用户名: 密码: 验证码:
氧化锌纳米阵列气敏性能及发光、浸润性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统的纳米粉体或薄膜制备的半导体气敏元件由于颗粒易发生团聚或在高温工作时出现晶粒吞并、长大的陶瓷化过程,难以满足高灵敏度和选择性要求。将一维纳米材料制备成阵列作为气敏元件可能有效提高气敏元件性能。
     本文利用两步溶液化学法在不同基体上制备出氧化锌纳米阵列,通过对气体的灵敏度、响应时间等测量评价了氧化锌纳米阵列的气敏性能,并对包覆有二氧化钛纳米粒子的氧化锌纳米阵列气敏性能进行了研究;另外还研究了氧化锌纳米阵列的光致发光和浸润性,主要研究结果如下:
     1、通过两步溶液化学法制备出氧化锌纳米阵列。
     首先乙酸锌水解制备出ZnO纳米粒子的胶体溶液,然后将胶体溶液涂到玻璃或Al2O3陶瓷管基体上,在300~500℃之间热处理,获得了粒径在5~20nm之间的ZnO纳米薄膜,利用所得到的薄膜为前体,通过适当溶液化学反应获得了直径为20~200nm,长度为50 nm~2μm的ZnO纳米阵列。
     研究结果表明,两步溶液化学法可以在较低温度下大面积生长氧化锌纳米阵列,所得到的氧化锌纳米阵列分布均匀,呈c轴取向,晶体结构为六方纤维锌矿结构。2、对乙醇和氢气的气敏性能测试表明,工作温度为350℃时,所制备的氧化锌纳米阵列气敏元件对2500ppm乙醇的灵敏度为71.104,即使乙醇的浓度低至50ppm,其灵敏度仍然为10.573;氢气浓度为2500ppm时,氧化锌纳米阵列气敏元件的灵敏度也达到30.076。与氧化锌纳米粉体材料所制备的传感元件相比,这些结果都有较大提高。
     以氧化锌为基体的ZnO-TiO2复合材料在工作温度为350℃时,气敏元件对2500ppm乙醇的灵敏度为74.949,对相同浓度的氢气的灵敏度也达到52.09。研究结果还表明,无论纯氧化锌纳米阵列还是ZnO-TiO2复合材料气敏元件对乙醇的灵敏度都比对相同浓度的氢气灵敏度要高。
     3、光致发光性能研究结果表明,氧化锌纳米阵列的紫外发光峰位于399.8nm,与氧化锌纳米薄膜相比,纳米阵列的紫外发光明显的红移,且发光强度明显减弱;但纳米阵列的发光峰在蓝光部分相对增强。
     4、通过接触角测量评价了氧化锌纳米阵列的浸润性,重点研究了粒径大小对氧化锌纳米阵列的亲水性能的影响。对氧化锌纳米膜前体在300℃时进行不同时间的热处理,随热处理时间的增加,所得到的氧化锌纳米阵列中纳米棒的平均直径逐渐增加,亲水性逐渐减弱。
The sensitivity and selectivity of traditional semiconductor metal oxide sensors prepared using powders with grain size in micron or nano range were not high enough to detected very low concentration gases due to their grain growth when they were working at relatively high temperature, It should be possible to increase the sensing properties of these sensors with 1-D nanostructures array.
     ZnO nanorods array on different kinds of substrates were prepared by a two-step solution method. The corresponding gas sensitivity, photoluminescence and wettability were investigated, and the gas sensitivity of ZnO nanorods covered with TiO2 was studied as well. The main findings are as following:
     1. Preparation of ZnO nanorods array via a two-step solution approach. The ZnO sol was prepared through Zn(Ac)12 hydrolysis, then the ZnO sol prepared was coated onto glass or Al2O3 tubes , annealed at 200~600℃, ZnO film precursor with the diameter of 5~20nm was obtained.
     Large-area, well-aligned ZnO nanorods can be obtained by further reaction on the ZnO precursors, the diameters and lengths of the obtained ZnO nanorods array are in the range of 20~200nm and 50nm~2μm respectively. The as-prepared ZnO nanorods are wurtzite structure with preferentially c-axis orientation.
     2. Sensitivity measurement of ethanol and hydrogen showed that at the temperature of 350℃, the aligned ZnO nanorods gas sensor exhibited a sensitivity of 71.104 and 30.076 to 2500ppm ethanol and hydrogen respectively, the sensitivity achieved 10.573 even being exposed to the gas concentration as low as 50ppm ethanol. The sensitivity test of ethanol and hydrogen showed that the aligned zinc oxide nanorods devices had an improved sensing performance compared with the reported ZnO nanoparticle sensors.
     An investigation on the gas sensor of ZnO-TiO2 composite showed that at 350℃, the sensitivity of ZnO-TiO2 composite are 74.949 and 52.09 to 2500ppm ethanol and hydrogen respectively. Either pure ZnO nanorods or ZnO-TiO2 composite gas sensors showed relatively higher sensitivity to ethanol than to hydrogen.
     3. In contrast to the photoluminescence spectra gathered from ZnO film, the emission band of ZnO nanorods red-shifted to the position around 399.8nm, and the intensity of violet luminescence decreased greatly compared with that of ZnO film sample. Nevertheless, the intensity of blue luminescence was relatively increased.
     4. The wettability of ZnO nanorods array was evaluated via contact angular measurement. Results showed that the hydrophilicity of ZnO nanorods array decresed as the heat-treatment time increased at the temperature of 300℃.
引文
[1] 郑昌琼, 冉均国. 新型无机材料[M]. 北京: 科学出版社, 2003
    [2] 崔梅生, 王道, 白守礼等. 基于质子导体的燃料电池型气体传感器[J]. 化工学报,2003,54: 232-236
    [3] 马丽景, 闫涛. The Preparation and Gas-sensing Property of Nanosize γ-Fe2O3/SiO2[J].Chinese Journal of Chemical Engineering(中国化学工程学报: 英文版), 2004, 12: 282-285
    [4] 程本同, 张振峰, 刘激扬. 传感器在环境监视中的作用[J]. 传感器技术, 2000, 19:1-4
    [5] 何保山, 周仲柏, 蔡乃才等. 用于实时、动态检测多组分气体的多传感器技术与电化学传感器系统[J]. 测控技术, 2004, 23: 16-17
    [6] 张维新, 朱秀文, 毛赣如. 半导体传感器[M]. 天津: 天津大学出版社, 1990
    [7] Sharma, Rajnish K. Sensitive,selective and stable tin dioxide thin-films for carbon monoxide and hydrogen sensing in integratal gas sensor array applications[J]. Sensor and Actuators B, 2001, 72: 160-166
    [8] 康昌鹤, 唐省吾, 杨树人等编著. 气、湿敏感器件及其应用[M]. 北京: 科学出版社,1988
    [9] 刘延辉.特殊形态纳米 ZnO 气敏性能研究[D].武汉:华中科技大学材料学,2005
    [10] 吴兴惠. 敏感元器件及材料[M]. 电子工业出版社,1992
    [11] Seiyama T, Kato A. Low temperature sol-gel synthesis and humidity sensing properties of Cr2? xTixO3[J].Chem, 1962, 34:1502-1506
    [12] Nanto H, Minami T, Takata S. Zinc oxide thin-film trimethylamine sensor with high sensitivity and excellent selectivity[J],J. Appl. Phys,1986, 60:482-486
    [13] Chatterjee A P, Mitra P. Chemically deposited zinc oxide thin film gas sensor [J]. Science, 1999, 34: 4225- 4230
    [14] Yamazaki T, Wada S. Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors[J]. Sens. Actuators B, 1993, 14:594-599
    [15] Nenov T, Yordanov S. Ceramic sensor device materials[J]. Sens. Actuators B, 1992, 8:117-122
    [16] Kong J, Franklin N R. Nanotube Molecular Wires as Chemical Sensors[J].Science, 2000, 287:622-627
    [17] Xu Jiaqiang, Chen Yuping, Chen Daoyong. Hydrothermal synthesis and gas sensing characters of ZnO nanorods[J]. Sens. Actuators B, 2006, 113:526-531
    [18] 张立德、牟季美编著. 纳米材料与纳米结构[M].北京:科学出版社,2001
    [19] 蒋剑莉, 李江. 纳米ZnO的量子限域效应和激光散射特性研究[J].物理实验, 2004, 24:20-25
    [20] 张志焜, 崔作林. 纳米技术与纳米材料[M]. 北京: 国防工业出版社, 2000
    [21] 胡志强. 无机材料科学基础教程[M]. 北京: 化学工业出版社, 2004
    [22] Wang Y C, Leu I C. Preparation and characterization of nanosized ZnO arrays by electrophoretic deposition[J]. Journal of Crystal Growth, 2002, 22:564-568
    [23] Zhang X T, Liu Y C. Resonant Raman scttering and photoluminescence from high-quality nanocrystalline Zno thin films prepared by thermal oxidation of ZnS thin films[J]. J.Phys.D:Appl.Phys,2001, 34:3430-3433
    [24] Chen S J, Liu Y C. Photoluminescence properties of ZnO films grown on InP by thermally oxidizing metallic Zn films[J] .J.Phys.Condens.Matter , 2003, 15:1-7
    [25] 段理, 林碧霞. ZnO薄膜的掺杂及其结型材料的研究进展[J]. 前沿进展, 2003, 32:25-31
    [26] Bagnall D M, Chen Y F. Optically pumped lasing of ZnO at room temperature[J]. Appl. Phys. Lett. 1997, 70:2230-2235
    [27] 许小亮,施朝淑. 纳米微晶结构ZnO及其紫外激光[J],物理学进展, 2000, 20:227-231
    [28] Xing Guang jian, Chen Guanghua. ZnO and TiO2 nanoparticles encapsulated in boron nitride nanocages[J]. Microelectronic Engineering, 2003, 66:70-76
    [29] 石西昌, 王赛, 秦毅红. 纳米ZnO的制备[J].化工新型材料, 2003, 31:129-133
    [30] 席燕燕, 黄怀国, 郑志新. ZnO-聚苯胺复合膜的制备和性能研究[J]. 电化学, 2003, 9:64-69
    [31] Joshy Jose, M. Abdul Khadar. Impedance spectroscopic analysis of a cresponse of nanophase ZnO and ZnO-Al2O3 nanocomposites[J]. NanoStructured Materials, 1999, 11:1091-1099,
    [32]Shi Shuzhe, Xu Ming. Lateral growth mechanism of nanowire arrays of ZnO[J]. Chin. Electr. Microsc. Soc, 2005, 24:196-200
    [33] Yan Haoquan, Johnson Justin. ZnO Nanoribbon Microcavity Lasers[J], Adv.Mater.2003, 15: 1907-1911
    [34] Wang Zhonglin, Kong Xiangyang, et al.Semiconducting and Piezoelectric Oxide Nanostructures Induced by Polar Syrfaces[J].Adv.Mater, 2004, 14:943-956
    [35] Huang M H,Mao S.Room—temperature Ultraviolet Nanowire Nanolasers[J]. Science, 2001,292:1897-1901
    [36] 杨秀健,施朝淑,许小亮. 纳米ZnO的研究及其进展[J]. 无机材料学报,2003, 18:1-10
    [37] 白守礼, 马丽景. 纳米复合金属氧化物的制备、表征和气敏性质研究[J]. 自然科学进展, 2004, 14: 833-836
    [38] HeoY W, Norton D P. ZnO nanowire growth and device[J]. Materials and Enggineering, 2004, 47: 1-47
    [39] Wagh M S, Patil L A. Surface cupricated SnO2-ZnO thick films as a H2S gas sensor[J]. Materials Chemistry and Physics, 2004, 84: 228-233
    [40] Gao T, Wang T H. Synthesis and properties of multipod-shaped ZnO nanorods for gas-sensor applications[J]. Appl.Phys. A:Materials Science & Processing, 2004, 32: 82-86
    [41] Trivikrama Rao G S, Tarakarama Rao D. Gas sensivity of ZnO based thick film sensor to NH3 at room temperature[J]. Sensors and Actuators B, 1999, 55: 166-169
    [42] Anno Y, MaekawaT. Zinc-oxide-based semiconductor sensors for detecting acetone and capronaldehyde in the vapour of consommé soup[J]. Sensors and Actuators B, 1995, 25: 623-627
    [43] Xu Jiaqiang, Yuan Shun. Sensing characteristics of double layer film of ZnO[J]. Sensors and Actuators B, 2000, 66: 161-163
    [44] Gao Tao, Li Qiuhong. Sonochemical Synthesis, Optical Properties, and Electrical Properties of Core/Shell-Type ZnO Nanorod/CdS Nanoparticle Composites[J]. Chem.Mater, 2005, 17: 887-892
    [45] Choi Jeong Duk, Choi Gyeong Man. Electrical and CO gas sensing properties of layered ZnO-CuO sensor[J]. Sensors and Actuators B: Chemical, 2000, 69: 120-126
    [46] Yu J H, Choi G M. Electrical and CO gas-sensing properties of ZnO/SnO2 hetro-contact[J]. Sensors and Actuators B, 1999, 61: 59-67
    [47] 李建平,朱敏慧. 微结构气敏传感器研究:现状与发展[R]. 第五届全国敏感元件与传感器学术会议文集,1997.9,大连:268-269
    [48] Wu Q, Lee KM. Development of chemical sensors using microfabrication and micro machining techniques[J]. Sensors and Actuators B, 1993, 13:1-6
    [49] Cavicchi R E. Optimized temperature-pulse sequence for the enhancement of chemicallyspecific response patterns from micro-hotplate gas sensor[J]. Sensors and Actuators B, 1996, 33:142-146
    [50] Fung S K H. Thermal analysis and design of a micro-hotplate for integrated gas-sensor applications[J]. Sensors and Actuators A, 1996, 54:482-487
    [51] Lee D D. Low-power micro gas sensor[J]. Sensors and Actuators B, 1996, 33:147-150
    [52] Atkinson A, Moseley P T. Thin film electroceramics[J]. Applied Surface Science, 1993, 65:212-219
    [53] 马戎, 周王民, 陈明. 基于传感器阵列与神经网络的气体检测系统[J]. 传感技术学报, 2004, 17: 395-398
    [54] Mo Yaowu, Okawa Yuzo, InoueKo ji. Low-voltage and low-power optimization of micro-heaterand its on-chip drive circuitry for gas sensor array[J]. Sensors and Actuators A, 2002, 100: 94-101
    [55] Kohl D, Heinert L, et al. Gas sensor for food aroma during baking and roasting processes based on selective odorant measurements by an array(HRGG/SOMMSA)[J]. Thin Solid Films, 2001, 391: 303-307
    [56] Thomas Bachinger, Ulrich Riese, et al. Gas sensor arrays for early detection of infection in mammalian cell culture[J]. Biosensors & Bioelectronics, 2002, 17: 395-403
    [57] Myriame Morvan, Thierry Talou, Jean-Francois Beziau. MOS–MOSFET gas sensors array measurements versus sensory and chemical characterisation of VOC’s emissions from car seat foams[J]. Sensors and Actuators B, 2003, 95: 212-223
    [58] Corrado Di Natale, Antonella Macagnano, Eugenio Martinelli. Application ofmetalloporphyrins-based gas and liquid sensor arrays to the analysis of red wine[J]. Analytica Chimica Acta, 2004, 513: 49-56
    [59] Nicolas Jacques, Romain A C. Establishing the limit of detection and the resolution limits of odorous sources in the environment for an array of metal oxide gas sensors[J]. Sensors and Actuators B, 2004, 99: 384-392
    [60] Yu P, Tang Z K, Wong G K. 23 rd Int Conf on the Physics of Semiconductor [C]. Singapore : World Scientific , 1996, 1453-1456
    [61] Xu Xiaoliang, Shi Chaoshu. Nano-size crystalline structured ZnO and its UV laser [J]. Progress in Physics, 2000, 20:356-369 (in Chinese)
    [62]Nishino T, Meguro M. The Lowest Surface Free Energy Based on CF3 Alignment Langmuir[J].Angew. Chem. Int. Ed, 1999, 15: 4321-4323
    [63] 曹炳阳, 陈民, 过增元.纳米结构表面浸润性质的分子动力学研究[J]. 高等学校化学学报,2005, 2:277-280
    [64] 马继承.氧化锌薄膜表面可控浸润性研究[D].长春:东北师范大学物理化学,2004
    [65] Cassie A. B. D, Discuss. Faraday Soc., 1948, 3: 11-15
    [66] Akira Nakajima, Akira Fujishima. Preparation of Transparent Superhydrophobic Boehmite and silica Films by Sublimation of Aluminum Acetylacetonate[J]. Adver. Mater,199, 11:1365-1368
    [67] Lin Feng, Zhongyi Zhang. A Super-hydrophobic and Super-oleophilic Coating Mesh Film for the Separation of Oil and Water[J]. Angew.Chem. Int. Ed, 2004, 43: 2012-2014
    [68] Lin Feng, Shuhong Li.Superhydrophobic Surface of Aligned Polyacrylonitrile Nanofibers[J]. Angew. Chem. Int. Ed, 2002, 41: 1221-1223
    [69] Lin Feng, Li Shuhong. Superhydrophpbic Surface: From Natural to Artificial[J]. Adv.Mater, 2002, 14:1857-1860
    [70] Zhang Shicheng, Li Chunhe,Li Xingguo. Size Control and Characterization of ZnO Nanoparticles[J]. J. Phys. Chem. B, 2002, 106: 6 985-6 990
    [71] Sun R. D, N akajima A, Fujishima A. et al. The Effect of Dopant Mo6+ on the Superhydrophilicity of the TiO2 Thin Film[J], J. Phys. Chem. B, 2001, 105 : 1984-1990
    [72] Xin Jianfeng, Lin feng. Reversible Super-hydrophobicity to Super-hydrophilicity Transition of Aligned ZnO Nanorod Films[J]. J. AM. CHEM. SOC,2004, 126:62-63 [73 ] Guo Min, Diao Peng. Hydrothermal Preparation of Highly-oriented ZnO Nanorod Array Film[J]. Acta Chim Sinica, 2004, 25:345-347
    [74] Yu K, Zhang Y, et a1. Growth and optical properties of quadrangular zinc oxide nanorods on copper-filled porous silicon[J]. Appl Phys A, 2004, 8:233-335
    [75] Wang Y W, Zhang L D, et al. Catalytic growth of semiconducting zinc oxide nanowires and their photoluminescence properties[J]. J Crys Growth, 2002, 234: 171-174
    [76] Meulemkanp E A. Electron transport in nanoparticulate ZnO films[J]. J Phys Chem B, 1999, 103: 7831 -7838
    [77] Zhu Y W, Zhang H Z, Sun X C, et al. Efficient field emission from ZnO nanoneedle[J].Appl Phys Lett,2003, 83:144-146
    [78] Xu Jiaqiang,Chen Yuping. Gas sensing properties of ZnO nanorods prepared by hydrothermal method[J]. Journal of materials science, 2005, 40:2919 – 2921
    [79] Shi Aiyun, Li Jintong. Preparition and Photocatalytic Property of ZnO Nanorods with Uniform Morphologh[J]. Chin J Inorg Chem, 2005, 21:270-272
    [80] Yang Peidong, Yan Haoquan, et al. Controlled growth of ZnO nanowires and their optical properties[J]. Adv Funct Mater, 2002, 12: 323-328
    [81] Pan Z W, Dai Z R. Nanobelts of semiconducting oxides[J]. Science, 2001, 291: 1947-1949
    [82] Meng G W, Zhang L D. Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties[J]. Appl Phys Lett, 2000, 76: 2011-2014
    [83] Hartanto A B,Ning X,Nakata Y. Growth mechanism of ZnO nanorods from nanoparticles formed in a laser ablation plume[J]. Appl Phys A,2004, 78:299–301
    [84] Lee Woong, Jeong Min chang. Fabrication and application potential of ZnO nanowires grown on GaAs(002) substrates by metal–organic chemical vapour deposition[J]. Nanotechnology, 2004, 15: 254-257
    [85] Park W I, Kim D H, Jung S W,et al. Metal organic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods[J]. Appl Phys Lett,2002, 80: 4232-4235
    [86] Guo Min, Diao Peng. Novel Approach to Preparing Well-oriented ZnO Nanorods on Substrates[J]. Acta Chim Sinica, 2003, 61: 1165-1168
    [87] Boyle d S, Goyender K, Opbrien P. Novel low temperature solution deposition of perpendicularly orientated rods of ZnO: substrate effects and evidence of the importance of counter ions in the control of crystallite growth[J]. Chem Commun, 2002, 1: 802-810
    [88] Muthukumar S, Gorla C R, eanetoglen W. “Control of morphology and orientation of ZnO thin films grown onSiO2 /Si substrates[J]. J. Crys. Growth, 2001, 225:197-200
    [89] 孙小松,余洲.催化剂辅助化学气相沉积法制备准单晶ZnO纳米线[J].半导体光电,2005,26:216-218
    [90] Yuan Z H, Duan Y Q et al. Self-catalysis growth of zinc oxide nanopillar array[ J ]. Chinese Sci Bull, 2005, 50: 965-967
    [91] Park W I, Kim D H, Jung S W,et al. Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods[J]. Appl Phys Lett,2002, 80: 4232-4234
    [92] Oark W I, Kim D H, Yi G C. Fabrication and Controlled Magnetic Properties of Ni/ZnO Nanorod Heterostructures[ J ] .Adv Mater, 2003, 15:1358-1361
    [93] Zhong Rong R T, et al. Complex and oriented ZnO nanostructures[J]. Nature, 2003, 2:821-825
    [94] 王立晟, 章晓中. PVD法在ZnO(001)薄膜上制备ZnO纳米线阵列[J ].电子显微学报, 2005, 24 :252
    [95] 贺英, 王均安,桑文斌.采用高分子自组装ZnO纳米线及其形成机理[J].化学学报, 2005, 63:1037-1041
    [96] Banerjee D, Lao J Y, Wang D Z. Large-quantity free-standing ZnO nanowires[J]. Appl Phys Lett, 2003, 83: 2061-2065
    [97] 艾仕云,金利通,周杰. 路福绥.均一形貌的zno纳米棒的制备及其光催化性能研究[J]. 无机化学学报,2005, 21:270-273
    [98] Sakohara S, Tickanen L D. Luminescence Properties of Thin Zinc Oxide Membranes Prepared by Sol-Gel Technique: Change in Visible Luminescence during Firing[J]. J. Phys. Chem, 1992, 96:11086–11091
    [99] Rao B B. Zinc oxide ceramic semi-conductor gas sensor for ethanol vapor[J]. Mater. Chem. Phys. 2000, 64: 62–65
    [100] 万青. 零维Ge和一维Zn0纳米结构与器件[D]. 中国科学院上海微系统与信息技术研究所,2004.
    [101] Zakrzewska K. Mixed oxides as gas sensors[J]. Thin Sloid Films,2005, 2:291-295
    [102] 史桂霞, 白玉俊. GaP/桑色素纳米复合材料自组织形态与桑色素浓度的关系[ J ].山东大学报, 2005, 37: 144-149

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700