用户名: 密码: 验证码:
炭纤维表面处理及结构与性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
炭纤维的力学、热学、化学和电学等综合性能优异,是一种很有发展前景的高性能增强材料。炭纤维增强炭基复合材料和陶瓷基复合材料被广泛应用于航空、航天、交通运输、能源、环保等高新技术领域。未经过表面处理的炭纤维表面能低,表面呈现憎水性,缺乏有化学活性的官能团,限制了炭纤维复合材料高性能的发挥。本文采用液相氧化、电化学氧化、化学镀镍和化学气相生长纳米炭纤维等方法对炭纤维表面进行改性处理,改变其表面结构和形貌,增大比表面积,改善炭纤维的力学性能,提高抗氧化性能,以期进一步改善炭纤维复合材料的性能。主要结论如下:
     1、随着硝酸氧化时间的延长,HTA炭纤维的比表面积先有明显的增加,在氧化5min时,达到最大值14.11 m~2/g,而后减小。TX-3炭纤维的比表面积刚开始略有减少,而后明显的增加,在氧化10min时,达到最大值6.613 m~2/g,最后又减小。平均孔径的变化趋势刚好与比表面积的趋势相反,HTA炭纤维在20min达到最大值9.683nm;TX-3炭纤维在15min达到最大值13.44nm。
     2、经过双氧水氧化后,TX-3炭纤维的拉伸强度最大下降9%左右,HTA炭纤维的拉伸强度最大提高13%左右,两种纤维的弹性模量都会降低。随着硝酸氧化时间的延长,TX-3的拉伸强度会先下降,后增加,在氧化10min达到最大,为2.68Gpa,提高了4.8%,最后趋于稳定值。HTA炭纤维的拉伸强度先增加,再减小,然后又有所增加,在20min达到最大,为3.29GPa,提高了11.5%,最后同样趋于稳定值。
     3、分别对HTA炭纤维和TX-3炭纤维进行电化学改性表面处理,通过正交试验发现,HTA炭纤维最佳参数组合为:电解质浓度15%,电流强度20mA,氧化时间60s,此时拉伸强度为3.41GPa,提高了15.6%,弹性模量为189 GPa,下降了9.1%。TX-3炭纤维最佳参数组合为:电解质浓度15%,电流强度30mA,氧化时间40s,此时拉伸强度为2.70GPa,提高了5.5%,弹性模量为189 GPa,提高了4.4%。
     4、用化学镀镍的方法,可以在炭纤维的表面镀上一层连续均匀致密化的镍磷合金薄层,镀层呈玉米颗粒状生长和扩展。化学镀镍提高了纤维的实际拉伸强度,但纤维的弹性模量减小。高温氧化时,Ni-P合金和氧化生成的新相NiO和Ni_3(PO_4)_2在炭纤维表面形成一层保护膜,可减缓炭纤维氧化的速度,提高炭纤维的抗氧化性能。
     5、采用电镀的方法在炭纤维表面沉积纳米Ni单质颗粒作为化学气相沉积原位生长纳米炭纤维的催化剂。沉积温度在化学气相沉积生长纳米炭纤维过程中起着至关重要作用,最佳温度为900℃左右;而沉积时间的长短决定了纳米炭纤维的直径。其最佳工艺条件为:C_3H_6的流量为30ml/min,H_2的流量为200ml/min,N_2的流量为400ml/min,沉积压力保持在700-1000Pa,沉积温度为900℃,沉积时间为4h。
Carbon fiber(CF)is a kind of high performance reinforcing material which has developing prospect because of its excellent properties such as mechanics,thermology,chemistry and electricity.CF reinforcing C/C and C/SiC composites have big application prospect,and widely used in field of aviation,astronautics,transportation,energy and so on.CF without any surface treatment can limit the composites' properties due to the low surface energy,hydrophobic property and the lack of active functional groups.In this research work,CF with modification treatment by some methods including liquid-phase oxidation,electrochemical,electroless nickel plating and growing nano-CF by chemical vapor deposition(CVD), have variational structure and appearance,more surface area,better mechanical properties,and higher oxidation resistance,which further improve the performance of compound materials with carbon fiber.
     1、Along with the increase of oxidation time by nitric acid,the HTA-CF's surface area increases firstly,then reduces.When the oxidized time is 5min,the surface area gets to the maximize of 14.11 m~2/g.The TX-3 CF's surface area started to have reduction,then obvious increase, finally reduces.When the oxidized time is 10min,the surface area gets to the maximize of 6.613 m~2/g.The average aperture changed tendency is opposite than that of the surface area.The HTA-CF's average aperture maximizing 9.683nm at 20min and the TX-3 CF's average aperture maximizing 13.44nm at 15min.
     2、After oxidation by hydrogen peroxide,the TX-3 CF's tensile strength drop most by 9%,and the HTA CF's tensile strength enhance most by 13%,meanwhile both CF's elastic modulus reduce.Along with the nitric acid oxidation time's extension,TX-3 CF's tensile strength obviously reduces firstly,then increases.When the oxidized time is 10min,the tensile strength maximizing 2.68GPa,improving 4.8%and tends to stable finally;HTA CF's tensile strength increases firstly,then reduces,then increases.When the oxidized time is 20min,the tensile strength maximizing 3.29GPa,improving 11.5%,finally it also tends the stable value.
     3、The HTA and TX-3 CF are modified by electrochemistry separately.Through orthogonal experiment,it can be seen that the HTA CF's optimum parameter combination is that:electrolyte density is 15%, current intensity is 20mA,electro-oxidation time is 60s.The tensile strength is 3.41GPa,improving 15.6%and the elastic modulus is 189 GPa,descending 9.1%.The TX-3 CF's optimum parameter combination is that:electrolyte density is 15%,current intensity is 30mA, electro-oxidation time is 40s.The tensile strength is 2.70GPa,improving 5.5%and the elastic modulus is 189 GPa,improving 4.4%.
     4、Electroless deposition technique is used to deposit a layer of nickel-phosphorus alloy on the CF's surface,and the layer is continual, even and compact.The layer grows and expands with granular corn.After plating nickel on the CF,it can enhance the CF's actual tensile strength, and reduce the CF's elastic modulus.When high temperature oxidation, Ni-P alloy,NiO and Ni_3(PO_4)_2 producted by oxidation formed a protective layer on the CF.These all can decreased the oxidation speed of carbon fiber and enhance its high temperature anti-oxidation properties.
     5、Electroplating is used to deposit the nanometer Ni on the CF's surface,which is the catalyst to grow nanometer CF by CVD.The deposition temperature plays an important role in growing nanometer CF by CVD,and the best temperature is about 900℃.The deposition time affects the nanometer CF's diameter.The optimal process conditions is as follows:C_3H_6 dosage 30ml/min,H_2 dosage 200ml/min,N_2 dosage 400ml/min,press 700-1000Pa,temperature 900℃and time 4h.
引文
[1]赵稼祥.2002年世界碳纤维前景[J].高科技纤维与应用,2002,27(6):6-9.
    [2]J.B.Dennet,R.C.Bansal著.碳纤维[M].北京:科学出版社,1989.
    [3]陈绍杰,申屠年.先进复合材料的近期发展趋势[J].高科技纤维与应用,2004,29(1):1-7.
    [4]陈绍杰.先进复合材料的民用研究与发展[J].材料导报,2000,14(11):8-10.
    [5]林志勇,杜慷慨,叶葳.碳纤维表面氧化还原研究[J].华侨大学学报(自然科学版),1999,20(4):354-357.
    [6]康勇,项素云,梁培亮.沥青基碳纤维表面复合处理的研究[J].功能高分子学报,1999,12(4):450-452.
    [7]Delannay F,Froyen L,Deruytture A.Review -The wetting of solids by molten metals and its relation to the preparation of metalmatrix composites[J].J.Mater.Sci,1987,22:1-16.
    [8]克雷德G.(温仲元,译).金属基复合材料[M].北京:国防工业出版社,1982.
    [9]王茂章,贺福.碳纤维的制造、性质及其应用[M].北京:科学出版社,1984.
    [10]Donnet J R,Roop Chand Bansal,,Intern.Fiber Sci and Tech./3,Mcrcel dekker,Inc.New York and Basel
    [11]Ehrburger P,donnet J B.SURFACE TREATMENT OF CARBON FIBRES FOR RESIN MATRICES,Strong Fibers,1985:577-603o
    [12]Ehrburger P,donnet J B,in Lewin M,Perov J eds.High Tech Fibers,Part A,Marcel Dekker Inc.New York,1985:269
    [13]殷永霞,沃西源.碳纤维表面改性研究进展[J].航天返回与遥感,25(1):51-54.
    [14]Mancha L M,Yasuda E,Tanabe Y,et al.Effect of carbon fiber surface-treatment on mechanical properties of C/C composites.CARBON,1998,26(3):333-337
    [15]Yasuda E,Suzuki Y,Inoue Y et al.Microstructural change of pitch derived carbon matrix in C/C composite by ozone treatment on carbon fiber.Tanso,1995,170:247-254.
    [16]Parashar V K,Dhakate S R,Bahl O P et al.Role of interphase in the development of high performance C/C composites.In:Eurocarbon 98,Strasbourg,France 1998:483-484.
    [17]吴庆,陈惠芳,潘鼎.碳纤维表面处理与上浆综述[J].材料导报,14(6):41-42.
    [18]张乾,谢发勤.碳纤维的表面改性研究进展[J].金属热处理,26(8):1-4.
    [19]Fitzer E,Weiss R,Carbon,1987,25(4):455.
    [20]Krekel G,Huttinger K J,Hoffman W P,Silver D S.J Mater Sci.1984,(29):29-68
    [21]李润民,贺福.材料科学进展,1993,7(2):45-50.
    [22]吉川高雄,小岛昭,大谷杉郎,等.炭素,1990,(144):182.
    [23]Fitzer E,Weiss R.Carbon,1987,25(4):455.
    [24]Kaushik,Vijay Kumar.Surface characterization of KMnO_4 treated carbon fiber precursors using X-ray photoelectron spectroscopy[J].Polym.Test,2000,19(1):17-25.
    [25]Basova Yu V,Hatori H,Yamada Y,et al.Effect of oxidation-reduction surface treatment on the electrochemical behavior of PAN-based carbon fibers[J].Electrochem.Commun,1999,1(11):540-544.
    [26]丁庆军,李悦,胡曙光,等.表面改性碳纤维增强MDF水泥及其机理研究[J].武汉工业大学学报,1998,20(2):1-4.
    [27]康勇,项素云,梁培亮.沥青基碳纤维表面复合处理的研究[J].功能高分子学报,1999,12(4):450-452.
    [28]唐纳特J B,班萨尔R C(李仍元,过梅丽,译).碳纤维[M].北京:科学出版社,1989.
    [29]林慷慨,林志勇.碳纤维表面氧化的研究[J].华侨大学学报(自然科学版),1990,20(2):136-141.
    [30]Basova Yu V,Hatori H,Yamada Y,et al.Effect of oxidation-reduction surface treatment on the electrochemical behavior of PAN-based carbon fibers[J].Electrochem Commun,1999,1(11):540-544.
    [31]丁庆军,李悦,胡曙光,等.表面改性碳纤维增强MDF水泥及其机理研究[J].武汉工业大学学报,1998,20(2):124-126.
    [32]WANG Yu-Qing,ZHANG Feng-Qiu,Sherwood,et al.X-ray Photoelectron Spectroscopic Study of Carbon Fiber Surfaces and Interfacial Interactions between Polyvinyl Alcohol and Carbon Fibers Electrochemically Oxidized in Nitric Acid Solution[J].Chem.Mater.,1999,11(9):2573-2583.
    [33]房宽峻,蔡玉青,戴瑾瑾,王菊生.电解质浓度对电化学氧化后碳纤维表面基团含量的影响[J].青岛大学学报,1999,14(1):7-10.
    [34]Yue Z R,Jiang W,Wang L,et al.Surface characterization of electrochemically oxidized carbon fibers[J].Carbon,1999,37(11):1785-1796.
    [35]时东霞,刘宁,杨海强,等.聚丙烯腈基碳纤维的表面结构研究[J].电子显微学 报,1997,16(6):733-735.
    [36]DiefendorfR J,Yokarsky E.High-Performance Carbon Fibers[J].Polymer Engineering and Science,1975,15:150-159.
    [37]SUDARSHAN TS(范玉殿,译).表面改性技术工程师指南[M].北京:清华大学出版社,1992.
    [38]唐纳特J B,班萨尔R C(李仍元,过梅丽,译).碳纤维[M].北京:科学出版社,1989.
    [39]Chen Yan,Iroh Jude O.Electrodeposition of BTDA-ODA-PDA polyamic acid coatings on carbon fibers nonaqueous emulsions[J].Polym.Eng.Sci.,1999,39(4):699-707.
    [40]何嘉松,吴人洁,王学贵.碳纤维表面的电沉积处理[P].中国:1001219,1986-07-02.
    [41]张复盛,吴瑜,庄严.双丙酮丙烯酰胺在碳纤维表面的电聚合研究[J].北京航空航天大学学报,1998,24(4):129-132.
    [42]于春田,崔健中,王磊.金属基复合材料[M].北京:冶金工业出版社,1995.
    [43]Tokunaga K,Yoshida N,Noda N,et al.Behavior of plasma-sprayed tungsten coating on CFC and graphite under high heatload[J].J.Nucl.Mater.,1999:266-269,1224-1229.
    [44]曾庆冰.溶胶.凝胶法TiO_2涂层碳纤维增强铝基复合材料的研制[J].高分子材料科学与工程,1999,15(4):171-175.
    [45]谢征芳,肖加余,陈朝辉,等.用溶胶-凝胶法制备碳纤维三维编织物增强氧化铝基复合材料的研究[J].国防科技大学学报,1998,20(5):14-18.
    [46]高瑞林 李安邦.碳纤维测试方法[M].山西:山西科学教育出版社,1989
    [47]Pittman C U,Jr Jiang W,Yue Z R,et al.Surface area and pore size distribution of microporous carbon fibers prepared by electrochemical oxidation[J].Carbon,1999,(1):85-96.
    [48]Yue Z R,W Jiang,Wang L,et al.Surface characterization of electrochemically oxidized carbon fibers[J].Carbon,1999,37(11):1785-1796.
    [49]Soo-Jin Park,Mun-Han Kim,Jac-Rock Lee,et al.Effect of fiber-polymer interactions on fracture toughness behavior of carbon fiber-reinforced epoxy matrix composites[J].Journal of Colloid and Interface Science,2000,228(2):287-291.
    [50]Soo-Jin Park,Mun-Han Kim.Effect of acidic anode treatment on CF for increasing fiber-matrix adhesion and its relationship to ILSS of composites[J]. Journal Material Science,2000,35(8):1901-1905.
    [51]Soo-Jin Park,Byung-Jae Park.Electrochemically modified PAN-CF and interfacial adhesion in epoxy-resin composites[J].Journal Material Science Letters,1999,18(1):47-49
    [52]Seung-Kon Ryu,Byung-Jae Park,Soo-Jin Park.XPS analysis of carbon fiber surfaces-anodized and interfacical effects in fiber-epoxy composites[J].Journal of Colloid and Interface Science,1999,215(1):167-169.
    [53]韩变华,罗天骄,姚广春,刘宜汉。碳纤维镀镍[J],有色矿冶,2006,22(2):37-40.
    [55]罗天骄,姚广春,张晓明等.连续碳纤维表面金属化[J].东北大学学报,2005,26(9):882-885.
    [55]边蕴静.电磁波屏蔽涂料[J].化工新型材料,1997,(7):17-19.
    [56]华宝家,肖高志,杨建生.碳纤维在结构隐身材料中的应用研究[J].宇航材料工艺,1994,(3):31-34.
    [57]Chen XH,Xia JT,Peng JC,et al.Carbon-nanotube metal-matrix composites prepared by electroless plating[J].Composites Science and Technology,2000,60(2):301-306
    [58]Ang L.M,Hor T.S.A,Xu G.Q,et al.Decoration of activated carbon nanotubes with copper and nickel[J].Carbon,2000,38(3):363-372.
    [59]闫洪.现代化学镀镍和复合镀新技术[M].北京,国防工业出版社,1999,2.
    [60]何为,唐先忠,迟兰州.碳纤维表面化学镀镍工艺研究[J],电镀与涂饰,2003,22(1):8-11.
    [61]Kong FZ,Zhang XB,Xiong WQ,et al.Continuous Ni-layer on multiwall carbon nanotubes by an electroless plating method[J].Surface Coat Technology,2002,15(5):33-36.
    [62]关振铎,张中太,焦金生.无机材料物理性能[M],清华大学出版社,2002:96-100
    [63]姜晓霞,沈伟.化学镀理论及实践[M].北京,国防工业出版社.2001:78-90
    [64]李宁.化学镀实用技术[M].北京,化学工业出版社.2006:187-188
    [65]李安邦.气象生长炭纤维[J].新型炭材料,1999,14(3):79
    [66]陈晓红,李安邦,刘朗,气相生长炭纤维[J],新型炭材料,1995,(1):14-19
    [67]朱东波,黄启忠,李晔,Fe催化PAN炭纤维原位生长纳米炭纤维,新型炭材料,2002,17(3):66-69

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700