用户名: 密码: 验证码:
风电机组振动监测与故障诊断研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着风力发电机组(以下简称风电机组、风机)的单机容量越来越大,装机量也逐年增加,相关的第三产业即风电机组运行维护、监测、故障诊断等将成为行业新的增长点。而风电机组的工作环境恶劣,风速有很高的不稳定性,在交变负载的作用下,机组的传动系统等部件最容易损坏,而风电机组又安装在偏远地区且距地面甚高,维修不便,风电机组的状态监测和故障诊断在这种情况下具有重要的意义。研究表明风电机组传动系统的振动故障在常见故障中占有较高的比重,对传动系统进行状态监测是至关重要的。目前大型商业化的风电机组自带有监测控制和数据获取(SCADA)系统,为提高风电场运行的稳定性和可靠性提供了强有力的技术平台和支撑,但是SCADA系统缺乏对传动系统的振动监测及相关分析。而目前SKF公司针对风电机组振动故障监测的系统虽然具有预警及报警功能,却缺乏精确故障诊断等功能。因而论文选择传动系统为重点监测对象,开展针对传动系统的振动监测与故障诊断研究。论文的主要工作如下:
     ①论文分析了传动系统叶轮、齿轮箱、发电机等机构及其常见振动故障特点。风电机组传动系统振动信号受到背景噪声的干扰,且齿轮、轴承等旋转部件故障信号多呈现周期非平稳特性。同时,由于风速的不平稳性,交变载荷作用到传动系统,又使得振动信号呈现高斯噪声混杂及非线性特性。根据对传动系统关键部件的故障及其时频域特点分析,确定了风电机组传动系统的监测点的位置,据此可以设置相关的振动传感器采集关键部件的振动信号,对传动系统进行振动监测。
     ②在风电机组振动信号预处理方面,提出了一种交叉验证优化Morlet小波参数的消噪方法。风电机组工作环境恶劣,振动监测获取的数据多包含强烈的背景噪声,传统的滤波消噪很难将噪声和有用成分在时频域区分开,小波消噪在此种情况下有较优的分析效果。但小波消噪方法存在小波基选取和分解层数确定、阈值方法确定等问题,论文分析了传统硬阈值方法和软阈值方法的局限并提出了一种自适应阈值小波消噪方法,进一步提出了交叉验证优化Morlet小波参数的消噪方法。利用交叉验证法对改进Morlet小波的参数进行优化选择并确定了最佳尺度。通过齿轮振动信号实例并对比了传统的小波消噪方法,证明了该方法具有较好的消噪效果。
     ③针对风电机组振动信号的周期非平稳性特点,提出了一种基于自项窗抑制魏格纳分布(WVD,Wigner-Ville distribution)交叉项的故障诊断方法。由于风电机组旋转部件振动信号的周期非平稳性特点,单纯的时域或频域分析方法很难取得理想的效果,时频分析是分析此类信号的有效方法,其中WVD的时频分辨率和能量聚集性具有无可比拟的优势,可用于旋转机械的特征提取及故障诊断。但由于WVD具有交叉项的干扰,需要寻找合适的方法对其交叉项进行抑制。论文在研究WVD自项和交叉项相互关系的基础上提出了一种阈值自适应STFT(ASTFT,Adaptive Short-Time Fourier Transform)故障诊断方法,进而针对STFT自身分辨率较低的缺陷,提出了一种基于自项窗WVD的故障诊断方法。设计了自适应自项窗函数,并用其替代自项对WVD进行加窗处理,可以有效地抑制交叉项,还能够使自项能量很紧密地集中在各分量瞬时频率的附近。通过仿真分析和振动信号分析验证了该方法具有较好的特征提取及故障诊断效果。
     ④针对风电机组振动信号非高斯非线性特点,提出了一种模糊高阶谱故障诊断方法。该方法既可以消除振动信号中混叠的高斯噪声,同时可以很好地分析非线性特性振动信号,实现正确的故障诊断。论文首先利用双谱估计方法分析了不同类别下的滚动轴承的振动信号,研究表明了双谱分布区域信息与故障类别间存在映射关系,且这种映射关系不受工作转频影响。对双谱估计特征值进行阈值化处理,并在此基础上构造由核图、域图构造的目标模板,通过测试样本到目标模板之间的距离来进行不同类别的判别。最后通过滚动轴承故障诊断实例进行测试表明测试样本的分类都完全正确,验证了该故障分类方法的有效性。
     ⑤初步研究了风电机组振动监测及故障诊断系统及其软件的设计与实现。采用面向对象的编程技术进行该监测系统的软件开发,并基于本文提出的方法初步开发了一套用于风电机组振动监测及故障诊断的分析系统,该系统包括辅助功能模块、信号处理模块、特征提取模块和故障诊断模块,可以完成对风电机组振动信号的预处理、特征提取、故障诊断等分析功能,为故障特征的提取及故障的诊断提供了有效的帮助。
     文章最后对本文的工作进行了总结和对相关的研究技术进行了展望。
As the increase of the wind turbine unit capacity and the new installed capacity every year, the relative tertiary industry such as maintenance, monitoring and fault diagnosis will be a new growth point in the wind industry. As the wind turbine work environment is very poor and the wind has high instability, the alternant force makes the transmission system the much easier damaged components in wind turbine. The wind turbine is installed in remote areas and is high from the ground, which makes it difficult to maintenance. Therefore the condition monitoring and fault diagnosis of the wind turbine in this case has significant meaning. Some research work shows that the vibration fault in transmission system has higher proportion compared to other wind turbine parts, and the condition monitoring to the transmission system is important. Currently most large commercial wind turbine has their own kinds of Supervisor Control And Data Acquisition (SCADA) systems, which supplied strong technology flat roof and sustentation for the improvement of the wind farm's stability and reliability. However, at the same time, the quality of the SCADA systems can't satisfy the needs of the vibration monitoring and fault diagnosis. It has relatively simple analysis functions and is lack of time-frequency analysis method which has better effect in dealing with no-stationary signals. The SCADA system is also lack of vibration monitoring and relative analysis. Though the WindCon system aimed at the wind turbine vibration fault monitoring has the early warning and alarming functions, it at the same time is lack of precision fault diagnosis function. Therefore this paper select the transmission system as the keystone monitoring objects and carry out the research work on the vibration monitoring and fault diagnosis. The main research work and conclusion are as follows:
     ①The components such as wheels, gear box and generator in the transmission system and its vibration fault characteristic are analyzed in detail, which helps to ensure the measurement point positions in monitoring. The wind turbine vibration signal is disturbed by the background noise and the fault components such as bearing and gear in the rotation part shows cycle non-stationary characteristic. At the same time the alternate load by the non-stationary wind forced on the transmission system, makes the vibration signal showing Gauss noise immingled and non-linearity characteristic. Through the analysis on the key components in the gear-box, the mesh frequency and fault frequency are calculated and the monitoring points are confirmed. Then the vibration sensors can be settled and the vibration signal can be collected.
     ②In the pretreatment research of the wind turbine vibration signal, a new method based on cross validation method optimized Morlet wavelet is put forward and discussed in detail. In the wind turbine structures the signals under considerations are known to be non-stationary, for which the signal parameters are time-varying. But for early fault signals, the fault feature signal is not strong enough to be caught, which can be drowned in the strong noise signals. In this case the traditional filter methods can't separate the noise and useful components. The wavelet de-nosing method has better analysis affect but at the same time has some difficult in the selection of wavelet base and decomposition level. Aimed on the characteristic that the wind turbine work condition is rush and full of strong noise pollution, an adaptive wavelet de-noising method was proposed according to the inverse characteristics of useful signal and noise in different wavelet scales and the limitation of the traditional threshold methods. Then a new de-noising method based on parameter optimized Morlet wavelet is put forward. The simulation and experiment results reveal that both these two methods can considerably improves the capability of feature extraction and incipient fault diagnosis under strong noise background.
     ③Aimed at the cycle non-stationary characteristic of the wind turbine vibration signal, a fault diagnosis method based on auto term window repressed Wigner-Ville distribution (WVD) is discussed in detail. As the wind turbine vibration signal has cycle non-stationary characteristic, the simple time domain methods and frequency domain methods can't obtain perfect effect. The time-frequency methods have good effect in dealing with no-stationary signals, in which the WVD theoretically has an infinite resolution in time-frequency domain, is chosen to extract feature of the wind turbine vibration signal. But the WVD has the fault in cross term interface, which need to be suppressed by appropriate methods in the feature extraction analysis. Based on the relationship between the auto terms and the cross terms of WVD, a new threshold adaptive short-time Fourier transform (ASTFT) method is put forward. Then the auto term window suppressed WVD feature extraction method is discussed in detail. The auto term window is designed based on the smoothed pseudo Wigner-Ville distribution (SPWVD) and takes the place of the auto term in window analysis. All these three methods can not only remove the cross terms efficiently, but also reserve most advantage of WVD at the same time. The simulation and experiment results show that the proposed methods are validity tools for TFR of multi-component non-stationary signals in feature extraction.
     ④Aimed at the non-gaussian and non-linearity characteristic of the wind turbine vibration signal, a fuzzy high-order spectrum fault diagnosis method is presented. This method can not only de-noises the Gauss noise in the vibration signal, but also has good effect in analyzing the no-linearity characteristic vibration signal and realize the correct fault diagnosis. At first the research using bi-spectrum analysis on the rolling bearing fault vibration signal in different fault styles show that, the bi-spectrum analysis results has relationship with the fault styles and this relationship has no effects by the rotate speed. On the base of the bi-spectrum analysis threshold result, the target template combined of kernel map and region map is constructed. Then by testing the distance between the test sample and the target template, the different fault can be distinguished on the value of the distance. Theoretical analysis and rolling bearing fault diagnosis show that the new method has good validity in fault diagnosis and the classification of all the test samples are correct.
     ⑤In the pilot study on the wind turbine vibration monitoring and fault diagnosis system, the system and the design and realization of hardware and software are discussed in detail. Investigating the system structure of the parameter-sharing module software, the uniform frame work of the system module and the apparatus interface are designed. The wind turbine vibration monitoring and fault diagnosis system is in principium exploited based on the methods in this paper, which supplies strong help to the fault character extraction and fault diagnosis. The project applications and wind turbine vibration analysis proved the software be practical and availability. At the end of the thesis, the summarization of the article and expectation of the relative technology development are presented.
引文
[1]宫靖远.风电场工程技术手册[M].机械工业出版社.2004,北京:第一版.
    [2] C. Chompoo-inwai, W.J. Lee, P. Fuangfoo, M.Williams, J.R. Liao, System impact study for the interconnection of wind generation and utility system[J], IEEE Trans. Ind. Appl. 41 (1) (2005) 163-168.
    [3] Clemens Jauch, Poul S?rensen, Ian Norheim, Carsten Rasmussen. et al. Simulation of the impact of wind power on the transient fault behavior of the Nordic power system[J]. Electric Power Systems Research 77 (2007): 135-144.
    [4] Michael R. Wilkinson, Fabio Spinato and Peter J. Tavner, Condition Monitoring of Generators & Other Subassemblies in Wind Turbine Drive Trains[J]. 2007 IEEE International Symposium on Diagnostics for Electric Machines Power Electronics and Drives (2007): 388-392.
    [5] American Wind Energy Association (AWEA) publication: http://www.awea.org/pubs/factsheets/EconomicsOfWind-Feb2005.pdf
    [6] World Wind Energy Association. [Online]. Available: http://www.wwindea.org/home/index.php
    [7]中国工控信息网http://www.gongkongxx.com/index.html
    [8] World Wind Energy Report 2008, 2009, World Wind Energy Association WWEA http://www.cwen.org.cn/download/display_info.asp?cid=9&sid=&id=29.
    [9] Joselin Herbert GM, Iniyan S, Sreevalsan E, Rajapandian S. A review of wind energy technologies[J]. Renew Sustain Energy Review. 2007, 11(6):1117-1145.
    [10] J. Ribrant. Reliability performance and Maintenance- A Survey of failure in Wind power systerms[D]. Master Thesis, KTH School of Electrical Engineering, 2006.
    [11] P.J. Tavner, J. Xiang and F. Spinato. Reliability analysis for wind turbines[J]. Wind Energy. 2007, 10:1-18.
    [12] R. W. Hyers, J. G. McGowan, K. L. Sullivan, J. F. Manwell, and B. C. Syrett,“Condition monitoring and prognosis of utility scale wind turbines[J]. Energy Materials, vol. 1, no. 3. pp. 187-203, Sep. 2006.
    [13] Chandler H, editor. Wind energy-the facts. European Wind Energy Association, 2003. Available at: http://www.ewea.org 2006-05-02S.
    [14] C. A. Walford. Wind turbine reliability: understanding and minimizing wind turbine operation and maintenance costs[J]. Sandia National Laboratries, Rep. SAND2006-1100,Mar. 2006.
    [15] C. Hatch. Improved wind turbine condition monitoring using acceleration enveloping[J]. Orbit: 58-61, 2004.
    [16] M. R. Wilkinson, F. Spianto, M. Knowles, and P. J. Tavner. Towards the zero maintenance wind turbine[J]. in Proc. 41st International Universities Power Engineering Conference, vol. 1, 2006:74-78.
    [17] D. McMillan and G. W. Ault. Quantification of condition monitoring benefit for offshore wind turbines[J]. Wind Engineering, vol. 31, no. 4: 267-285, May 2007.
    [18] Neumann D. Fault diagnosis of machine-tools by estimation of signal spectra[J]. In: Proceedings of SAFEPROCESS’91, vol. I, 1991, Baden- Baden, p. 73-80.
    [19] Schneider H, Frank PM. Observer-based supervision and fault detection for robots. In: Proceedings of TOOLDIAG’93, Toulous, 1993, p. 773-9.
    [20] Bin Lu, Yaoyu Li, Xin Wu, Zhongzhou Yang. A Review of Recent Advances in Wind Turbine Condition Monitoring and Fault Diagnosis[J]. PEMWA 2009. IEEE . 2009 , Page(s): 1-7.
    [21] Ribrant J. Reliability performance and maintenance-a survey of failures in wind power systems[D]. Master thesis, KTH School of Electrical Engineering, Sweden, 2005/2006.
    [22] Caselitz P, Giebhardt J, Mevenkamp M. On-line fault detection and prediction in wind energy converters[J]. Institut fur Solare Energieversorgungstechnik (ISET) e.V., Germany.
    [23] P. Caselitz, J.Giebhardt. Fault Prediction Techniques for offshore Wind farms maintenance & repair strategies. ISET, Div of Energy Conversion and Control Engineering.? ISET 2003.
    [24] P. Caselitz, J.Giebhardt. Advanced condition monitoring system for Wind Energy converters. ISET.Proceedings of EWEC’99, Nice, France.
    [25] Wind turbines. Cause investigation and consulting services, Allianz Center for Technology AZT (Germany), 15 May 2003.
    [26] J. Ribrant, L. M. Bertling. Survey of failures in wind power systems with focus on swedish wind power plants during 1997-2005[J]. IEEE Trans. Energy Conversion, vol. 22, no. 1: 167-173, Mar. 2007.
    [27] P.J. Tavner, et al. Reliability analysis for wind turbines[J]. Journal of Wind Energy, vol, 10, nl:1-18, March-April 2006.
    [28] P.J. Tavner, J. Xiang, and F. Spinato. Reliability 10 Turbines[J]. Wind Energy, Vol. 10: 1-18, 2007.
    [29] P.J. Tavner, C. Edwards, A. Brinkman, F. Spinato. Influence of Wind Speed on Wind Turbine Reliability[J]. Wind Engineering, Vol. 30, No. 1:55-72, 2006.
    [30] P. J. Tavner, G. J. W. van Bussel, and F. Spinato. Machine and converter reliabilities in wind turbines[J]. in Proc. 3rd IET International Conference on Power Electronics, Machines and Drives, Mar. 2006: 127-130.
    [31] Caselitz P, Giebhargt J, Kruger T, Mevenkamp M. Development of a Fault Detection System for Wind Energy Converters[C]. Proceedings of the EUWEC’96, Gotegorg,1996:1004- 1007.
    [32] Caselitz P, Giebhargt J, Rotor condition monitoring for improved operational safety of offshore wind energy converters[J]. ASME Transactions, Journal of Solar Energy Engineering, 127 (2005) :253-261.
    [33] Caselitz P, Giebhargt J. Advanced condition monitoring system for wind engergy converters[J]. Institut fur Solare Energieversorgungstechnik e.V. Ko¨nigstor 59, Kassel, Germany; 1999.
    [34] B. McNiff. The gearbox reliability. in Proc. 2nd Sandia National Laboratories Wind Turbine Reliability Workshop, Sep. 2007.
    [35] M. Mohsin Khan et at. Reliability and condition monitoring of a wind turbine[J]. in Proceedings of IEEE CCECE'05, Saskatoon bearings," (Canada), 2005.
    [36]许燕.风力发电机组关键部件的有限元分析[D].新疆大学.硕士学位论文,2005.
    [37] Liu, Wenyi ; Tang, Baoping ; Jiang, Yonghua. Status and problems of wind turbine structural health monitoring techniques in China[J]. Renewable Energy. 2010, 35(7): 1414-1418.
    [38] G M Smith, B R Clayton, A G Dutton and A D Irving. Infrared thermography for condition monitoring of composite wind turbine blades: feasibility studies using cyclic loading tests[J]. Wind Energy Conversion 1993, Proceedings of the 15th British Wind Energy Association Conference, York (UK), pp 365-371.
    [39] C.S. Tsai, C.T. Hsieh, and S.J. Huang. Enhancement of damagedetection of wind turbine blades via CWT-based approaches[J]. IEEE Trans. Energy Conversion, vol. 21, no. 3, Sept. 2006: 776-781.
    [40] Dutton AG. Thermoelastic stress measurement and acoustic emission monitoring in wind turbine blade testing[J]. 2004 European Wind Energy, Conference & Exhibition 22-25 November, 2004; London, UK.
    [41] R Matsuzaki and A Todoroki, Tokyo Institute of Technology. Wireless detection of internal delamination cracks in CFRP laminates using oscillating frequency changes[J]. Composites Science and Technology 66 (2006): 407-416.
    [42] Walford CA. Wind turbine reliability: understanding and minimizing wind turbine operation and maintenance costs[J]. Sandia Report, SAND2006-1100. Sandia National Laboratories,Albuquerque, New Mexico 87185 and Livermore, California 94550; 2006.
    [43] J. J. Christensen, C. Andersson and S. Gutt. Remote condition monitoring of vestas turbines[J]. Technical Track - Operation & Maintenance, Proc. EWEC 2009, Marseille, France, Mar. 16-19.
    [44] Verbruggen TW. Wind turbine operation & maintenance based on condition monitoring WT-O[J]. Final report, ECN-C-03-047, April 2003.
    [45] W. Q. Jeffries, J.A. Chambers and D.G. Infield, Experience with bicoherence of electrical power for condition monitoring of wind turbine blades[J]. IEE Proceedings, Vision, Image and Signal Processing, 1998, 45(3): 141-148.
    [46] R.L. Mayes, An experimental algorithm for detecting damage applied to the I-40 bridge over the Rio grande[J]. Proceedings of the 13th International Modal Analysis Conference, 1995: 219-225.
    [47] W. Yang, P. J. Tavner, and M. R. Wilkinson. Condition monitoring and fault diagnosis of a wind turbine synchronous generator drive train[J]. IET Renewable Power Generation, vol. 3, no. 1: 1-11, Mar. 2009.
    [48] T. Yuji, T. Bouno, and T. Hamada. Suggestion of temporarily for forecast diagnosis on blade of small wind turbine[J]. IEEJ Trans. Power and Energy, vol. 126, no. 7: 710-711, 2006.
    [49] NAN-CHYUAN TSAI, YUEH-HSUN KING, RONG-MAO LEE. Fault diagnosis for magnetic bearing systems[J] . Mechanical Systems and Signal Processing, 2009,4(23): 1339-1351.
    [50] AL-RAHEEM, KF; ROY, A; RAMACHANDRAN, KP, et al. Rolling element bearing faults diagnosis based on autocorrelation of optimized: wavelet de-noising technique[J] . International journal of advanced manufacturing technology, 2009, 3-4 (40): 393-402.
    [51] I. SOLTANI BOZCHALOOI, MING LIANG. A smoothness index-guided approach to wavelet parameter selection in signal de-noising and fault detection[J] . Journal of Sound and Vibration, 2007,1-2(308): 246-267.
    [52] A.A. CHANERLEY, N.A. ALEXANDER. Correcting data from an unknown accelerometer using recursive least squares and wavelet de-noising[J] . Computers & Structures, 2007, 21-22(85): 1679-1692.
    [53] Abbasion, S. Rafsanjani, A. eta.. Rolling element bearings multi-fault classification based on the wavelet denoising and support vector machine [J]: Mechanical Systems and Signal Processing, 2007, 7(21): 2933-2945.
    [54] J. RAFIEE, P.W. TSE, A. HARIFI, M.H. SADEGHI. A novel technique for selecting mother wavelet function using an intelligent fault diagnosis system[J] . Expert Systems withApplications, 2009, 3(36): 4862-4875.
    [55] M.E.H. Benbouzid et al. What stator current processing based technique to use for induction motor rotor faults diagnosis[J]. IEEE Trans. Energy Conversiovno,l. 18, n'2: 238-244, June 2003.
    [56] P. Caselitz et al., On-line fault detection and prediction in wind energy converters[J]. in Proceedings of EWEC-94: 623-627 Thessaloniki (Greece), 1994.
    [57] Caselitz P, Giebhardt J. Advance maintenance and repair for offshore wind farms using fault prediction techniques. Institut fur Solare Energieversorgungs technik (ISET), Division of Energy Conversion and Control Engineering Konigstor 59, D-34119 Kassel, Germany.
    [58] S. J. Watson and J. Xiang, Real-time condition monitoring of offshore wind turbines[J]. in Proc. EWEC 2006, Paper #BL-3.
    [59] Caselitz P, Giebhardt J, Mevenkamp M. Application of condition monitoring systems in wind turbine converters. Dublin: EWEC; 1997.
    [60] A Ghoshal, M J Sundaresan, M J Schulz and P F Pai, North Carolina A&T State University and University of Missouri. Structural health monitoring techniques for wind turbine blades[J]. Journal of Wind Engineering and Industrial Aerodynamics 85, 309-324, 2000.
    [61] Amirat Y, Benbouzid ME H, Bensaker B,et al. Condition Monitoring and Fault Diagnosis in Wind Energy Conversion Systems: A Review[C]. Electric Machines & Drives Conference, IEMDC’07, IEEE International, 2007: 1434-1439.
    [60] Z. Hameed, Y. S. Hong, Y. M. Cho, S. H. Ahn, and C. K. Song. Condition monitoring and fault detection of wind turbines and related algorithms: a review[J]. Renewable and Sustainable Energy Reviews, vol. 13, no. 1: 1-39, Jan. 2009.
    [61] Giebhardt J, Caselitz P, ISET; Rouvillain J, MITA Teknik DK; Lyrner T, Nordic Windpower, Sweden; C. Bussler,. et al. Condition monitoring for offshore wind energy converters with respect to the IEC61400- 25standard. DEWEK, Wilhelmshaven, Germany, 2004.
    [62] Jeffries W Q. Experience with Bicoherence of Electrical Power for Condition Monitoring of Wind Turbine Blades[J]. IEE Proc. Vision, Image and Signal Processing, 1998,145(3): 141-148.
    [63] M.E.H. Benbouzid. A review of induction motors signature analysis as a medium for faults detection[J]. IEEE Trans. Industrial Electronics, vol. 47, n°5: 984-993, October 2000.
    [64] Hinich MJ, Clay CS. The application of the discrete Fourier transform in the estimation of power spectra, coherence and bispectra of geophysical data[J]. Rev Geophys 1968;6(3):347-63.
    [65] Swami A, Mendel JM, Nikias CL. Higher-order soectral analvsis toolbox. Natick, MA: TheMath Works Inc.; 1995.
    [66] Nikias CL, Mendel JM. Signal processing with higher order spectra. IEEE Signal Process Mag 1993:10-37.
    [67] Sundaresan MJ, Schulz MJ, Ghoshal A. Structural health monitoring static test of a wind turbine blade[J]. NREL Subcontract Report No.: NREL/SR-500-28719, March 2002. National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, Colorado 80401-3393, USA.
    [68] C.S. Tsai et al. Enhancement of damage-detection of wind turbine blades via CWT-based approaches[J]. IEEE Trans. Energy Conversion, vol. 21, n3: 776-781, September 2006.
    [69] M. S. Sarma, Synchronous machines (Their theory, stability, and excitation systems), Gordon and Breach Science Publisher, New York, 1979.
    [70] Y. Amirat, M.E.H. Benbouzid, B. Bensaker and R. Wamkeue. Condition Monitoring and fault Diagnosis in Wind energy conversion Systems: A Review[J]. Renewable and Sustainable Energy Reviews, Volume 13, Issue 9, December 2009, Pages 2629-2636.
    [71] W.X. Yang, J.B. Hull and M.D. Seymour. A contribution to the applicability of complex wavelet analysis of ultrasonic signals[J]. NDT & E International, 37 pp. 497-504 (2004).
    [72] L. Eren et al. Bearing damage detection via wavelet packet decomposition of the stator current[J]. IEEE Trans. Instrumentation & Measurement, vol. 53, n2. pp. 431-436, April 2004.
    [73] F. Hlawatch, G.F. Boudreaux. Linear and quadratic time-frequency signal processing[J]. IEEE Signal Processing Magazine. 1992, 9 (2):21–67.
    [74] Mirela B, Isar A. The reduction of interference terms in the time-frequency plane[J]. Signals, Circuits and Systems,2003, 2: 461-464.
    [75] Roshan-Ghias, A; Shamsollahi, MB; Mobed, M, et al. Estimation of modal parameters using bilinear joint time-frequency distributions. Mechanical Systems and Signal Processing. 2007, (21): 2125-2136.
    [76] Khandan F, Ayatollahi A. Performance region of center affine Filter for liminating of interference terms of discrete Wigner distribution[J]. Image and Signal Processing and Analysis, 2003, 2: 621-625.
    [77] Gentil S, Montmain J, Combastel C. Combining FDI and AI approaches within causal-model-based diagnosis[J]. IEEE Trans Systems Man Cybernet-Part B: Cybernet 2004;34(5):1.
    [78] Soteris A. Kalogirou. Artificial Neural Networks in Renewable Energy Systems Applications a Review[J]. Renewable and Sustainable EnergyReviews, 2001 (5):373-401.
    [79] Garcia MC, Sanz-Bobi MA, del Pico J. SIMAP: intelligent system for predictive maintenance application to the health condition monitoring of a wind turbine gearbox[J]. J Comput Ind 2006;57(6):552-68.
    [80] Garcia MC, Sanz-Bobi MA, Del Pico J. SIMAP: Intelligent System for Predictive Maintenance Application to the Health Condition Monitoring of a Wind Turbine Gearbox[J]. Computers in Industry , 2006, 57 (6):552- 68.
    [81] Struss P. AI methods for model-based diagnosis. In: Twelfth international workshop principles diagnosis DX01-bridge workshop, Via Lattea, Italy, 2001.
    [82] Sora T, Koivo HN. Application of artificial neural networks in process fault diagnosis. In: Proceedings of SAFEPROCESS’91, vol. 2, Baden-Baden, 1991, p. 133-8.
    [83] Tzafestas S. Second generation diagnostic expert systems: requirements, architectures and prospects. In: Proceedings of SAFEPROCESS’91, vol. 2, Baden-Baden, 1991, p. 1-6.
    [84] Y. Amirat, M. E. H. Benbouzid, B. Bensaker, and R. Wamkeue. Condition monitoring and fault diagnosis in wind energy conversion systems: a review[J]. in Proc. 2007 IEEE International Electric Machines and Drives Conference, vol. 2, May 2007: 1434-1439.
    [85] S. Yang, W. Li, and C. Wang. The intelligent fault diagnosis of wind turbine gearbox based on artificial neural network[J]. Proc. 2008 Int. Conf. on Condition Monitoring and Diagnosis, p 1327-1330.
    [86] Q. Huang, D. Jiang, L. Hong, and Y. Ding. Application of wavelet neural networks on vibration fault diagnosis for wind turbine gearbox[J]. Lecture Notes in Computer Science, vol. 5264 LNCS, n PART 2, Advances in Neural Networks: 313-320 [Proc. 5th Int. Symposium on Neural Networks, 2008].
    [87] Z. Wang and Q. Guo. The Diagnosis method for converter fault of the variable speed wind turbine based on the neural networks[J]. in Proc. 2nd Int. Conf. on Innovative Computing, Information and Control, 2008.
    [88]何正嘉,訾艳阳,赵纪元,等.机械设备非平稳信号的故障诊断原理及应用[M].北京:高等教育出版社,2001.
    [89]李志农,何永勇,褚福磊.基于Wigner高阶谱的机械故障诊断的研究[J].机械工程学报,2005,4(41):119-122.
    [90] Huixia He. Multitaper Higher-Order Spectral Analysis of Nonlinear Multivariate Random Processes[D]. Queen’s University. Kingston, Ontario, Canada degree of Doctor of Philosophy. 2008.
    [91] J. M. Smulko, L. B. Kish. Higher-Order Statistics for Fluctuation-Enhanced Gas-Sensing[J]. Sensors and Materials vol. 16, in press (2004).
    [92] Y. Birkelund and A. Hanssen. Multitaper estimators for bispectra[J]. Proc. of the IEEE Workshop on Higher-Order Statistics, pages 207–211, 1999.
    [93] Y. Birkelund, A. Hanssen, and E.J. Powers. Multitaper estimators of polyspectra[J]. Signal Processing, 83:545–559, 2003.
    [94]屈梁生,何正嘉.机械故障诊断学[M].上海:上海科学技术出版社,1986.
    [95] NOUREDINE YAHYA BEY. Extraction of signals buried in noise[J]. Part I: Fundamentals. Signal Processing, 2006,86: 2464-2478.
    [96] NOUREDINE YAHYA BEY. Extraction of signals buried in noise[J]·Part II: Experimental results. Signal Processing, 2006,86: 2994-3011.
    [97] LAI Zhi-nong,WU Zhao-tong,HE Yong-yong, et al. Hidden Markov model-based fault diagnostics method in speed-up and speed-down process for rotating machinery[J]. Mechanical Systems and Signal Processing, 2005,19: 329-339.
    [98]时轶.风力发电机组振动测试技术研究[D].新疆农业大学,硕士学位论文,2007.
    [99]唐新安.600KW风力发电机组故障诊断[D].新疆大学,硕士学位论文,2006.
    [100]唐新安,谢志明,王哲,等.风力机齿轮箱故障诊断[J].噪声与振动控制,2007(1):120- 124.
    [101] C. Chen, C. Sun, Y. Zhang, and N. Wang. Fault diagnosis for largescale wind turbine rolling bearing using stress wave and wavelet analysis[J]. in Proc. 8th Int. Conf. on Electrical Machines and Systems, vol. 3, 2005: 2239-2244.
    [102]张志新.风电机组嵌入式监测系统研究[D].大连理工大学,博士学位论文,2009.
    [103]张梅.直驱永磁同步风电机组建模及其控制系统仿真研究[D].西安理工大学,硕士学位论文,2008.
    [104]祝振敏.兆瓦级风电机组振动分析及保护[D].兰州理工大学,2008,硕士学位论文.
    [105]杨明明.大型风电机组故障模式统计分析及故障诊断[D].华北电力大学硕士学位论文.2009.
    [106]郭洪澈.兆瓦级风力发电机组变桨距系统控制技术[D].沈阳工业大学,博士学位论文,2008.
    [107] G.M. JoselinHerbert, S. Iniyan,E. Sreevalsan,S. RajaPandian. A review of wind energy technologies[J]. Renewable and Sustainable Energy Reviews. 2007, (11):1117-1145.
    [108]刘忠明,段守敏,王长路.风力发电齿轮箱设计制造技术的发展与展望[J].机械传动,2006,30(6):1-6,31.
    [109] Kubur,A.Kahraman,D.M.Zini et al. Dynamic Analysis of a Multi-Shaft Helical Gear Transmission by Finite Elements: Model and Experiment[J]. Transactions of the ASME, 2004, 126(7): 398-406.
    [110] Ajmi M,Velex P. A model for simulating the quasi-static and dynamic behaviour of solid wide-faced spur and helical gears[J]. Mechanism and Machine Theory. 2005, 40(2): 173-190.
    [111] Caselitz P, Giebhardt J, Mevenkamp M. On-line fault detection on prediction in wind energy converters[A]·Proceedings of the EWEC 94[C]·Thessalonika, 1994: 623-627.
    [112]叶杭冶.风力发电机组的控制技术[M].机械工业出版社(第2版).2006.
    [113]杜荣华.风力发电机组动态特性仿真与控制系统研究[D].华北电力大学,硕士学位论文,2007.
    [114]沈震.风电机组实验测试及无刷双馈电机应用仿真的研究[D],内蒙古科技大学,硕士学位论文,2008.
    [115]郭洁.风机监控系统的开发与应用[D].西安建筑科技大学,硕士学位论文,2008.
    [116]郭君博.风电机组齿轮箱性能检测系统研究与开发[D].大连理工大学,硕士学位论文,2008.
    [117]沈水福,高大勇.设备故障诊断技术[M].科学出版社,1990,4:90-98.
    [118]秦树人.齿轮传动系统检测与诊断技术[M].重庆:重庆大学出版社,1999.
    [119]王建军,李润方.齿轮系统动力学的理论体系[J].中国机械工程,1998,9(12):55-58.
    [120]熊礼俭,王高,潘长城,等.风力发电新技术与发电工程设计、运行、维护及标准规范实用手册.北京:中国科技文化出版社,2005.
    [121] Huang K J,Liu T S. Dynamic Analysis of a Spur Gear by the Dynamic Stiffness Method[J]. Journal of Sound and Vibration. 2000, 234(2):311-329.
    [122]杨国安,编著.机械设备故障诊断实用技术[M].北京:中国石化出版社,2007,第一版.
    [123]梁亮.风机旋转机械设备故障诊断专家系统的设计与实现[D].北京化工大学.硕士学位论文.2008.
    [124] A. Grosamann and J. Morlet. Decomposition of Hardy functions into square integrable wavelets of constant shape[J] . SIAM 1. Muth. vol.15. PP. 723-736.1984.
    [125] Mallat S.·Multiresolution approximations and Wavelet orthonormal bases of L2(R)[J]. Trans. Amer. Math. Soe.,1989,315:69-87.
    [126] Mallat S. Hwang W L. Singularity detection and processing with wavelets[J] . IEEE Trans. Information Theory, 1991, 38: 617-643.
    [127] Mallat S. Multiresolution representation and wavelets[J] . PhD Thesis, Uliiv. of Pennsyl vania, Philadelphia, 1998.
    [128] Daubeehies I. Orthonormal bases of compactly supported wavelets[J] . Cornrn.on Pure and APPI. Math., 1988, 41(7): 909-996.
    [129] I. Daubechies. Tenlectures on Wavelet. Philadelphia. PA: SIAM, 1992.
    [130] Chui C K, Wang J Z. An analysis of cardinal spline-wavelets[J]. Approx Theory, 1993, 72(1): 54-68.
    [131] Chui, C, K. and. J.Z. wang. Computational and algorithmic aspects of cardinal spline wavelets[J]. CAT ReProt#235, Texas A&M University, 1990.
    [132] Wolfgang Dahmen, Angela Kunoth, Karsten Urban. Biorthogonal Spline Wavelets on the Interval Stability and Moment Conditions[J]. Applied and Computational Harmonic Analysis. 1999, 6(2): 132-196.
    [133] Wicherhauser M V. Lectures on wavelet pactet algorithms. .第三次中法小波会议论文集.北京:万国学术出版,1992:231-237.
    [134] Y. Meyer. Wavelets Algorithms & Applications[M]. New York: SIAM,1993.
    [135] Vetteri M. Herley C. Wavelets and filter banks: theory and denoising[J]. IEEE Trans on Signal Processing, 1992, 40(9): 2207-2232.
    [136] Jean-Pierre Djamdji et al. Geometrieal registration of images, the multiresolution approach[J]. Photogrammetry and Remote Sensing Joumal, 1993, 59(5): 645-653.
    [137] W. Sweldens. The Lifting Scheme: A Construction of Second Generation Wavelets[J]. Sian Mathematics Analysis, 1997, 29(2): 511-546.
    [138]王炬.基于混沌扩频和小波消噪的电力通信方法研究[D].长沙理工大学.硕士学位论文.2008.
    [139]彭玉华.小波变换与工程应用[M].北京:科学出版社,2003.
    [140]马丽萍.循环流化床波动信号的非线性分析[D].成都:四川大学,博士学位论文,2002.
    [141] Nan-Chyuan Tsai, Yueh-Hsun King, Rong-Mao Lee. Fault diagnosis for magnetic bearing systems[J] . Mechanical Systems and Signal Processing, 2009,4(23): 1339-1351.
    [142]罗志增,张清菊,蒋静坪.表面肌电信号的小波消噪改进算法[J].浙江大学学报(工学版).2007,2(41):213-216.
    [143] Donoho D. L, Johnstone L. M. Adapting to unknown smoothness via wavelet shrinkage[J]. Journal of the American Statistical Association, 1995, 90(12): 1200-1224.
    [144] Donoho D.L. Denoising by Soft Thresholding[J]. IEEE. Transaction on Information. 1995,(3): 613-627.
    [145] Al-Raheem, KF; Roy, A; Ramachandran, KP, et al. Rolling element bearing faults diagnosis based on autocorrelation of optimized: wavelet de-noising technique[J] . International journal of advanced manufacturing technology, 2009, 3-4 (40): 393-402.
    [146] J. Rafiee, P.W. Tse, A. Harifi, M.H. Sadeghi. A novel technique for selecting mother wavelet function using an intelligent fault diagnosis system[J] . Expert Systems with Applications,2009, 3(36): 4862-4875.
    [147] I. Soltani Bozchalooi, Ming Liang. A smoothness index-guided approach to wavelet parameter selection in signal de-noising and fault detection[J] . Journal of Sound and Vibration, 2007,1-2(308): 246-267.
    [148] A.A. Chanerley, N.A. Alexander. Correcting data from an unknown accelerometer using recursive least squares and wavelet de-noising[J] . Computers & Structures, 2007, 21-22(85): 1679-1692.
    [149]程发斌,汤宝平,钟佑明.基于最优Morlet小波和SVD的滤波消噪方法及故障诊断的应用[J] .振动与冲击.2008,2(27):91-94.
    [150] K. Kim et al. Induction motor fault diagnosis based on neuropredictors and wavelet signal processing[J]. IEEE/ASME Trans. Mechatronics, vol. 7, n°2: 201-219, June 2002.
    [151]刘文艺,汤宝平,蒋永华.一种自适应小波消噪方法的研究.振动、测试与诊断.(已录用待发表).
    [152] Y ZHANG, W MU, M G AMIN. Subspace analysis of spatial time-frequency distribution matrices[J] . IEEE Trans. on Signal processing, 2001,49(4):747-758.
    [153] QIU H, LEE J, LIN J, YU G. Wavelet filter-based weak signature detection method and its application on rolling element bearing prognostics[J] . Journal of Sound and Vibration. 2006, 289(4-5):1066-1090.
    [154] LIN J, ZUO M J, FYFE K R. Mechanical fault detection based on the wavelet de-noising technique[J] . ASME Journal of Vibration and Acoustics. 2004 (126):9-16.
    [155] J RAFIEE, PW TSE, A HARIFI, M.H. SADEGHI. A novel technique for selecting mother wavelet function using an intelli gent fault diagnosis system[J] . Expert Systems with Applications, 2009, 3(36): 4862-4875.
    [156]唐向宏,李齐良.时频分析与小波变换[M].北京:科学出版社.2008,第一版.
    [157]李力,等.机械信号处理及应用[M].武汉:华中科技大学出版社.2007.
    [158] MINOWA, YASUSHI. Verification for generalizability and accuracy of a thinning-trees selection model with the ensemble learning algorithm and the cross-validation method[J] . Journal of Forest Research, 2008,13(5): 275-285.
    [159]汤宝平,刘文艺,蒋永华.基于交叉验证法优化参数的Morlet小波消噪方法[J].重庆大学学报自然版(中文),2010,33(1):1~6.
    [160] Wigner E. On the quantum correction for thermodynamic equilibrium[J]. Phys. Rev. 1932,40:749~759.
    [161] Ville J. Theorie. Applications de la notion de signal analytique[J].Cables et Transmissions, 1948, 20A:61~74.
    [162] Claasen T A C M, Mecklenbraker W F G. The Wigner distribution-A tool for time-frequency signal analysis-Part I: Continuous-time signals[J]. Philips J. Res., 1980,35:217~250.
    [163] Claasen T A C M and Mecklenbraker W F G. The Wigner distribution-A tool for time-frequency signal analysis-Part II:Discrete time signals[J]. Philips J.Res., 1980, 35: 276-300.
    [164] Claasen T A C M, Mecklenbraker W F G. The Wigner distribution-A tool for time-frequency signal analysis-Part III: Relations with other time-frequency signal transformations[J]. Philips J.Res.,1980,35:372-389.
    [165] Shie Q,Dapang C.Joint time-frequency analysis[C]. New Jersey:Prentice Hall PTR,1996.
    [166] L. Cohen. Time-Frequency Distributions-A Review[J]. Proceedings of the IEEE, 1989, (77): 941-981.
    [167] Pachori R B, Sircar P. A new technique to reduce cross terms in the Wigner distribution[J]. Digital Signal Processing 2007, (17): 466-474.
    [168] Padovese L R. Hybrid time-frequency methods for non-stationary mechanical signal analysis. Mechanical Systems and Signal Processing[J]. 2004, (18):1047–1064.
    [169] Zhang Y M, Mu W F, Amin M G.. Subspace analysis of spatial time-frequency distribution matrices[J]. IEEE Trans on SP, 2001, 49(4):747-758.
    [170] W. J. Staszewski, K. Worden and G. R. Tomlinson. Time-frequency analysis in gearbox fault detection using the Wingner-Ville distribution and pattern recognition[J]. Mechanical Systems and Signal Processing (1997), 11(5): 673-692.
    [171] M.A. Rodriguez, J. Emeterio, Ultrasonic Flaw Detection in NDE of Highly Scattering Materials Using Wavelet and Wigner-Ville Transform Processing[J]. Ultrasonics, 2004, (42): 217-250.
    [172] Mark W D. Spectral analysis of the convolution and filtering of non-stationary stochastic processes[J]. Sound and Vibration., 2007,11(1):19-63.
    [173] Ram Bilas Pachori, Pradip Sircar. A new technique to reduce cross terms in the Wigner distribution[J]. Digital Signal Processing 2007, (17): 466-474.
    [174] Lee, S.K. A new method for smoothing non-oscillation cross-terms in sliced wigner fourth-order moment spectra[J]. Mechanical Systems and Signal Processing, 2001, (15) : 1023-1029.
    [175] F. Sattar, G. Salomonsson. The use of a filter bank and the Wigner–Ville distribution for time-frequency representation[J]. IEEE Trans. Signal Process. 1999, (47): 1776-1783.
    [176] I. Cohen, S. Raz and D. Malah. Adaptive suppression of Wigner interference-terms using shift-invariant wavelet packet decompositions[J]. Signal Processing. 1999, (73): 203-223.
    [177] Shaameri, A. Z.; Salleh, S.H.S. Window width estimation and the application of the windowed Wigner-Ville distribution in the analysis of heart sounds and murmurs[J]. TENCON 2000 Proceedings,2000, (2): 114.119.
    [178] Cohen L. Time-frequency analysis[C].New Jersey: Prentice Hall PTR,1995.
    [179] Park,Y.K.; Kim,Y.H. A method to minmise the cross-talk of wigner-ville distribution[J]. Mechanical Systems and Signal Processing. 1997, 11(4): 547-559.
    [180] Simon,L.;Valiere,J.C.; Depollier,C. Time-frequency analysis of a non-uniformly sampled signal with the Wigner–Ville transform: application to the study of the gyroscopic motion of a projectile[J].Mechanical Systems and Signal Processing, 1995, 9(6), 589-600.
    [181] Narasimhan,S.V.; Nayak,Malini.B. Improved Wigner-Ville distribution performance by signal decomposition and modified group delay[J].Signal Processing, 2003, 83(12): 2523-2538.
    [182]邹红星,戴琼海,李衍达,等.不含交叉扰项且具有WVD聚集性的时频分布之不存在性[J].中国科学(E辑),2001,31(4):348-354.
    [183]程发斌,汤宝平,刘文艺.一种抑制维格纳分布交叉项的方法及在故障诊断中应用[J].中国机械工程,2008,14(19):1727-1731.
    [184]刘文艺,汤宝平,陈仁祥.基于最优Morlet小波和自项窗的混合时频分析方法研究[J].振动与冲击.2010,29(9):5-8,27.
    [185]程发斌,汤宝平,钟佑明.利用ASTFT谱有效抑制WVD交叉项的方法[J].电子与信息学报,2008,10(10):2299-2302.
    [186]刘文艺,汤宝平,陈仁祥,蒋永华.一种应用自项抑制魏格纳分布交叉项的方法[J].中国机械工程.2009,20(21):2613-2615.
    [187]杨炯明,秦树人.基于变窗移傅里叶变换实现旋转机械振动信号转速谱阵的算法研究[J].中国机械工程,2006,5(17):515-518.
    [188] Ghias R A, Shamsollahi M B, Mobed M, et al. Estimation of modal parameters using bilinear joint time-frequency distributions. Mechanical Systems and Signal Processing[J]. 2007, (21): 2125-2136.
    [189] Baoping Tang, Wenyi Liu, Tao Song. Wind ?turbine fault diagnosis based on Morlet wavelet transformation and Wigner-Ville distribution[J]. Renewable Energy. 2010, 35(12): 2862-2866.
    [190]万小磊.常规雷达目标双谱特征分析及应用[D].西安电子科技大学.硕士学位论文,1999.
    [191]罗俊玮.基于FCM的类合并聚类算法研究[D].重庆大学,硕士学位论文,2009.
    [192]张贤达.现代信号处理[M].第二版.北京:清华大学出版社,2002.
    [193]刘文艺,汤宝平,陈仁祥.一种基于对角切片高阶谱的故障识别方法[J].机械科学与技术.2010,29(3):281-284.
    [194] http://www.eecs.case.edu/laboratory/bearing/download.htm
    [195]冯宗哲,程相君.模式识别原理[M].西安:西安电子科技大学,1993.
    [196]蔡元龙.模式识别[M].西安:西安电子科技大学,1992.
    [197] Sawalhi, N. Randall, R.B. Helicopter gearbox bearing blind fault identification using a range of analysis techniques [J]. Australian Journal of Mechanical Engineering, 2008, 5(2): 157-168.
    [198] Sugumaran, V. Ramachandran, K.I. Automatic rule learning using decision tree for fuzzy classifier in fault diagnosis of roller bearing [J]. Mechanical Systems and Signal Processing, 2007, 5(21): 2237-2247.
    [199]李志梅.基于模糊聚类的图像分割算法研究[D].湖南大学,硕士学位论文,2008.
    [200] Dunn J C.A graph theoretic analysis of pattern classification via Tamura’s fuzzy relation[J]. IEEE Trans. SMC. 1974, 4(3):310-313.
    [201] Backer E. Jain A K. A clustering performance measure based on fuzzy set decomposition. IEEE Trans. PAMI, 1981, 3(1):66-74.
    [202]姜琴.模糊聚类分析及其在数字图像处理中的应用[D].武汉工业大学.硕士学位论文.2009.
    [203]李虎.大型风电机组振动状态监测系统开发[D].华北电力大学.硕士学位论文.2009.
    [204]刘胜玉.风电机组嵌入式监测系统研究[D].大连理工大学.硕士学位论文.2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700