用户名: 密码: 验证码:
针刺对脑功能影响的数据采集与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针灸对许多疾病有明显疗效,但针灸如何调节和影响身体各种功能的机理尚不清楚。目前,国内外众多学者采用各种手段研究针刺的穴位特性和作用机制等,而本文则从针刺体表电信号角度分析针刺的作用规律。
     本文设计了具有高速、实时、多路、同步特性的体表电信号采集系统,实现了理论采集速度可达64KHz,导联数量最高为256导,并完全同步的多种体表电信号采集。
     脑电(EEG)是不同频率震动的诸多振子共同作用的结果,是脑复杂生理电活动的体现,并能够反映脑部各区域的变化。本文分析了影响针刺脑电实验结果的3种因素,设计了采用人工针刺方式刺激右腿膝部足三里(ST-36)穴位获取9位受试者的EEG数据,分析针刺对脑部活动影响的实验。
     本文首先采用边缘谱分析方法和相对功率分析方法处理EEG数据,发现针刺ST-36可以显著影响脑部活动,具有明显的镇定作用,这种现象与中医理论中足三里穴位的疗效相符。通过计算不同针刺阶段EEG信号的LZ复杂度,发现9位受试者在针刺不同阶段,脑部区域的LZ复杂度的变化明显,这说明针刺对脑部有显著作用。通过计算不同针刺阶段EEG信号的小波能量熵,发现9位受试者在针刺时的小波能量熵有下降趋势,说明针刺使EEG信号变得更加有序。
     除了研究单个导联的特性外,本文还分析了两个或多个导联间的脑电特性。本文采用相干估计和同步似然度法分析了针刺各阶段脑部不同区域间的同步性,发现针刺会显著加强δ频段和γ频段脑部各区域间的同步性;根据EEG信号同步性的生理基础,证明了同步性提高是针刺协调各脑部区域间电活动的具体体现,针刺具有促进脑部不同区域间信息交流的作用。
     本文首次将脑功能性网络的思想引入到针刺研究中,通过分析发现针刺会显著增加脑部远端区域间的连接数目,从而使脑功能性网络的平均聚类系数增加,平均路径长度降低,即针刺会加强脑功能性网络的小世界特性。根据脑功能性网络的分析结果及其生理意义,证明了针刺有提高脑部远端区域间信息交流的效果,促使脑的“分布式信息处理结构”更加理想并加强人脑对随机错误和局部功能损坏的恢复能力和稳定性。
     通过上述对脑电信号的分析,发现针刺足三里对脑部有显著作用,并首次将EEG的同步性分析方法和脑功能性网络的思想引入到针刺机理研究中,为传统针灸理论研究提供了新的思路和方法。
Acupuncture works as well as standard drugs, whereas its mechanism is still unknown. Many scientists have worked on the physiological basis of Chinese medicine and attempt to explain the acupuncture points and meridians using modern scientific technology.
     The paper has realized a kind of architecture of the Data Acquisition System (DAQ) which has high sampling frequency of 64KHz at the most, 256 electrodes, and is able to acquire various body-surface electrical signals with full synchronization mode.
     The electroencephalographic (EEG) can be regarded as a reflection of the activity of ensembles of generators producing oscillations in several frequency ranges, which is a complex physiological electrical activity. The paper analyzed the three influencing factors on acupuncture experiment with EEG before and designed a new one. In our experiments, we applied manual acupuncture; selected acupoint distributed over distal end of leg and chose the experimental subjects with acupuncture experience.
     The value of SEF90 and relative power in delta band of the EEG signals significantly was changed in the frontal lobe, temporal lobe and posterior temporal lobe during acupuncture at ST-36. It concluded that acupuncture at ST-36 has a remarkable effect on the brain and exert a sedation effect which coincides with the basic theory of traditional Chinese medicine. The method of LZ complexity and wavelet energy entropy was also used to analyze the EEG signals and discovered an remarkable effect on the brain during acupuncture.
     The paper used coherence estimation method and synchronization likelihood method to measure the synchronization of different brain areas during acupuncture and found that the synchronization of different brain areas inδandγbands were enhanced when applied acupuncture. We believe it's an exhibit that the electrical activity of different region in brain is coordinated by acupuncture. In order to study the acupuncture effect, the paper introduced the concept of brain functional network into the research and found that acupuncture could increase the number of long distance connection between different brain areas. We think acupuncture has the effect that coordinates the electrical activity of different regions in the brain and strengthen the information exchange of far-end regions of the brain. We also found that acupuncture can enhance the small world feature of brain functional network, which means acupuncture can make brain functional networks have more perfect distributed information processing network architecture and a higher resilience to random error.
     The paper used several modern signal proccess methods to analyze the EEG signals during acupuncture and found acupuncture on ST-36 has a remarkable effect on the brain. In this paper, we first introduced the concept of synchronization and brain functional network into the acupuncture research and provided new ideas and methods to the research of traditional Chinese acupuncture theory.
引文
[1]孙力,基于电信号的针刺特性研究,博士学位论文,天津大学, 2008
    [2]Han JS, Acupuncture and endorphins, Neuroscience Letters, 2004, 361(1-3): 258~261
    [3]易受乡,洪金标,针灸对效应靶器官细胞受体、G蛋白及离子通道影响的研究概况,中国中医药信息杂志, 2009, 16(4):105~108
    [4]尹玲,金香兰,石现, et al.针刺足三里穴PET和fMRI脑功能成像的初步探讨,中国康复理论与实践, 2002, 8(9):523~525
    [5]Wu MT, Hsieh JC, Xiong J, et al.Central nervous pathway for acupuncture stimulation:localization of processing with functional MR imaging of the brain-preliminary experience.Radiology, 1999, 212(1):133~141
    [6]Wu MT, Sheen JM, Chuang KH, et al.Neuronal specificity of acupuncture response:a fMRI study with electroacupuncture, Neuroimage, 2002, 16(4): 1028~ 1037
    [7]曹天钦,冯德培,张香桐,神经科学前沿,北京知识出版社, 1986:190~217
    [8]Osvaldo A. Rosso, Susana Blanco, Wavelet entropy: a new tool for analysis of short duration brain electrical signals, Journal of Neuroscience Methods, 2001, 105(1):65~75
    [9]Achard S, Salvador R, Whitcher B, et al. A Resilient, Low-Frequency, Small- World Human Brain Functional Network with Highly Connected Association Cortical Hubs, J Neurosci, 2006, 26:63~72
    [10]Sporns O, Chialvo DR, Kaiser M, Hilgetag CC, Organization, development and function of complex brain networks, Trends Cogn Sci, 2004, 8: 418~425
    [11]Salvador R, Suckling J, Coleman M, et al. Neurophysiological architecture of functional magnetic resonance images of human brain, Cereb Cortex, 2005, 15: 1332~1342
    [12]Eccles J, The Neurophysiological Basis of Mind, Oxford: Clarendon Press, 1953
    [13]William Giroldini, Eccles's Model of Mind-Brain Interaction and Psychok- inesis: A Preliminary Study, Journal of ScientiJic Exploration, 1991, 5(2):145~161
    [14]李颖洁,邱意弘,朱贻盛,脑电信号分析方法及其应用,北京:科学出版社, 2009, 4~6
    [15]谭郁玲,临床脑电图及脑电地形图学,北京:人民卫生出版社, 1999
    [16]黎萌,电偶极子与模拟心电图测量,大学物理, 1994, 13(8):29~30
    [17]科尔达科技,基于MSP430 FG439的心电检测仪,电子世界, 2006, 10:45~47
    [18]陈昱,黄春媚,胃肠道运动功能的研究方法进展,国外医学生物医学工程分册, 1996, 19(6):329~333
    [19]侯文生,彭承琳,胃电活动研究进展,世界医疗器械, 2001, 4:62~63
    [20]朱显武,肌电引导仪的设计,浙江大学,硕士学位论文, 2006, 8~9
    [21]王兆云,吴小培,采集眼电图(EOG)的导联方式,计算机技术与发展, 2009, 19(6):145~151
    [22]刘海龙,生物医学信号处理,北京:化学工业出版社-现代生物技术与医药科技出版中心, 2006, 1~10
    [23]John G. Webster, Medical Instrumentation Application and Design (Third Edition), New York: John Wiley & Sons,, 1998, 10~11
    [24]Shore P A, Olin J, The IntegrativeAction of the Nervous System, (7th ed.), Cambridge: Cambridge University Press, 1958
    [25]Quian Quiroga R, Kraskov A, Kreuz T, Grassberger P, Performance of different synchronization measures in real data: A case study on electroencephalogra- mphic signals, Physical Review E, 2002, 65:041903
    [26]Lopes Da, Silva F. EEG Analysis: Theory and Practice. In Electroencephalog raphy: Basic Principles, Clinical Applications and Related Fields, (4th edition). NewYork: Williams & Wilkins, 1999: 1135~1163
    [27]Dauwels J, Vialatte F, Musha T, et al. A comparative study of synchrony measures for the early diagnosis of Alzheimer's disease based on EEG. NeuroImage, 2010, 49(1): 668~693
    [28]Rodrigo Quian Quiroga, Bivariable and Multivariable Analysis of EEG Signals
    [29]Mormanna F, Lehnertz K, David P, et al. Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients, Physica D, 2000, 144(3-4):358~369
    [30]Latora V, Marchiori M, Efficient behavior of small-world networks, Physical Review Letters, 2001, 87(19):198701
    [31]方小玲,姜宗来,基于脑电图的大脑功能性网络分析,物理学报, 2007, 56(12): 7330~7339
    [32]Lee L, Harrison LM, Mechelli A, A report of the functional connectivity work- shop, Dusseldorf 2002, Neuroimage, 2003, 19(2), 457~465
    [33]Sporns O, Zwi JD, The small world of the cerebral cortex, Neuroinformatics, 2004, 2:145~162
    [34]陈兴时,张明岛,脑电学发展史实,国外医学.精神病学分册, 1996, 23(2): 95-99
    [35]Sykes A H, AD Waller and the electrocardiogram, Br Med J (Clin Res Ed), 1987, 94(6584): 1396~1398
    [36]刘皓宇,“诺贝尔奖金获得者”编委会编诺贝尔奖金获得者传(第二卷),长沙:湖南科学技术出版社, 1981:247~252
    [37]Alvarez WC. The electrogastrogram and what it shows, Journal of the American Medical Association, 1922, 78 (15): 1116~1118
    [38]Tumpeer IH, Blitzsten PW, Registration of peristalsis by the Einthoven galvano- meter, American Journal of Disease of Children, 1926, 21:454~455
    [39]Tumpeer IH, Phillips B, Hyperperistaltic electrographic effects, American Journal of the Medical Sciences, 1932, 18 :831~836
    [40]Nishimura S, Tomita Y, Horiuchi T, Clinical application of an active electrode using an operational amplifier, IEEE Transactions on Biomedical Engineering, 1992, 39(10):1096~1099
    [41]Griss P, Tolvanen-Laakso H K, Merilainen P, Stemme G, Characterization of Micromachined Spiked Biopotential Electrodes, IEEE Transactions on Biomedical Engineering, 2002, 49(6):597~604
    [42]Alba N A, Sclabassi R, Sun M, Cui X T, Novel Hydrogel-Based Preparation- Free EEG Electrode, IEEE Transactions on Neural Systems and Rehabilitation Engin- eering, 2010, PP(99):1~10
    [43]Thomas Degen, Heinz J?ckel, A Pseudodifferential Amplifier for Bioelectric Events With DC-Offset Compensation Using Two-Wired Amplifying Electrodes, IEEE Transactions on Biomedical Engineering, 2006, 53(2):300~310
    [44]Lguchi H, Watanabe K, Kozato A, Ishii N, Wearable electroencephalograph system with preamplified electrodes, Medical & Biological Engineering & Computing, 1994, 32:459~461
    [45]McGlinchey G, Pietkiewicz S, Frank R, et al. A programmable medical data acquisition system chip Custom Integrated Circuits Conference 1988, Proceedings of the IEEE 1988, 1988, 9.4/1 ~ 9.4/6
    [46]Desel T, Reichel T, Rudischhauser S, Hauer H, A CMOS Nine Channel ECG Measurement IC, ASIC 1996 2nd International Conference on Digital Object Identifier, 1996, 115 ~ 118
    [47]Martins R, Selberherr S, Vaz FA, A CMOS IC for portable EEG acquisition systems, IEEE Transactions on Instrumentation and Measurement, 1998, 47(5):1191~ 1196
    [48]HARB A, HU Y, SAWAN M, et al. Low-Power CMOS Interface for Record- ing and Processing Very Low Amplitude Signals, Analog Integrated Circuits and Signal Processing, 2004, 39:39~54
    [49]Ng KA, Chan PK, A CMOS analog front-end IC for portable EEG/ECG monitoring applications, Circuits and Systems I, 2005, 52(11):2335~2347
    [50]Mohsen Mollazadeh, Kartikeya Murari, Gert Cauwenberghs, Nitish Thakor, Micropower CMOS Integrated Low-Noise Amplification, Filtering, and Digitization of Multimodal Neuropotentials, IEEE Transactions on Biomedical Circuits and System, 2009, 3(1):1~10
    [51]Verma N, Shoeb A, Bohorquez J, et al. A Micro-Power EEG Acquisition SoC With Integrated Feature Extraction Processor for a Chronic Seizure Detection System, IEEE Journal of Solid-state Circuits, 2010, 45(4):804~816
    [52]Utsuyama N, Yamaguchi H, Obara S, et al. Telemetry of human electro- cardiograms in aerial and aquatic environments, IEEE Transactions on Biomedical Engineering, 1988, 35(10):881~884
    [53]Mohsen Mollazadeh, Kartikeya Murari, Gert Cauwenberghs, Nitish V Thakor, Wireless Micropower Instrumentation for Multimodal Acquisition of Electrical and Chemical Neural Activity, IEEE Transactions on Biomedical Circuits and System, 2009, 3(6):388~397
    [54]Chung-Chiun Liu, Edward O’Connor, Kingman P Strohl, A Multichannel, Wire- less Telemetric Microsystem for Small Animal Studies, IEEE Sensors Journal, 2006, 6(1):187~202
    [55]余学飞,医学电子仪器原理与设计,广州:华南理工大学出版社, 1999, 105~ 106
    [56]Challis RE, Kiteney RI, Biomedical Signal Processing (in 4 parts) part1 Time- Domain Methods, Medical & Biological Engineering & Computing, 1990, 28(6):509~524
    [57]Uchida S, Feinberg I, March J D, et al. A comparison of period amplitude analysis and FFT power spectral analysis of all-night human sleep EEG, Physiology & Behavior, 1999, 67(1):121~131
    [58]Uchida S, Matsuura M, Ogata S, et al. Computerization of Fujimori's method of waveform recognition - A review and methodological considerations for its application to all-night sleep EEG, Journal of Neroscience Methods, 1996, 64(1):1~12
    [59]Fujimori B, Yokota T, Ishibashi Y, Takei T, Analysis of electroencepha- logram of children by histogram method, Electroenceph. Clin. Neurophysiol. 1958, 10:241~252
    [60]Shanbao Tong, Nitish V. Thakor, Quantitative EEG Analysis Methods and Clinical Applications, Artech house, 2009, 53~63
    [61]Challis RE, Kiteney RI, Biomedical Signal Processing (in 4 parts) part2 The Frequency Transform and Their interrelationships, Medical & Biological Engineering & Computing, 1991, 29(1):1~17
    [62]Welch P D, The Use of Fast Fourier Transform for the Estimation of Power Spectra: A Method Based on Time Averaging Over Short, Modified Periodograms, IEEE Transaction on Audio and Electroacoustics, 1967, 15(2):70~73
    [63]Hayes M, Statistical Digital Signal Processing and Modeling, New York, John Wiley & Sons, 1996
    [64]Challis RE, Kiteney RI, Biomedical Signal Processing (in 4 parts) part3 The Power Spectrum and Coherence Function, Medical & Biological Engineering & Computing, 1991, 29(3):225~241
    [65]Zetterberg LH, Estimation of parameters for a linear difference equation with application to EEG analysis, Mathematical Biosciences, 1969, 5(3-4):227~275
    [66]Anderson NR, Wisneski K, Eisenman L, et al. An Offline Evaluation of the Autoregressive Spectrum for Electrocorticography, IEEE Transactions on Biomedical Engineering, 2009, 56(3):913~916
    [67]Marple SL, Digital Spectral Analysis, Englewood Cliffs, NJ, Prentice-Hall, 1987, 373~378
    [68]宋莹,田心,脑电的非线性动力学高维特性及研究现状与展望,国外医学(生物医学工程分册), 2000, 23(4):198~202
    [69]Stam CJ, Nonlinear dynamical analysis of EEG and MEG: Review of an emerging field, Clinical Neuropysiology, 2005, 116(10):2266~2301
    [70]Quiroga RQ, Rosso OA, Basar E, et al. Wavelet entropy in event-related potentials: a new method shows ordering of EEG oscillations, Biological Cybernetics, 2001, 84(4):291~299
    [71]Yordanova J, Kolev V, Rosso OA, et al. Wavelet entropy analysis of event- related potentials indicates modality-independent theta dominance, Journal of Neuroscience Methods, 2002, 117(1):99~109
    [72]Lempel A, Ziv J, On the Complexity of Finite Sequences, IEEE Transactions on Information Theory, 1976, 22(1):75~81
    [73]吴祥宝,徐京华,复杂性与脑功能,生物物理学报, 1991, 7(1):103~106
    [74]洪波,杨福生,岳小敏, et al.基于多变量AR模型的脑电相干性分析及其在脑区协作机制研究中的应用,生物物理学报, 2001 , 17(1):105~133
    [75]GRAY CM, KONIG P, ENGEL AK, et al. Oscillatrory Reponses in cat Visual- Cortex Exhibit Inter-Columnar Synchronization which Reflects Global Stimulus Properties, Nature, 1989, 338(6213):334~337
    [76]Montez T, Linkenkaer-Hansen K, van Dijk BW, Stam CJ, Synchronization likelihood with explicit time-frequency priors, Neuroimage, 2006, 33:1117~1125
    [77]Stam CJ, van Dijk BW, Synchronization likelihood: An unbiased measure of generalized synchronization in multivariate data sets, Psysica D, 2002, 163:236~251
    [78]Micheloyannis S, Pachou E, Stam CJ, et al. Small-world networks and disturbed functional connectivity in schizophrenia, Schizophrenia Research, 2006, 87(1-3):60~66
    [79]Ponten SC, Bartolomei F, Stam CJ. Small-world networks and epilepsy: Graph theoretical analysis of intracerebrally recorded mesial temporal lobe seizures. Clinical Neurophysiology, 2007, 118(4):918~927
    [80]Stam CJ, Jones BF, Nolte G, et al. Small-world networks and functional connectivity in Alzheimer's disease. Cerebral Cortex, 2007, 17(1):92~99
    [81]Granger C W J, Investigating Causal Relations by Econometric Models and Cross-Spectral Methods, Econometrica, 1969, 37(3):424~438
    [82]Bernasconi C, Konig P, On the directionality of cortical interactions studied by structural analysis of electrophysiological recordings, Biological Cybernetics, 1999, 81(3):199~210
    [83]Bernasconi C, von Stein A, Chiang C, et al. Bi-directional interactions between visual areas in the awake behaving cat, Neuroreport, 2000, 11(4):689~692
    [84]Hiemstra, Craig Jones, Jonathan D, Testing for linear and nonliner Granger causality in the stock price-volume relation, Journal of Finance, 1994, 49(5):1639~ 1664
    [85]Micheloyannis S, Pachou E, Stam CJ, et al. Using graph theoretical analysis of multichannel EEG to evaluate the neural efficiency hypothesis. Neurosci Lett, 2006, 402:273~277
    [86]王桂莲,心电图电极,数理医药学杂志, 2007, 20(4):541~543
    [87]刘骥,陈秀文,医用电子学,北京:人民卫生出版社, 1983, 271~272
    [88]Forster I C, Measurement of patient body capacitance and a method of patient isolation in mains environments, Medical and Biological Engineering and Computing, 1974, 12(5):730~732
    [89]Huhta JC, Webster JG, 60-HZ interference in electrocardiography, IEEE Trans Biomed Eng. 1973, 20(2):91~101
    [90]Metting van Rijn AC, Peper A, Grimbergen CA, High-quality recording of bioelectric events Part 1 Interference reduction, theory and practice, Medical and Biological Engineering and Computing, 1990, 28:389~397
    [91]申风牌一次性使用心电电极技术参数,标准号YZB/沪2708-21-2007
    [92]INA114 datasheet Precision INSTRUMENTATION AMPLIFIER, Texas Inst- ruments Incorporated, 2005
    [93]INA118 datasheet Precision INSTRUMENTATION AMPLIFIER, BurrBro- wn Corporation, 1998
    [94]AD8221 datasheet Precision Instrumentation Amplifier, Analog Device, 2003
    [95]Winter BB, Webster JG, Driven-right-leg circuit design, IEEE Trans Biomed Eng, 1983, 30(1):62~66
    [96]Morrison R, Grounding and shielding technigues in instrumentation(2nd edn), New York :John Wiley & Sons, 1977, 132~133
    [97]谢宏,徐雪, EZ-USBFX2接口在生物电信号数据采集系统中的应用,电子设计工程, 2009, 17(7):1~3
    [98]徐瑞,韩海生,金天弘,基于DSP的生物医学信号高速实时数据采集与处理系统,医疗卫生装备, 2007, 28(2):21~23
    [99]陈月华,欧阳斌林,初永良,基于PIC单片机的生物体电信号采集和处理装置的研究和设计,东北农业大学学报, 2004, 35(6):730~732
    [100]臧国华,面向脑机接口的脑电信号采集系统的设计与实现,国防科技大学, 2005, 14~31
    [101]李栾,任恩茹,李刚,生物电数据采集平台的设计,电子质量, 2003, 07: 95~97
    [102]刘青峰,视觉诱发电位测量系统的研究,硕士学位论文,重庆大学, 2009
    [103]孙友明,黄秉鍊,罗晓曙,新型脑电信号放大检测电路的设计,医疗卫生装备, 2007, 28(1):15~17
    [104]马世伟,关俊强,杨帮华,袁玲,用于BCI的脑电信号检测电路的设计,测控技术, 2009, 28(6):28~31
    [105]张潇,基于ARM7和USB的表面肌电信号数据采集系统的研究,硕士学位论文,华中科技大学, 2007
    [106]彭莉辉,吴鸿修,庄峻等,汤剑清,神经电生理信号多道同步采集和分析系统,生理学报, 2001, 53(1):79~82
    [107]黄河涛,杜玉晓,董建,μV级脑电信号采集系统的关键技术,实验室研究与探索, 2009, 28(9):72~76
    [108]杨耀,漆婷,庞小峰,基于USB接口的多通道生理信号采集系统实现,自动化技术与应用, 2005, 24(10):51~53
    [109]杨及,李章勇,王伟,四通道胃电检测系统电路设计与实现,自动化与仪表, 2007, 4:25~27
    [110]Grimbergen CA, MettingVanRijn AC, Peper A, System configurations with A/D conversion for multichannel bioelectric recordings, Proceedings of the 16th Annual International Conference of the IEEE, 1994, 2:996~997
    [111]通用串行总线1.1版本, Compaq Computer Corporation, Intel Corporation, Microsoft Corporation and NEC Corporation, 1998
    [112]Universal Serial Bus Specification Revision 2.0, Compaq Computer Corp- oration, Hewlett-Packard Company, Intel Corporation, Lucent Technologies Inc, Microsoft Corporation, NEC Corporation and Koninklijke Philips Electronics N.V, 2000
    [113]Universal Serial Bus Specification, Universal Serial Bus Specification Revi- sion 1.1, Compaq Computer Corporation Intel Corporation Microsoft Corporation and NEC Corporation, 1998
    [114]http://libusb.sourceforge.net
    [115]http://libusb-win32.sourceforge.net
    [116]http://sourceforge.net/projects/libusb-win32
    [117]曾希强, Linux下基于libusb的USB设备驱动程序设计与实现,信息与电脑(理论版), 2009, 7:101~103
    [118]彭定军,陈安,高健华,嵌入式linux下基于libusb的USB驱动开发,技术与市场, 2008, 11:4~5 [ 119 ]ms-help://MS.MSDNQTR.v90.en/dv_vclib/html/8f7d77c7-7f77-4270-8441-1c357649c1c2.htm
    [120]冀荣华,祁力钧,傅泽田,基于VisualC++的精确定时技术与应用,农机化研究, 2007, 5:191~193
    [121]http://blog.csdn.net/supconsupcon/archive/2009/10/05/4633482.aspx
    [122]唐渝,赵干清,简单整系数递归数字滤波器及其在生物医学中的应用(一), 1989, 13(2):99~102
    [123]唐渝,赵干清,简单整系数递归数字滤波器及其在生物医学中的应用(二), 1989, 13(4):226~230
    [124]唐渝,赵干清,简单整系数递归数字滤波器及其在生物医学中的应用(三), 1989, 13(6):358~362
    [125]S.K.Yoo, N.H.Kim, J.S.Song, et al. Simple self-tuned notch filter in a bio- potential amplifier, Med Biol Eng Comput, 1997, 35:151~154
    [126]孙京霞,白延强,杨玉星,一种抑制心电信号50Hz工频干扰的改进Levkov方法,航天医学与医学工程, 2000, 13(3):196~199
    [127]I.Dotsinsky, T.Stoyanov, Power-Line Interference Cancellation in ECG Signals, Biomedical Instrumentation & Technology, 2005, 39:155~162
    [128]Levkov C, Michov G, Ivanov R, et al. Subtraction of 50 Hz interference from the electrocardiogram, Med Biol Eng Comput, 1984, 22:371~373
    [129]Christov II, Dotsinsky IA, New approach to the digital elimination of 50 Hz interference from the electrocardiogram, Med Biol Eng Comput, 1988, 26:431~434
    [130]Yan XG, Dynamic Levkov-Christov subtraction of mains interference, Med Biol Eng Comput, 1993, 31:635~638
    [131]Ahlstrom ML, Tompkins WJ, Digital Filters for Real-Time ECG Signal Processing Using Microprocessors, IEEE Transactions on Biomedical Engineering, 1985, 32(9):708~713
    [132]范思陆,丁玉珑,曲折, et al.事件相关电位基础(心理与教育研究方法丛书)(An Introduction to the Event-Related Potential Technique),上海:华东师范大学出版社, 2009, 6~7
    [133]Cypress CyAPI Programmer’s Reference
    [134]Corsini J, Shoker L, Sanei S, et al. Epileptic Seizure Peredictablibity from scalp EEg Incorporating Constrained Blind Source Separation, IEEE Transaction on Biomedical Engineering, 2006, 53: 790~799
    [135]Geva A, Kerem D, Forecasting Generalized Epileptic Seizures from the EEG Signal by Wavelet Analysis and Dynamic Unsupervised Fuzzy Clustering, IEEE Transaction on Biomedical Engineering, 1998, 45(10):1205~1216
    [136]Rosted P, Griffiths PA, Bacon P, et al. Is there an effect of acupuncture on the resting EEG? Complementary Therapies in Medicine, 2001, 9(2):77~81
    [137]Starr A, Abraham G, Zhu Y, et al. Electrophysiological measures during acupuncture induced surgical analgesia. Arch Neurol, 1989, 46:1010~1012
    [138]Kim MS, Nam TC, Electroencephalography (EEG) Spectral Edge Freque- ncy for Assessing the Sedative Effect of Acupuncture in Dogs. Journal of Veterinary Medical Science, 2006, 68(4): 409~411
    [139]Dos Santos, Tabosa A, do Monte F H, et al. Electroacupuncture prevents cognitive deficits in pilocarpine-epileptic rats. Neurosci. Lett, 2005, 26: 234~238
    [140]Paraskeva A, Melemeni A, Petropoulos G, et al. Needling of the Extra 1 Point Decreases BIS Values and Preoperative Anxiety. Am. J. Chin. Med. 2004, 32: 789~794
    [141]Chen ACN, Liu FJ, Wang L, et al. Mode and site of acupuncture modulation in the human brain: 3D (124-ch) EEG power spectrum mapping and source imaging. Neuroimage, 2006, 29(4): 1080~1091
    [142]Li Weimin, Chen Yingbo, Wang Xiaoyan, Characteristics of Peripheral Afferent Nerve Discharges Evoked by Manual Acupuncture and Electroacupuncture of "Zusanli"(ST 36) in Rats. Acupuncture Research, 2008, 33(1): 65~70
    [143]Fang Jian-Qiao, Shao Xiao-Mei, Ma Gui-Zhi, Effect of electroacupuncture at "Zusanli" (ST 36) and "Sanyinjiao" (SP 6) on collagen-induced arthritis and secretory function of knee-joint synoviocytes in rats, Zhen Ci Yan Jiu, 2009, 34(2): 93~96
    [144]Liu Jian-Min, Liang Feng-Xia, Li Jia, et al. Influence of electroacupuncture of Guanyuan (GV 4) and Zusanli (ST 36) on the immune function of T cells in aging rats, Zhen Ci Yan Jiu, 2009, 34(4):242~247
    [145]Hui KKS, Liu J, Marina O, et al. The integrated response of the human cerebro-cerebellar and limbic systems to acupuncture stimulation at ST 36 as evidenced by fMRI, Neuroimage, 2005, 27(3):479~496
    [146]Ma SX, Ma J, Moise G, Li XY, Responses of neuronal nitric oxide synthase expression in the brainstem to electroacupuncture Zusanli (ST-36) in rats, Brain Research, 2005, 1037(1-2):70~77
    [147]Wang WK, Hsu TL, Chang HC, Wang YY, Effect of acupuncture at Tsu San Li (St-36) on the pulse spectrum, American Journal Chinese Medicine, 1995, 23(2): 121~130
    [148]Miyashita T, Ogawa K, Itoh H, et al. Spectral analyses of electroencephalo- graphy and heart rate variability during sleep in normal subjects. Autonomic Neuroscience-basic & Clinical, 2003, 103(1-2):114~120
    [149]Arisaka H, Sakuraba S, Takeda J, Effects of spinal anesthesia on the electro- encephalogram in the elderly. Acta Anaesthesiol Belg, 2008, 59(1):15~17
    [150]Takahashi M, Murakami M, Nakaho T, et al. Power spectral analysis of the electroencephalogram during induced total spinal block. J Anesth, 2001, 15(2):83~87
    [151]SHEN Jing, YAN Jie, CHANG Xiao-rong, et al. Discussion of Specific Regularity between Acupoints and Organs Based on Different Influence to EGG Electrointestinogram by Acupuncture in Acupoints of Different 12 Meridians of Healthy Adults. Chinese Archives of Traditional Chinese Medicine, 2008, 11:2352~2354
    [152]Zhang XS, Roy RJ, Jensen EW, EEG complexity as a measure of depth of anesthesia for patients, IEEE Transactions on Biomedical Engineering, 2001, 48(12):1424~1433
    [153]孙玉,基于脑电非线性动力学分析的中医针刺疗法和经皮穴位电刺激疗法研究,浙江大学, 2007
    [154]张秀,徐桂芝,杨硕,磁刺激足三里脑电复杂度研究,中国生物医学工程学报, 2009, 28(4):620~623
    [155]Riekkinen P, Buzsaki G, Riekkinen P Jr, et al. The cholinergic system and EEG slow waves. Electroencephalogr Clin Neurophysiol, 1991, 78(2): 89~96
    [156]赵仑,魏金河,连续心算时脑电相干幅谱的反应特点,中国临床康复, 2006, 10(10):1~3
    [157]Peter J. Uhlhaas, David E. J. Linden, Wolf Singer, et al. Dysfunctional Long- Range Coordination of Neural Activity during Gestalt Perception in Schizophrenia. The Journal of Neuroscience, 2006, 26(31): 8168~8175
    [158]LeVan Quyen M, Khalilov I, Ben Ari Y. The dark side of high-frequency oscillations in the developing brain. Trends in Neurosciences, 2006, 7: 419~427
    [159]Emilio Salinas, Terrence J. Sejnowski. Correlated neuronal activity and flow of neural information. Nature Reviews| Neu-roscience, 2001, 2: 539~550
    [160]Bressler SL. Large-scale cortical networks and cognition, Brain Res Brain Res Rev, 1995, 20(3): 288~304
    [161]Pereda E, Quiroga R Q, Bhattacharya J, Nonlinear multivariate analysis of neurophysiological signals, Progress in Neurobiology, 2005, 77(1,2): 1~37
    [162]Rulkov NF, Sushchik MM, Tsimring LS, Abarbanel HD, Generalized synch- ronization of chaos in directionally coupled chaotic systems, Phys Rev E, 1995, 51:980~994
    [163]Dirk J. A. Smit, Cornelis J. Stam, Danielle Posthuma, et al. Heritability of "Small-World" Networks in the Brain: A Graph Theoretical Analysis of Resting-State EEG Functional Connectivity, Human Brain Mapping, 2008, 29:1368~1378
    [164]Bassettt DS, Meyer-Lindenberg A, Achard S, et al. Adaptive reconfigur- ation of fractal small-world human brain functional networks. Proceedings of the NationalAcademy of Sciences of the United States of America, 2006, 103(51):19518~19523
    [165]Eguiluz VM, Chialvo DR, Cecchi GA, et al. Scale-free brain functional networks. Physical Review Letters, 2005, 94(1): 018102
    [166]Newman MEJ, The structure and function of complex networks, SIAM Review, 2003, 45:167~256
    [167]Albert R, Barabasi AL, Statistical mechanics of complex networks. Reviews of Modern Physics, 2002, 74(1):47~97
    [168]Milo R, Shen-Orr S, Itzkovitz S, et al. Network motifs: Simple building blocks of complex networks. Science, 2002, 298(5594): 824~827
    [169]Barrat A, Weigt M, On the properties of small-world network models, European Physical Journal B, 2000, 13(3):547~560
    [170]Callaway DS, Newman MEJ, Strogatz SH, et al. Network robustness and fragility: Percolation on random graphs. Physical Review Letters, 2000, 85(25):5468~5471
    [171]Watt DJ, Strogatz SH, Collective dynamics of 'small-world' networks, Nature, 1998, 393:440~442
    [172]Scannell JW, Burns GAPC, Hilgetag CC, et al. The connectional organiz- ation of the cortico-thalamic system of the cat, Cereb Cortex, 1999, 9:277~299
    [173]Wang XF,Chen G. Complex networks: Small-world, scale-free, and beyond, IEEE Trans Circuits Syst. 2003, 3:6~20

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700