用户名: 密码: 验证码:
流场结构化的新型高粘缩聚反应器
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
理想的反应器应该能够提供满足反应所需的流场结构。缩聚反应器需强化高粘流体的传递过程并使传递与反应进程正确耦合。高粘缩聚反应器的传递性能主要取决于其成膜和表面更新特性。本文在研究孔式、栅缝式等简单结构的降膜元件流动和传递特性基础上,设计了流场结构化的新型高粘缩聚反应器:反应器采用立式结构,通过降膜内构件的组合使聚合物熔体在重力作用下形成稳定降液膜流动;降膜元件结构类型、尺寸及其组合方式与物系流变性相适应,始终满足较大成膜面积和较快表面更新的结合;设置多级溢流持液器,强化过程流体分散与混合,实现过程停留时间可控,并使反应器内物料整体流动趋于平推流。所构建的流场结构化的新型高粘缩聚反应器成功应用于聚酯与聚碳酸酯的熔融缩聚过程,其能效远优于传统缩聚反应器。
     以粘度范围1.5 Pa·S~1600 Pa·S的糖浆溶液为模拟物料,利用可视化技术以及激光粒子成像测速系统实验研究了不同结构类型降膜元件及其组合方式下的流体流动、成膜、更新以及混合等性能。结果表明:液膜流动受过程粘性力、惯性力、重力与表面张力共同作用,成膜通道面积接近的前提下,开孔元件最易形成降膜,且形成的膜面流动速度最快,栅缝元件次之,而带有支撑件的栅缝元件最为困难,支撑件的引入使液膜流动减缓,却可有效地改善降膜自由面的收缩;降膜元件所形成的成膜面积随粘度、流量与通道尺寸的增大而增大,特别是在流体粘度较高时,几类降膜元件的成膜效率均接近100m2.m-3.s,甚至数百,高于传统卧式缩聚反应器的50-80 m2.m-3.s,其中带有支撑件的栅缝元件的成膜效率的关键在于其膜厚的控制;自由降膜元件液膜表面更新快,而支撑件的引入则明显减小了液膜表面更新,甚至带来更新频率数量级的变化。因此,低粘阶段应选择带有支撑件的栅缝元件,以有效减缓膜面收缩,获得较大的传质面积;而随着粘度的升高,需要逐渐减少支撑件数量,控制合适的膜厚以保证成膜效率;而在更高粘度区域,流体流动性差,宜选择无支撑件的栅缝元件甚至开孔元件,以强化流体流动,获得较快的膜面更新。基于实验分别建立了不同降膜元件的液膜流动模型、成膜及更新频率计算模型,为新型缩聚反应器结构设计提供计算依据。停留时间分布测试结果表明多级降膜结构的新型缩聚反应器内物料流动一般接近平推流,其中单级开孔元件和无支撑件的栅缝元件的混合效果接近于一独立的CSTR,而支撑件的引入可降低过程轴向返混程度,使整体流型趋于平推流;改变相邻元件间的连接方向增加降液膜膜面的交错,可在一定程度上减小轴向返混程度,并且改善径向混合效果。
     以传质性能与反应进程的正确耦合为原则,合理设计并组合多级多通道降膜元件,构建了多种型式的流场结构化的降膜缩聚反应器,适用于不同的物系粘度变化范围;并用不同分子量的聚酯以及聚碳酸酯为原料考察了所构建新型反应器的缩聚性能。10kg/hr中试实验结果表明:所设计的流场结构化新型缩聚反应器不但能代替现有卧式缩聚反应器用于常规纤维级聚酯生产,而且可直接缩聚生产瓶级以及更高分子量聚酯产品,可在较短停留时间内实现聚合物分子量的快速提升,同样工艺条件下仅半小时即可达到传统卧式缩聚反应器2小时的缩聚效果,能效大幅度提高,同时所得缩聚产品分子量分布窄;该类反应器同时具有较强的通用性,同样结构的反应器可以分别适用于聚酯以及聚碳酸酯的熔融缩聚过程。此外,建立了流场结构化降膜缩聚反应器中的聚酯熔融缩聚过程模型,模拟了过程反应与传质的耦合效果。
     最后,基于流场结构化新型缩聚反应器及降膜内构件的特点,总结了该类反应器内结构选型设计依据,并以过程反应与传质的合理匹配为原则,提出了降膜缩聚反应器的设计思路与计算框架。
     流场结构化的新型缩聚反应器由于能够通过成膜内构件结构及其组合变化在较宽的粘度范围实现形成传质界面大的薄层液膜和表面快速更新的有效结合,并使其传递性能与反应进程正确匹配,性能优势突出,有望成为高粘缩聚反应器的一次重大进步。
Reaction and mass-transfer are coupled in melt polycondensation process,and the rate of polycondensation depends not only upon the chemical kinetics of main reaction but also upon the mass-transfer of volatile by-products through the bulk melts,the mass-transfer tends to become the rate-limiting step with the increase of melts viscosity,especially in later stage of polycondensaton process.Therefore the polycondensation device must intensify mass transfer of high viscousS fluid which should properly match the progress of polycondensation.However that is not easy to realize within wide viscosity range.
     A novel idea for developing such polycondensation reactor with structured flow field has been proposed from this work:the reactor is a vertical one with assembly of a variety of special film-forming elements to manipulate the desired flow field.In the reactor,there is no agitation and polymer melt flows through multi-stage film-forming elements from top to bottom to form falling film due to gravity;huge gas-liquid interfacial area is generated while adequate film renewal is achieved and the residence time can be controlled by multi-stage holding dispensers. Compared to traditional horizontal polycondensation reactors,all polymer melts in new reactor are under the state of thin film,which achieves high filming efficiency and avoids me negaliVe efiect of hydrostatic head on the mass-transfer.The fluid flow in this type of reactor is expected to have little back mixing and dead zone,which may be close to plug flow.
     The hydrodynamic performance of single and multi-stage film-forming elements, including the hole elements,slit elements with and without supporting wires,has been investigated.Syrup solutions with Viscosity ranging from 1.5 t0 1600 Pa.s were selected as model experimental media.The performance of fluid now,film forming,and surface renewal of single element,which changs with the viscosity;operation conditions and structural parameters,has been examined by using visual technique and particle image velocimetry(PIV)system separately.The results showed that the film forming efficiency of these elements were usually greater than 100 m2.m-3.s,which was much higher than that in Rotating-disk reactor and Cage-like reactor.The slit elements with supporting wires avoided the free-surface contraction of falling film and achieved high film-forming efficiency especially for low viscous fluid,but slowed the fluid flow in the film.Meanwhile,the hole or slit elements with no supporting wires effectively fastened fluid flow in the film to achieve quickly surface renewal which enhanced the mass-transfer for high viscous fluid. A series of correlations for fluid flow, film-forming area and surface renewal frequency have been obtained, which may be used for initial selection and design of the structure of film-forming elements.
     The mixing performance of the new reactor combined with different multi-stage elements has been studied by pulse testing using visual technique for color tracing. The results showed that little back-mixing existed in down flowing stream in the new falling-film reactor and the fluid flow through multi-stages behaved as plug flow. The mixing performance of single film-forming elements with free falling film was close to that of a CSTR while the supporting wires in the reactor significantly reduced the degree of axial back-mixing. The axial back-mixing was also reduced by more perpendicular connection of film-forming elements between adjacent layers, and the radial mixing homogeneity was also improved.
     Several reactors assembled with muti-stage film-forming elements of varying configurations for different demands have been analysed and their performances were evaluated by continuous melt polycondensation of poly(ethylene terephthalate) (PET) and polycarbonate (PC). The results showed that these new reactors with varying structured flow field successfully produced high molecular weight polymers with uniform quality and their reaction time was shortened significantly in comparison with that in conventional polycondensation process. The new reactors have been verified to have excellent performances, such as high efficiency, great flexibility and universality. The realistic models have been established for the continuous PET melt polycondensation process in new falling film reactors and verified by pilot-scale experimental data. The models may be used to predict the axial distribution of degree of polymerization along the reactors and provide other valuable information for optimizing the inside structures to match the proceeding of polycondensation process.
     Finally, the design principles for combinations of film-forming elements of new polycondensation reactor with structured flow field have been analyzed, and the designing framework of new reactor has been proposed.
     Due to its outstanding performance, the new falling-film polycondensation reactor with structured flow field may have various potential applications. It can be adapted to many melt polycondensation processes, as well as some devolatilization processes for high viscous fluid without reactions.
引文
[1]Ziemlewski, J.(Senior Editor of AIChE). Centennial Reader Survey: Where Do You Think We Are Headed?. CEP(AIChE). 2008.11: 44
    [2]赵振河.高分子化学和物理[M].北京:中国纺织出版社,2003
    [3]李克友,张菊华,向福如.高分子合成原理及工艺学[M].北京:科学出版社,1999
    [4]Otto, B., Bachmann, H.. WO 2005092949 [P], 2005
    [5]金祖铨,吴念.聚碳酸酯树脂及应用[M].北京:化学工业出版社,2009
    [6]小宫强介,福冈伸典.CN 1286713A[P],2001
    [7]钱以竑.PTT纤维与产品开发[M].北京:中国纺织出版社,2006
    [8]王伟超,吴林波,黄源等.熔融缩聚法合成高分子量聚乳酸的研究[J].材料科学与工程学报,2005,23:11-14
    [9]余木火,徐红,滕翠青等.CN 200510029963[P],2007
    [10]张留城,李佐邦合编.缩合聚合[M].北京:化学工业出版社,1986
    [11]Flory, P. J.. Molecular size distribtion in linear condensation polymers [J]. J. Am. Chem. Soc, 1936, 58: 1877-1885
    [12]Flory, P. J.. Principles of Polymer Chemistry [M]. New York: Cornell U. Press, 1953
    [13]Biesenberger, J. A., Sabastian D. H., Principles of Polymerization Engineering [M]. John Wiely and Sons, New York, 1983
    [14]Sherwood, T. K..传质学[M].北京:化学工业出版社,1986
    [15]Albalak, R. J.. Polymer Devolatilization [M]. Marcel Dekker, Inc., 1996
    [16]Latinen, G.A.. Devolatization of viscous polymer systems [J]. Adv. Chem. Ser., 1962, 34:235
    [17]Coughlin.R.W, Canevari,G.P.. Drying polymers during screw extrusion [J]. AIChE. J., 1969,15(4): 560
    [18]Roberts, G.W.. A surface renewal model for the drying of polymers during screw extrusion [J]. AIChE. J., 1970,16(5): 878
    [19]Crank, J..The Mathematics of Diffusion [M]. Oxford University Press, London, 1956
    [20]Biesenberger, J. A.. Polymer devolatilization-theory of equipment [J]. Polym.Engin. Sci, 1980, 20(15): 1015
    [21]Todd, D. B.. Polymer Devolatilization. Proc. SPE's 32nd ANTEC, San Francisco, 1974: 472
    [22]Padberg, G. Fundamental Principles of Polymer Devolization [M]. VDI-Verlag GmbH, Dusseldorf, 1980
    [23]Biesenberger, J. A., Kessidis,G. Devolatization of polmer melts ir single screw extruders [J]. Polym. Eng. Sci., 1982,22: 832
    [24]Mehta,P.S., Valsamis,L.N., Tadmor, Z.. Foam devolatilization in a multichannel corotating disk processor [J]. Polym. Proc. Eng., 1984,2(2/3):103
    [25]Newman, R.E., Simon, R. H. M.. A mathematical model of devolatilization promoted by bubble formation. 73rd Annual AICHE Mtg, Chicago. 1980
    [26]Lee, S.T., Biesenberger, J.A.. A fundamental study of polymer melt devolatization Ⅰ [J]. Polym. Eng. Sci., 1986,26: 982
    [27]Lee, S.T., Biesenberger, J.A.. A fundamental study of polymer melt devolatization Ⅱ [J]. Polym. Eng. Sci., 1987,27: 510-517
    [28]Lee, S.T., Biesenberger, J.A.. A fundamental study of polymer melt devolatization Ⅲ [J]. Polym. Eng. Sci., 1989,29: 782
    [29]Lee, S.T.. Computational Analysis of Bubble Behavior in the Devolatilization of Plymer Melts [D]. Stevens Institute of Technology, Hoboken, New Jersey, 1982
    [30]Lightfoot, E. N.. Transport Phenomena and Living System [M]. Wiley, New York, 1974
    [31]Mashelkar, R. A. A., Nomalous convective diffusion in films of polymeric solutions [J]. AIChE. J., 1984,20: 353-362
    [32]Ravindranath, K., Mashelkar, R.A.. Analysis of the role of stripping agents in polymer devolatization [J]. Chem. Eng. Sci., 1988,43: 429
    [33]Werner, H.. Devolatilization of polymers in multi-screw devolatilizers [J], Devolatilization of Plastics, Verrin Deutscher Ingenieure, Dvsseldorf, Germany, 1980: 99-131
    [34]Mack, M.H., Pfeiffer, A.. Effect of stripping agents for the devolatilization of highly viscous polymer melts. 51st SPEANTEC, 1993
    [35]陈甘棠.聚合反应工程基础[M].北京:中国石化出版社,1991
    [36]Shimada, T., Omoto, S., and Mori, H.. Evaluation of mixing performance of high viscosity reactors. Proc. Indian Chem. Engrg. Congress, Calcutta. 1985
    [37]Shimada, T., et al.. Development of high viscosity reactors [J]. Mitsubishi Heavy Industries Tech. Rev., 1987,24(3): 1
    [38]Fourne, F.. Synthetic Fibers: machines and equipment, manufacture, properties handbook for plant engineering, machine design, and operation [M]. Hanser, Munich, 1999
    [39]金离尘.杜邦NG3瓶级聚酯的生产技术[J].聚酯工业.2003,16(4):1-4
    [40]Debruin, B. R.. U.S. Patent 0230025 [P], 2004
    [41]Marshall Sittig, Polyester Fiber Manufacture [M]. New Jersey USA: Noyes Data corporation, 1971
    [42]Mutzenberg, A.B.. Agitated thin film evaporators; Part 1:Thin film technology [J]. Chem. Eng., 1965, 72: 175
    [43]Ellwood, P.. Continuous polyester condensations obtained with two reactors [J]. Chem.Eng., 1967,74: 98
    [44]Heinz Kuehne., Oberhoechstadt, Taunus, et al, U.S. Patent 3499873 [P],1970
    [45]Vodonik, J. L., River, R. and Ohil.. U.S. Patent 2758915 [P],1956
    [46]Ryder, D. F., Wilmington. U.S. Patent 2869838 [P], 1959
    [47]Willy, L. D., Newark, Jr.. U.S. Patent 3046099 [P], 1962
    [48]Kilpatrick, L. L., U.S. Patent 3248180 [P], 1966
    [49]Gerking, L., Berlin. U.S. Patent 5207991 [P],1993
    [50]Endert, E. S. V., Schroder, K., and Hoffmann, H.P.. U.S. Patent 5779986 [P],1998
    [51]Kilpatrick, L. L., Grifon, N. C. U.S. Patent 3526484 [P], 1970
    [52]Wilhelm, F., Witt, H. G, and Hoelting, L.. U.S.P. 5055273 [P], 1991
    [53]Tadmor, Z., Hold, P., and Valsamis, L.. A novel polymer processing machine -theory and experimental results. Proc. SPE's 37th ANTEC, New Orleans, 1979: 193
    [54]Tadmor, Z., Valsamis, L. N., Yang, J. C, et al.. The corotating disk plastics processor [J]. Polym. Eng. Rev., 1983, 3(1): 29
    [55]Tadmor, Z., Mehta; P. S., Valsamis L. N., et al.. Corotating disk pumps for viscous liquids [J]. I&EC Proc. Des. &Dev., 1985,24(2): 311.
    [56]Takeda, H., Mori, H.. Private communication, 1992
    [57]日本.公开特许公报.平3-047130[P],1991
    [58]Schwenk, W., Raouzeos, G.. Mixing and kneading: Machines for thermal processes with viscous pasty and granular matter. Chemical Plants and Processing. 1993, Aug, 3: 14
    [59]Fleury, P.-A., Witte, D.. Comparison of devolatilization technologies for viscous polymers. Antec 2005, Chicago, 2005
    [60]Fleury, P.-A.. Continuous polymerisation: Kneader-reactor produces solid granular polymers at low temperature [J]. Chemical Plant and Processing 2: Process Engineering. 2003, 2: 52-53
    [61]Valsamis, L. N., Canedo, E. L.. Mixing, devolatilization and reactive processing in the Farrel continuous mixer [J]. Intern. Polym. Proc. Ⅳ, 1989, 4: 247
    [62]Stober, K. E., Amos, J. L.. U.S. Patent 2,530,409 [P], 1950
    [63]Amos, J. L., Carroll, T. M.. U.S. Patent 2,941985 [P], 1960
    [64]Chemineer, Inc.. Agitation Insights 12, Chemineer Agitators [M], Dayton, 1979
    [65]Fink, P., Wild, H., Zizlsperger, J., et al.. U.S. Patent 4,153,501 [P], 1979
    [66]Aneja, V. P., Skilbeck, J. P.. U.S. Patent 4,808,262 [P], 1989
    [67]Mattiussi, A., Buonerba, C., Balestri, F., et al.. U.S. Patent 5,084,134 [P],1992
    [68]Hagberg, C. G.. U.S. Patent 3,966,538 [P],1976
    [69]日本.公开特许公报.昭64-81819[P],1989
    [70]刘兆彦.CN1,199,651[P],1998
    [71]Guterbock, H..Polyisobutylen und Isobutylen-Mischpolymerisate [M]. Springer-Verlage, Berlin,1959
    [72]戴干策.聚合物加工中的传递现象[M].北京:中国石化出版社,1999
    [73]Smith, A. J., Lim, T. T.. Flow Visualization [M]. Imperial College Press,2000
    [74]顾国芳,浦鸿汀.聚合物流变学基础[M].上海:同济大学出版社,2000
    [75]Gutfinger, C., Tallmadge, J. A.. Films of non-Newtonian fluids adhering to flat plates [J].AIChE. J..1965,11(3):403-413
    [76]White, D. A., Tallmadge, J. A.. Theory of drag out of liquid on flat plates [J]. Chem. Eng.Sci..1965,20:33-37
    [77]Gupta, A. S.. Stability of a visco-elastic liquid film flowing down an inclined plane [J]. J. Fluid Mech..1967,28(1):17-28
    [78]Hwang, C-C., et al.. Linear stability of power law liquid film flows down an inclined plane [J]. J. Phys. D:Appl. Phys..1994,27:2297-2301
    [79]Sisoev, G. M., Shkadov, V. Ya.. Instability of two-layer film flow along an inclined surface [J]. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti I Gaza.1992,2:10-18
    [80]Trifonov, Y. Ya. Steady-state traveling waves on the surface of a viscous liquid film falling down on vertical wires and tubes [J]. AIChE. J..1992,38(6):821-834
    [81]Mohamed, A. M. I.. Flow behavior of liquid falling film on a horizontal roating tube [J]. Experimental Thermal and Fluid Science.2007,31:325-332
    [82]Brown, D. R.. A study of the behaviour of a thin shet of moving liquid [J]. J. Fluid Mech..1961,10:297-305
    [83]Clarke, N. S.. Two-dimensinal flow under gravity in a jet of viscous liquid [J]. J. Fluid Mech..1967,31(2):481-500
    [84]Yeow, Y. L.. On the satbility of extending films:a model for the film casting procss [J]. J. Fluid Mech..1974,36(3):613-622
    [85]Ramos, J. I.. Planar liquid sheet at low Reynolds numbers [J]. International Journal for Numerical Methods in Fluids.1996,22:961-978
    [86]Weinstein, S.J., Clarke, A., Moon, A.G., at el.. Time-dependent equations governing the shape of a two-dimensional liquid curtain-Ⅰ:thery [J]. Phys. Fluids.1997,9: 3625-3636
    [87]Clarke, A. Weinstein, S.J., Moon, A.G.., at el.. Time-dependent equations governing the shape of a two- dimensional liquid curtain-Ⅱ:experiment [J]. Phys. Fluids.1997,9: 3637-3644
    [88]Levich, V. G.. Physicochemical Hydrodynamics, Chap.12 [M]. Prentice Hall, New York,1962
    [89]Cheong, S. I., Choi, K. Y.. A study on the polymer layer-forming phenomena in a rotating disk polycondensation reactor [J]. J. Appli. Polym. Sci..1995,55:1819-1826
    [90]Cheong, S. I., Choi, K. Y. Melt polycondensation of poly(ethylene terephthalate) in a rotating disk reactor [J]. J. Appl. Polym. Sci.,1995,58:1473-1483
    [91]张伟.高粘物系脱挥反应器开发及其在聚酯工业中的应用[D].上海,华东理工大学,1996
    [92]王良生.旋转圆盘上的液膜运动与物质传递[D].上海,华东理工大学,1999
    [93]周贤爵.笼式反应器的流体动力学[D].上海,华东理工大学,2001
    [94]Danckwerts, P. V.. Ind. Eng. Chem.,1951,43:1460-1467
    [95]Murakami, Y., Fujimoto, K., Kakimoto, S., et al.. On a high viscosity polymer finisher apparatus with two agitator axes having multidisks [J]. J. Chem. Eng. Jap..1972,5(3): 257-263.
    [96]潘勤敏.聚合过程中的气液传质及脱挥[D].杭州,浙江大学,1987
    [97]Yoon, K. H., Park; O. O.. Analysis of a reactor with surface renewal for poly(ethylene terephthalate) synthesis [J]. Polym. Eng. Sci..1994,34:190-199
    [98]Jia, R., Zhou, X-J., and Dai, G-C.. Film flow of highly viscous liquid in the rotating disk-ring reactor. 1st ACOM.. China, Shanghai,2005
    [99]Van Krevelen D. W.,聚合物性质[M].北京:科学出版社,1981
    [100]Gregory, D. R.. Rheological properties of molten poly(ethylene terephthalate) [J]. J. Appli. Polym. Sci..1972,16:1479
    [101]向国英,李静.高分子聚酯流变性能的研究[J].合成纤维.1984,6:13-16
    [102]Durst, F., Melling, A., and Whitelaw, J, H..激光多普勒测速技术的原理与实践[M].北京:科学出版社,1992(译自Principles and practice of laser-Doppler anemometry, second edition, Academic Press,1981)
    [103]沈熊.激光多普勒测速技术及应用[M].北京:清华大学出版社,2004
    [104]朱开宏,袁渭康.化学反应工程分析[M].北京:高等教育出版社,2002
    [105]Kappel, M. Development and application of a method for measuring the mixture quality of miscible liquids-Ⅰ:State of research and theoretical principles [J]. Internatinal Chemical Engineering.1979,19(2):196-211
    [106]徐建华.图像处理与分析[M].北京:科学出版社,1992
    [107]吴英桦.粘性流体混合及设备[M].北京:中国轻工业出版社,1993
    [108]杨伟,刘正英,杨鸣波.聚碳酸酯合金技术与应用[M].北京:机械工业出版社, 2008
    [109]陈乐怡等.常用合成树脂的性质及应用手册[M].北京:化学工业出版社,2002
    [110]晨光化工厂编.聚碳酸酯[M].北京:燃料化学工业出版社,1973
    [111]赵耀明.非纤维用热塑性聚酯工艺与应用[M].北京:化学工业出版社,2002
    [112]戴干策,陈敏恒.化工流体力学-2版[M].北京:化学工业出版社,2005
    [113]Lamb, H.. Hydrodynamics, 6th ed [M]. Cambridge University Press. UK, 1932
    [114]史子瑾.聚合反应工程基础[M].北京:化学工业出版社,1991
    [115]Levenspiel, O.. Chemical Reaction Engineering. 3rd ed [M]. New York: John Wiley & Sons, 1999
    [116]Asua, J. M.. Polymer reaction engineering [M]. Oxford: Blackwell Pub., 2007
    [117]朱炳辰.化学反应工程-4版[M].北京:化学工业出版社,2006
    [118]Scheirs, J., Long, T. E.现代聚酯[M].北京:化学工业出版社,2006
    [119]Jabarin, S. A., Dalduff, D. C. Gel permeation chromatography of polyethylene terephthalate [J]. J. Liq. Chromatogr.. 1982, 5,1825-1845
    [120]Challa, G.. The formation of polyethylene terephthalate by ester interchange- Ⅱ: the kinetics of reversible melt-polycondensation [J]. Die Makromolekulare Chemie. 1960, 38(1): 123-137
    [121]Hovenkamp, S. G. Comment on polycondensation equilibrium and the kinetics of the catalyzed transesterification in the formation of polyethylene terephthalate [J]. J. Polym. Sci. Part A-1 Polym. Chem.. 1969,7(12): 3428
    [122]Cafelin, P., Malek, J.. On the kinetics of polycondensation bis(2-hydroxyethyl) terephthalate [J]. Collect. Czech. Chem. Commun.. 1969, 34: 419-426
    [123]Rafler, G., Reinisch, G., and Bonatz, E.. Kinetics, mass transport and thoughts about the mechanism of formation of polyethylene terephthalate by metal ion catalysis [J]. Acta Chem.. 1974, 81(2/3): 253-267
    [124]Ahmadnian, R, Reichert, K-H,. Kinetic studies of polyethylene terephthalate synthesis with titanium-based catalyst [J]. Macromol. Symp.. 2007, 259(1): 188-196
    [125]Rieckmann, Th., Volker, S.. Micro-kinetics and mass transfer in poly(ethylene terephthalate) synthesis [J]. Chem. Eng. Sci.. 2001, 56(3): 945-953
    [ 126]Ravindranath K, Mashelkar R A. Modeling of Poly(ethylene terephthalate) Reactors: 6. A Continuous Process for Final Stages of Polycondensation [J], Polym. Eng. Sci., 1982,22(10): 628-636
    [127]Ravindranath, K., Mashelkar, R. A.. Polyethylene terephthalate-Ⅰ. chemistry, thermodynamics and transport Properties [J]. Chem. Eng. Sci.. 1986, 41(9): 2197-2214.
    [128]Pell, Jr T. M., Davis, T. G. Diffusion and reaction in polyester melts [J]. J. Polym. Sci.: Polym. Phys. Ed. 1973, 11(9): 1671-1682
    [129]Hoftyer, P. J.. Kinetics of the polycondensation of ethylene glycol terephthalate [J]. Appli. Polym. Symp.. 1975,26: 349-363
    [130]Yokoyama, H., et al.. Polycondensation rate of poly (ethylene terephthalate) at reduced pressure [J]. J. Japan Petrol. Inst.. 1978,21(1): 58-62
    [131]赵玲,朱中南,戴干策.PET缩聚过程反应与传质-Ⅰ:反应动力学研究[J].化学工程与工艺.2000,16(2):159-163
    [132]Gupta, S. K., Kumar, A.. Reaction Engineering of Step Growth Polymerization [M]. New York: Plenum Press, 1987
    [133]赵玲.聚酯缩聚反应与脱挥[D].上海:华东理工大学,1999
    [134]Lightfoot, E. N.. Transport Phenomena and Living System [M]. Wiley, New York, 1974
    [135]Sherwood, T. K., Pigford, R. L., and Wilke, C. R.. Mass Transfer [M]. McGraw-Hill, U.S.A., 1975
    [136]Kale, D. D.. Gas absorption into Non-newton fluids in rotating disc contactors [J]. Chem. Eng. Sci.. 1981,36: 399-403
    [137]Kulkarni, M. G., Mashelkar, R. A.. [J]. Chem. Eng. Sci.. 1983,28: 941-957
    [138]Moon, D. Y, Diffusion of Organic Vapor in PET Melts [D], KAIST, 1989
    [139]Lee K. J., Moon, D. Y, Park, O. O., et al.. Diffusion of ethylene glycol accompanied by reactions in poly(ethylene terephthalate) melts [J]. J. Polym. Sci: Polym. Phys.. 1992,30(7): 707-716
    [140]Mashelkar R. A. And Dutta, A.. [J]. Chem. Eng. Sci.. 1982, 37: 969-985
    [141]Ravindranath, K., Mashelkar R A.. Finishing stages of PET synthesis: a comprehensive mode1 [J]. AIChE. J.. 1984, 30(3): 415-422
    [142]Kumar, A., Sharma, S. N., and Gupta, S. K.. Optimization of the polycondensation stage of poly(ethylene terephthalate) reactors [J]. J. Appli. Polym. Sci.. 1984, 29(4): 1045-1061
    [143]Lauberiet, C, Lecorre, B., and Choi, K. Y. Two-phase model for continuous final stage melt polycondensation of poly(ethylene terephthalate) 1: steady -state analysis [J]. Ind. Eng. Chem. Res.. 1991, 30(1): 2-12
    [144]Martin, H. C., Choi, K. Y.. Two-phase model for continuous final stage melt polycondensation of poly(ethylene terephthalate) 2: analysis of dynamic behavior [J]. Ind. Eng. Chem. Res.. 1991, 30(8): 1712-1718
    [145]Cheong, S. I., Choi, K. Y.. Melt polycondensation of poly(ethylene terephthalate) in a rotating disk reactor [J]. J. Appli. Polym. Sci.. 1995, 58(9): 1473-1483
    [146]Sampson, K. J., Neogi, S.. Modeling high-viscosity, melt-phase, condensation polymer reactors with a time-scales analysis [J]. J. Appli. Polym. Sci.. 1995, 58(11): 2095-2100
    [147]史文波,潘勤敏,孙建中.聚酯终缩聚过程模型化进展[J].合成纤维工业.1996,19(2):47-51
    [148]徐中光,蒋春跃,戴干策.PET聚酯的终缩聚化学及其反应器模型[J].聚酯工业.1998,11(4):14-20
    [149]Yamada, T., Imamura, Y.. Simulation of continuous direct esterification process between terephthalic acid and ethylene glycol [J]. Polym.-Plast. Technol. Eng.. 1989, 28:811-876
    [150]周爱月主编.化工数学-2版[M].北京:化学工业出版社.2001
    [151]Perry, R. H.. PERRY化学工程手册[M].北京:化学工业出版社.1992
    [152]于遵宏等编.化工过程开发[M].上海:华东理工大学出版社.1996

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700