97] Kim S H, Lee S M, Lee P S, et al. A study on the electrode characteristics of V-Ti alloysurface-modified by ball-milling process [J]. Journal of the electrochemical society,2001,148:A696-A700.
    [98] Yu X B, Li F, Wu Z, et al. Enhanced electrochemical properties of ball-milledTi40V30Mn15Cr15+20wt%La(NiCoMnAl)5alloy electrodes [J]. Physics Letters,2004, A320:312-317.
    [99] Yu X B, Wu Z, Xia B J, et al. Electrochemical performance of ball-milled Ti-V-basedelectrode alloy [J]. Int J Hydrogen Energy,2005,30:273-277.
    [100] Choi W K, Tanaka T, Miyauchi R, et al. Electrochemical and structural characteristics ofTiV2.1Ni0.3surface-modified by ball-milling with MgNi [J]. Alloys compd,2000,299:141-147.
    [101]陈立新,代发帮,刘剑,等. Cu粉复合球磨处理对V基固溶体型贮氢合金电化学性能的影响[J].中国有色金属学报,2005,15:661-666.
    [102] Parimala R, Ananth M V, Ramaprabhu S. Effect of electroless coating of Cu,Ni and Pd onZrMn0.2V0.2Fe0.8Ni0.8alloy used as anodes in Ni-MH batteries[J]. Int J Hydrogen Energy,2004,29:509-513.
    [103] Li S C, Zhao M S, Wang L M. Structures and electrochemical characteristics ofTi0.26Zr0.07V0.24Mn0.1Ni0.33Mox(x=0-0.1)[J]. Materials Science and Engineering B,2008,150:168-174.
    [104] Li S C, Zhao M S, Wang Y Z.Structures and electrochemical property of ball-milledTi0.26Zr0.07V0.24Mn0.1Ni0.33alloy[J]. Materials Chemistry and Physics,2009,118:51-56.
    [105] Park J Y, Park C N, Park C J. Effects of the ball-milling with LmNi4.1Al0.25Mn0.3Co0.65alloy on the electrode characteristics of Ti0.32Cr0.43V0.25alloy for Ni-MH battreries[J]. Int JHydrogen energy,2007,32:4215-4219.
    [106] Qiu S J, Chu H L, Zhang Y. The electrochemical performances of Ti-V-based hydrogenstorage composite electrodes prepared by ball milling method[J]. Int J Hydeogen energy,2008,33:7471-7478.
    [107]邹剑平,高军伟,钟发平,等.负极表面镀镍对镍氢电池循环寿命与内部压强的影响[J].电源与涂饰[J],2009,28(11):9-13.
    [108] Yu J S, Lee K Y, Lee J Y. Effect of Ni containing surface phase on the electrode characteristicsof Ti1.0Mn1.0V0.5[J]. Alloys compd,1997,259:270-275.
    [109] Kim S H, Lee S M, Lee P. S,et al. A study on the electrode characteristics of V-Ti alloysurface-modified by ball-milling process [J]. Journal of the electrochemical society,2001,148:A696-A700.
    [110] Kim J H, Lee H, Lee P S, et al. A study on the improvement of the cyclic durability by Crsubstitution in V-Ti alloy and surface modification by the ball-milling process [J]. Alloyscompd,2003,348:293-300.
    [111] Choi W K, Toshiyuki Tanaka, Rie Miyauchi, Tsutomu Morikawa, Hiroshi Inoue, ChiakiIwakura. Electrochemical and structural characteristics of TiV2.1Ni0.3surface-modified byball-milling with MgNi [J]. Alloys compd,2000,299:141-147.
    [112] Zhang Q A, Lei Y Q, Chen L X, et al. Effect of annealing treatment on phase composition andelectrochemical properties of a V3TiNi0.56Co0.14Nb0.0047Ta0.0047[J]. Materials chemistry andphysics,2001,69:241-245.
    [113] Tsukahara M, Takahashi K, Mishima T, et al. Heat-treatment effects of V-based solid solutionalloys with TiNi-based network structure on hydrogen storage and electrode properties [J].Alloys compd,1996,243:133-138.
    [114] Miao H, Lin Y, Gao M X. Effects of annealing treatment on the microstructures andelectrochemical properties of La0.7Mg0.3Ni2.45Co0.75Mn0.1Al0.2[J]. Acta scientiarum naturaliumuniversitatis sunyatseni,2007,46:328-311.
    [115] Zhu Y F, Pan H G, Gao M X, et al. Influence of annealing treatment on Laves phasecompound containing a V-based BCC solid solution phase-Part II:Electrochemicalproperties[J]. Int J Hydrogen Energy,2003,28:395-401.
    [116] Inoue H S, Koyama S S, Higuchi E J.Charge–discharge performance of Cr-substitutedV-based hydrogen storage alloy negative electrodes for use in nickel-metal hydridebatteries[J]. Electrochemica Act,2012,59:23-31.
    [117] Huang B, Shi P F, Liang Z C, et al. Effect of sintering on the performance of hydrogen storagealloy electrode for high-power Ni/MH batteries [J]. Alloys compd,2005,394:303-307
    [118] Kim J W, Lee S M, Lee H I, et al. The deterioration behavior of a metal hydride electrodebased on the V0.66Ti0.22Ni0.12alloy [J]. Alloys compd,1997,255:248-252.
    [119] Zhu Y F, Pan H G, Gao M X, et al.Degradation mechanisms of Ti–V-based multiphasehydrogen storage alloy electrode [J]. International Journal of Hydrogen Energy,2004,29:313-318.
    [120] Liang H, Chen Y G, Yan Y G, et al. Influence of Ni or Mn on hydrogen absorption–desorptionperformance of V–Ti–Cr–Fe alloys[J]. Materials Science and Engineering A,2007,459:204-208.
    [121] Guo R, Chen L X, Lei Y Q, et al. The effect of Ni content on the phase structure andelectrochemical properties of V2.1TiNix(x=0.1-0.9) hydrogen storage alloys [J]. Int JHydrogen Energy,2003,28:803-808.
    [122] Hang Z M, Chen L X, Xiao X Z, et al. The effect of Cr content on the structural and hydrogenstorage characteristics of Ti10V80xFe6Zr4Crx(x=0–14) alloys [J]. Alloys compd,2010,493(1-2):396–400.
    [123] Li S C,Zhao M S, Zhai J. Effect of substitution of chromium for nickel on structure andelectrochemical characteristic of Ti0.26Zr0.07V0.24Mn0.1Ni0.33multi-phase hydrogen storagealloy[J]. Materials Chemistry and Physics,2009,113:96-102.
    [124]朱云峰,潘洪革,刘永峰,等.快速凝固钛钒系贮氢合金电化学性能研究[J].稀有金属材料与工程,2004,(3)33:262-266.
    [125] Pei P, Song X P, Liu J. The effect of rapid solidification on the microstructure and hydrogenstorage properties of V35Ti25Ni40hydrogen storage alloy [J]. Int J Hydrogen energy,2009,34:8094-8100.
    [126] Liang H, Chen Y G, Yan Y G, Wu C L, et al. Influence of Ni or Mn on hydrogenabsorption–desorption performance of V–Ti–Cr–Fe alloys [J]. Materials Science andEngineering A,2007,459:204-208.
    [127] Guo R, Chen L X, Lei Y Q, et al. The effect of Ni content on the phase structure andelectrochemical properties of V2.1TiNix(x=0.1-0.9) hydrogen storage alloys [J]. InternationalJournal of Hydrogen Energy,2003,28:803-808.
    [128] Fauvarque J F, Guinot S,Bouzir N, et a1. Alkaline poly(ethylene oxide)solid polymerelectrolytes. Application to nickle secondary batteries[J]. Electrochimica Acta,1995,40(13):2449-2453.
    [129] Lewandowski A, Skorupska K, Malinska J. Novel poly(vinyl alcohol)-KOH-H2O alialinepolymer electrolyte [J]. Solid State Ionics,2000,133:265-271.
    [130] Iwakura C, Nohara S, Furukawa N, et al. The possible use of polymer gel electrolytes innickel/metal hydride battery[J]. Solid State Ionics,2002,148(3-4):487-492.
    [131]毛立彩,吴锋,陈实,等.聚合物凝胶电解质在镍氢电池中的应用[J].功能材料,2005,36(9):1389-1393.
    [132]王大辉,吴彦君,闫汝熙,等.电解液中添加Cu(OH)2对La2MgNi7.5Co1.5贮氢合金电极电化学性能的影响[J].稀有金属材料与工程,2008,37(2):264-268.
    [133] Notten P H L, Hokkeling P, Double-phase hydride forming compounds: A new class of highlyelectrocatalytic materials[J]. Electrochem. Soc.,1991,138(7):1877-1885.
    [134] Nishina T, Ura H, Uchida I. Determination of chemical diffusion coefficients in metal hydrideparticles with a microelectrode technique[J]. Electroanal. Chem.,1997,144:1273-1277.
    [135] Crank J. The mathematics of diffueion,second edition[M]. Clerandon Press, Oxford,1975.
    [136] Zhao X, Ma L.Recent progress in hydrogen storage alloys for nickel/metal hydride secondarybatteries[J]. Int J Hydrogen Energy,2009,34:4788-4796.
    [137] Yu X B, Wu Z, Xia B J, et al. Electrochemical performance of ball-milled Ti-V-basedelectrode alloy[J]. Int J Hydrogen Energy,2005,30:273-277.
    [138] Etiemble A, Rousselot S, Guo W, et al. Influence of Pd addition on the electrochemicalperformance of Mg-Ni-Ti-Al-based metal hydride for Ni-MH batteries[J]. Int J HydrogenEnergy,2013,38(17):7169-7177.
    [139] Tsukahara M, Kamiya T, Takahashi K, et al. Hydrogen storage and electrode properties ofV-based solid solution type alloys prepared by a thermic process[J]. Electrochen Soc2000,147:2941-2944.
    [140] Song X P, Pei P, Zhang P L, et al.The influence of alloy elements on the hydrogen storageproperties in V-based solid solution alloys[J]. Alloys compd,2008,455:392–397.
    [141]柴玉俊,赵敏寿.几种固溶体储氢合金的研究近况[J].稀有金属材料与工程,2005,34(2):174-179.
    [142] Iba H, Akiba E.Hydrogen absorption and modulatcd structure in T-V-Mn Alloys[J]. Alloyscompd,1997,21:253-254.
    [143] Nakamura Y, Akiba E. New hydride phase with a deformed FCC structure in the Ti-V-Mnsolid solution-hydrogen system[J]. Alloys compd,2000,311-317.
    [144] Okada M, Kuriiwa T, Tamura T, et al. Ti-V-Cr b.c.c. alloys with high protium content[J].Alloys compd,2002,330-332:511-516.
    [145] Yan Y G, Chen Y G, Liang H, et al. Hydrogen storage properties of V30-Ti-Cr-Fe alloys[J].Alloys compd,2007,427:110-114.
    [146]李荣,周上祺,刘守平,等. V3TiNi0.56Al0.2Crx(x=0~0.3)贮氢合金的微结构及电化学性能[J].中国有色金属学报,2010,20(4):707-711.
    [147] Li C J, Wang X L. The relations between the microstructure and the capacity decay rate of theMLNi3.8Co0.6Mn0.55Ti0.05alloy II.Microstructure investigations and discussions[J]. Alloyscompd,1998,270:246-254.
    [148] Iwakura C, Ryuji S Y, Keisuke M, et al. Effects of Ti-V substitution on electrochemical andstructural characteristics of MgNi alloy prepared by mechanical alloying[J]. ElectrochimicaActa,2001,46:2781-2786.
    [149] Lee H H, Lee K Y, Lee J Y. Degradation mechamism of Ti-Zr-V-Mn-Ni metal hysrideelectrodes[J]. Alloys compd,1997,260:201-206.
    [150]张玉洁,杨猛,丁毅,等.表面处理对储氢合金电化学性能的影响研究[J].表面技术,2008,37(4):9-17.
    [151] Kuriyama N, Tsukahara M, Takahashi K, et al. Deterioration behavior of a multi-phasevanadium-based solid solution alloy electrode[J]. Alloys compd,2003,356:738-741.
    [152] Basak S, Shashikala K, Sengupta P, et al. Hydrogen absorption properties of Ti-V-Fe alloys:Effect of Cr substitution[J]. Int J Hydrogen Energy,2007,32(18):4973-4977.
    [153] Lee H H, Lee K Y, Lee J Y. Degradation mechanism of Ti-Zr-V-Mn-Ni metal hydrideelectrodes[J]. Alloys compd,1997,260:201-206.
    [154]张文魁. AB2非化学计量比贮氢合金研究[D].杭州:浙江大学博士论文,1997.
    [155] Li S C, Zhao M S, Wang L M, et al. Structures and electrochemical characteristics ofTi0.26Zr0.07V0.24Mn0.1Ni0.33Mox(x=0-0.1) hydrogen storage alloys[J]. Materials science andengineering B,2008,150:168-174.
    [156] Ren J Y, Zhang Y H, Feng M,et al. Microstructures and electrochemical properties ofCobalt-free LaNi4.0Al0.2Fe0.4Cu0.4-xSnx(x=0-0.4) electrode alloys prepared by casting[J].Journal of rare earths,2006,24:574-578.
    [157] Li B W, Zhang Y H, Wu Z W, et al. Effects of substitution of Mn for Ni on structures andelectrochemical performances of the as-cast and quenched La0.5Ce0.2Mg0.3Co0.4Ni2.6-xMnx(0-0.4) electrode alloys[J]. Int J Hydrogen Energy,2008,33:141-148.
    [158]查全性,电极过程动力学导论[M].第三版,北京:科学出版社,2002.
    [159]曹楚南.腐蚀电化学[M],北京:化学工业出版社,1994.
    [160] Parimala R, Ananth M V, Ramaprabhu S,et al. Effect of electroless coating of Cu, Ni and Pdon ZrMn0.2V0.2Fe0.8Ni0.8alloy used as anodes in Ni-MH batteries[J]. Int J Hydrogen Energy,2004,29:509-13.
    [161]苗鹤,刘永锋,高明霞,等. Co替代Ni对钛钒基储氢电极合金循环稳定性的影响[J].西安交通大学学报,2008,42(5):630-633.
    [162] Wang Y Z, Zhou M S. Electrochemical characteristics and synergetic effect ofTi0.10Zr0.15V0.35Cr0.1Ni0.3-LaNi5hydrogen storage composite electrode[J]. Journal of RareEarths,2012,30:146-50.
    [163] Lee H G, Chourashiya M G, Park C N, et al. Hydrogen storage and electrochemical propertiesof the Ti0.32Cr0.43-x-yV0.25FexMny(x=0-0.055,y=0-0.080) alloys and their composites withMmNi3.99Al0.29Mn0.3Co0.6allo y[J]. Alloys compd,2013,566:37-42.
    [164] Bendersky L A, Wang K, Levin I, et al. Ti2.5Zr2.1Cr8.5MnxCo1.5Ni46.5-xAB2-type metal hydridealloys for electrochemical storage application: Part1. Structural characteristics[J]. PowerSources,2012,218:474-486.
    [165] Nei J, Young K, Salley S O,et al. Effects of annealing on Zr8Ni19X2(X=Ni, Mg, Al, Sc, V, Mn,Co, Sn, La and Hf): Structural characteristics[J]. Alloys compd,2012,516:144-152.
    [166] Nei J, Young K, Salley S O, et al. Effects of annealing on Zr8Ni19X2(X=Ni, Mg, Al, Sc, V,Mn, Co, Sn, La, and Hf): Hydrogen storage and electrochemical properties[J]. Int J HydrogenEnergy,2012,37:8418-8427.
    [167] Hang Z M, Xiao X Z, Li S Q, et al. Influence of heat treatment on the microstructure andhydrogen storage properties of Ti10V77Cr6Fe6Zr alloy [J]. Alloys compd,2012,529:128-133.
    [168]方小飞,罗永春,高志杰,等.热处理对AB5型LaGaMgNiCoAl储氢合金微观组织和电化学性能的影响[J].功能材料,2012,43(20):1-6.
    [169] Kim J H, Han K S, Hwang K T, et al. Effect of heat treatment on microstructure and hydrogenstorage properties of mass-produced Ti0.85Zr0.13(Fex-V)0.56MnNi0.05alloy[J]. Int J HydrogenEnergy,2013,38(14):6215-6220.
    [170] Lee H J, Yang D C, Park C J, et al. Effects of surface modifications of theLMNi3.9Co0.6Mn0.3Al0.2alloy in a KOH/NaBH4solution upon its electrode characteristicswithin a Ni-MH secondary battery[J]. Int J Hydrogen Energy,2009,34:481-486.
    [171] Iwakura C, Fukumoto Y, Matsuoka M, et al. Electrochemical Characterization of HydrogenStorage Alloys Modified with Metal Oxides[J]. Alloys compd,1993,192(1-2):152-154.
    [172] Huang H X, Huang K L, Liu S Q, et al. Effects of Metal Oxides Addition on theElectrochemical Performance of M1Ni3.5Co0.6Mn0.4Al0.5Hydrogen Storage Alloy[J]. Journalof Materials Science,2009,44(6):4460-4465.
    [173] Akiba E, Iba H. Hydrogen absorption by Laves phase related BCC solid solution[J].Intermetallics,1998,6:467-470.
    [174] Hu W, Wang J L, Wang L D, et al. Electrochemical hydrogen storage in (Ti1-xVx)2Ni(x=0.05-0.3) alloys comprising icosahedral quasicrystalline phase[J]. Electrochimica Acta,2009,51:3586-3591.
    [175]Shen X Q, Chen Y G, Tao M D, et al. The structure and high-temperature (303K)electrochemical performance of La0.8-xCexMg0.2Ni (x=0.00-0.20) hydrogen storage alloys[J].Int J Hydrogen Energy,2009,34:3395-3403.
    [176]刘晓刚.球磨Mg1-xNdxNi0.5(x=0-0.2)合金的结构及电化学贮氢性能研究[D].内蒙古科技大学材料与冶金学院.2012.
    [177] Wang C S,Mariza M C,Manuel P S, et al. Improvement in the cycle life of LaB5meta hydrideelectrodes by addition of ZnO to alkaline electrolyte[J]. Electrochemica Acta,2002,47:1069-1078.
    [178] Yu J S, Lee S M, Cho K, et al. The cycle life of Ti0.8Zr0.2V0.5Mn0.5-xCrxNi0.8(x=0to0.5) alloysfor metal hydride electrodes of Ni-metal hydride rechargeable battery[J]. Electrochem. Soc.,2000,147(6):2013-2017.
    [179] Okada M,Kuriiwa T,Tamura T,et al. Ti-V-Cr bcc alloys with high protium content[J]. Alloyscompd,2002,330:511-516.
    [180]朱云峰.钛钒基贮氢电极合金结构和电化学性能研究[D].浙江大学材料与化学工程学院.2003.
    [181] Iwakura C, Ikoma K,Nohara S,et al. Capacity retention characteristics of Nickel/metalhydride batteries with polymer hydrogel electrolyte[J]. Electrochemical and Solid-StateLetters,2005,8(1): A45-A47.
    [182] Ruiz F C, Martinez P S, Castro E B, et al. Effect of electrolyte concentration on theelectrochemical properties of an AB5-type alloy for Ni/MH batteries[J]. Int J HydrogenEnergy,2013,38:240-245.
    [183] Shangguan E, Li J, Chang Z R, et al. Sodium tungstate as electrolyte additive to improvehigh-temperature performance of nickel-metal hydride batteries[J]. Int J Hydrogen Energy,2013,38(12):5133-5138.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700