用户名: 密码: 验证码:
膜抗生物污染改性及其在MBR中性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
膜生物反应器(membrane bioreactor, MBR)在污水处理过程中得到广泛的应用。然而,膜污染是当前限制MBR广泛应用的主要瓶颈。有必要开发廉价抗污染的膜材料,这对于膜的长期稳定运行以及MBR的推广应用具有重要意义。
     本研究从膜生物反应器中膜污染的特点出发,开发新型膜材料,以三种亲水性物质改性聚丙烯无纺布膜(Non-woven, NWF),使其具有亲水和抗菌的性能。
     (1)采用聚乙烯醇(polyvinyl alcohol, PVA)为原料,制备亲水、抗菌的4-乙烯吡啶(4-vinylpyridine,4VP)接枝聚乙烯醇共聚物(PVA-g-4VP),通过涂覆、交联法将共聚物固定在NWF的内外表面。PVA-g-4VP共聚物制备的适宜条件为:PVA浓度为8 g/L,4VP浓度为0.16 mol/L,引发剂浓度为4 mmol/L,反应时间为240 min,温度为60℃。通过对共聚物进行物理和化学分析,发现PVA-g-4VP共聚物可以作为一种适宜的成膜材料对NWF进行改性。在NWF表面吸附PVA-g-4VP共聚物并进行交联后,得到了涂层均匀的复合膜。复合膜的亲水性增加,抗污染性明显增强。对基膜和复合膜的抗菌性能分析表明,复合膜能有效地抑制细菌在膜表面的吸附。复合膜能够有效地阻止生物膜的形成,不可逆污染减轻。
     (2)对NWF基膜进行臭氧预处理以降低表面张力,在基膜表面涂覆亲水、抗菌的天然高分子聚合物——壳聚糖,通过戊二醛使壳聚糖活性层和臭氧处理过的基膜发生交联反应以增强牢固性。结果表明:复合膜表面光滑,孔径和孔隙率降低;复合膜的亲水性增强;通过活/死细菌染色法评价了复合膜的抗菌性能,复合膜表面细菌吸附量小具有优异的抗微生物污染能力,其中,交联复合膜的抗菌能力更为优异。为了使膜具有长期的抗污染能力,对涂覆方法进行了改进,在膜外表面和膜孔内表面进行同时涂覆。结果表明:动态涂覆法制备的壳聚糖/NWF复合膜亲水性明显增强,复合膜可有效抑制蛋白质的吸附,在MBR中的运行结果表明,复合膜抗不可逆污染能力明显增强;复合膜不仅具有优异的渗透能力,截留性能也有所增强。
     (3)通过原子转移自由基聚合的方法,在基膜表面接枝甲基丙烯酸-β-羟乙酯(HEMA)聚合物以形成刷状结构。结果表明:ATRP方法能够独立、精确地控制HEMA聚合物链在改性膜表面的长度和密度,并在膜表面和孔内均匀的形成聚合物薄层。纳米刷的长度可以通过控制接枝反应温度和接枝反应时间来调节。聚合物链密度可以通过控制接枝反应时间和臭氧处理时间来调节。纳米刷改性膜具有优异的抗污染性能。纳米刷的长度和密度是影响抗污染性能的关键因素,且接枝链长度的影响比密度的影响大。
Membrane bioreactors (MBRs) have been widely used in wastewater treatment. But a major obstacle for the application of MBRs is the rapid decline of the permeation flux as a result of membrane fouling. Thus, developing antifouling and low cost membrane material is necessary. It is essential for steady application of membrane and development of MBR.
     In this work, novel membrane materials, which were fabricated by modification the non-woven (NWF) with three hydropilicity materials, were developed according to the fouling characteristics in MBR.
     (1) Synthesis functional polyvinyl alcohol(PVA)/4-vinyl pyridine(4VP) copolymer using Ce(IV) as initiator. The appropriate reaction condition was:PVA concentration of 8 g/L,4VP concentration of 0.16 mol/L, Ce(IV) concentration of 4 mmol/L, reaction time of 240 min and reaction temperature of 60℃. Preparation of novel NWF composite membrane based on polyvinyl alcohol/4-vinyl pyridine copolymer was carried out by adsorption on polypropylene non-woven fabric (NWF) membrane surface and pore walls to improve both hydrophilic and antibacterial properties of the membrane. Experiment results demonstrated that surface properties, both physical and chemical characteristics of the modified membrane, were significantly altered. The results showed that the PVA-g-4VP modified membrane had hydrophilic and strong antifouling properties. Furthermore, antibacterial property of modified membranes were investigated by Live/Dead staining, which results indicated that there was less bacteria attachment on the PVA-g-4VP modified membranes, and the modified membranes surface was thus demonstrated to be very effective in preventing biofilm formation.
     (2) A novel NWF composite membrane was prepared by ozone pretreatment, chitosan coating and glutaraldehyde crosslink to resist the adsorption of proteins and the adhesion of bacteria. Experiment results demonstrated that the surface morphology and both physical and chemical characteristics of the composite membrane were significantly altered. The results showed that the composite membrane had hydrophilicity and higher protein rejection. Furthermore, antibacterial property of the composite membranes were investigated by staining, which results indicated that there was less bacteria attachment onto the composite membranes, and the composite membranes surface was thus demonstrated to be very effective in preventing biofilm formation, especially for the membrane with glutaraldehyde crosslink. In order to enhance the stability of composite membrane, preparation of porous composite membranes through chitosan crosslinking on/in the NWF outer and internal surface was carried out. The antifouling characteristics of the composite membranes in the submerged membrane bioreactor were investigated. The composite membranes showed better filtration behaviors in MBR than the original NWF membrane. The antifouling property of the modified membranes in the MBR was enhanced. The irreversible fouling resistance decreased.
     (3) Tailoring of NWF membranes surface properties via surface-initiated atom transfer radical polymerization with 2-hydroxyethyI methacrylate (HEMA) as monomer was carried out. The length and density of the grafted HEMA polymer chains, which form a uniform layer in the membrane pores, can be independently controlled. The length of grafted HEMA polymer chains can be regulated by changing the grafting temperature and grafting time. The density of grafted HEMA polymer chains can be regulated by adjusting the reaction time of ozone treatment on membrane surface. Both the length and density of grafted HEMA polymer chains were key factors for obtaining PHEMA-grafted membranes with desired antifouling properties, and the influence of the length of grafted PHEMA chains was more significant than that of the density. The results can provide valuable guidance for designing and fabricating antifouling membranes with grafted functional polymer.
引文
[1]Stephenson T膜生物反应器污水处理技术[M].(第一版).张树国和李咏梅译.北京:化学工业出版社,2003.
    [2]Achilli A, Cath T Y, Marchand E A, et al. The forward osmosis membrane bioreactor:A low fouling alternative to MBR processes [J]. Desalination,2009,239:10-21.
    [3]Marrot B, Barrios Martinez A, Moulin P, et al. Industrial wastewater treatment in a membrane bioreactor:A review [J]. Environmental Progress,2004,23(1):59-68.
    [4]Adham S, Gagliardo P, Boulos L, et al. Feasibility of the membrane bioreactor process for water reclamation [J]. Water Science and Technology,2001,43(10):203-209.
    [5]Scott J A, Neilson D J, Liu W, et al. A dual function membrane bioreactor system for enhanced aerobic remediation of high-strength industrial waste [J]. Water Science and Technology,1998,38(4-5): 413-420.
    [6]刘锦霞,顾平.膜生物反应器脱氮除磷工艺的研究进展[J].城市环境与城市生态,2001,14(2):27-29.
    [7]魏源送,樊耀波.废水处理中污泥减量技术的研究及应用[J].中国给水排水,2000,17(7):23-26.
    [8]顾国维,何义亮.膜生物反应器—在污水处理中的研究和应用[M].北京:化学工业出版社,2002.
    [9]郑祥,朱小龙,张绍园等.膜生物反应器在水处理中的研究及应用[J].环境污染治理技术与设备,2000,1(5):12-19.
    [10]MBR:A Buoyant Reaction in Europe [R].2003
    [11]刑传宏,T.E,钱易.无机膜生物反应器处理生活污水试验研究[J].环境科学,1997,18(3):1-4.
    [12]张捍民,张兴文,杨凤林等.宾馆污水及蒸汽冷凝水的再生回用工程[J].中国给水排水,2003,19(2):72-74.
    [13]李红兵,顾国维,谢维民.中空纤维膜生物反应器处理生活污水的特性[J].环境科学,1999,20(2):53-56.
    [14]邹连沛,王宝贞,迟军等.膜生物反应器处理污水性能的研究[J].哈尔滨建筑大学学报,2001,34(2):57-60.
    [15]Scholz W G, Rouge P, Bodalo A, et al. Desalination of mixed tannery effluent with membrane bioreactor and reverse osmosis treatment [J]. Environmental Science and Technology,2005,39(21): 8505-8511.
    [16]Qin J J, Kekre K A, Tao G, et al. New option of MBR-RO process for production of NEWater from domestic sewage [J]. Journal of Membrane Science,2006,272(1-2):70-77.
    [17]Chen T K, Chen J N. Combined membrane bioreactor (MBR) and reverse osmosis (RO) system for thin-film transistor-Liquid crystal display TFT-LCD, industrial wastewater recycling [J]. Water Science and Technology,2004,50(2):99-106.
    [18]Buttiglieri G, Malpei F, Daverio E, et al. Denitrification of drinking water sources by advanced biological treatment using a membrane bioreactor [J]. Desalination,2005,178(1-3):211-218.
    [19]Crespo J G, Velizarov S, Reis M A. Membrane bioreactors for the removal of anionic micropollutants from drinking water [J]. Current opinion in biotechnology,2004,15(5):463-468.
    [20]Ergas S J, Rheinheimer D E. Drinking water denitrification using a membrane bioreactor [J]. Water Research,2004,38(14-15):3225-3232.
    [21]Wasik E, Bohdziewicz J, Blaszczyk M. Removal of nitrates from ground water by a hybrid process of biological denitrification and microfiltration membrane [J]. Process Biochemistry,2001,37(1):57-64.
    [22]Wasik E, Bohdziewicz J, Blaszczyk M. Removal of nitrate ions from natural water using a membrane bioreactor [J]. Separation and Purification Technology,2001,22-23:383-392.
    [23]Reemtsma T, Zywicki B, Stueber M, et al. Removal of sulfur-organic polar micropollutants in a membrane bioreactor treating industrial wastewater [J]. Environmental Science and Technology,2002, 36(5):1102-1106.
    [24]Ahn K H, Song K G, Cho E, et al. Enhanced biological phosphorus and nitrogen removal using a sequencing anoxic/anaerobic membrane bioreactor (SAM) process [J]. Desalination,2003,157(1-3): 345-352.
    [25]Alvarez-Vazquez H, Jefferson B, Judd S J. Membrane bioreactors vs conventional biological treatment of landfill leachate:A brief review [J]. Journal of Chemical Technology and Biotechnology,2004, 79(10):1043-1049.
    [26]Fuchs W, Resch C, Kernstock M, et al. Influence of operational conditions on the performance of a mesh filter activated sludge process [J]. Water Research,2005,39(5):803-810.
    [27]Quintana J B, Weiss S, Reemtsma T. Pathways and metabolites of microbial degradation of selected acidic pharmaceutical and their occurrence in municipal wastewater treated by a membrane bioreactor [J]. Water Research,2005,39(12):2654-2664.
    [28]Wintgens T, Gallenkemper M, Melin T. Removal of endocrine disrupting compounds with membrane processes in wastewater treatment and reuse [J]. Water Science and Technology,2004,50(5):1-8.
    [29]Wintgens T, Gallenkemper M, Melin T. Occurrence and removal of endocrine disrupters in landfill leachate treatment plants [J]. Water Science and Technology,2003,48(3):127-134.
    [30]Gander M, Jefferson B, Judd S. Aerobic MBRs for domestic wastewater treatment:a review with cost considerations [J]. Separation and Purification Technology,2000,18(2):119-130.
    [31]LaPara T M, Klatt C G, Chen R. Adaptations in bacterial catabolic enzyme activity and community structure in membrane-coupled bioreactors fed simple synthetic wastewater [J]. Journal of Biotechnology,2006,121(3):368-380.
    [32]Chang I S, Clech P L, Jefferson B, et al. Membrane fouling in membrane bioreactors for wastewater treatment [J]. Journal of Environmental Engineering,2002,128(11):1018-1029.
    [33]Kang I J, Yoon S H, Lee C H. Comparison of the filtration characteristics of organic and inorganic membranes in a membrane-coupled anaerobic bioreactor [J]. Water Research,2002,36(7):1803-1813.
    [34]Defrance L, Jaffrin M Y. Comparison between filtrations at fixed transmembrane pressure and fixed permeate flux:Application to a membrane bioreactor used for wastewater treatment [J]. Journal of Membrane Science,1999,152(2):203-210.
    [35]Meireles M, Aimar P, Sanchez V. Effects of protein fouling on the apparent pore size distribution of sieving membranes [J]. Journal of Membrane Science,1991,56(1):13.
    [36]Shimizu Y, Rokudai M, Thoya S, et al. Effect of membrane resistance on filtration characteristics for methanogenic waste [J]. Kakaku Kogaku Ronbunshu,1990,16:45.
    [37]Zhao Z P, Wang Z, Wang S C. Formation, charged characteristic and BSA adsorption behavior of carboxymethyl chitosan/PES composite MF membrane [J]. Journal of Membrane Science 2003,217 151-158.
    [38]Ho C C, Zydney A L. Effect of membrane morphology on the initial rate of protein fouling during microfiltration [J]. Journal of Membrane Science,1999,155:261-275.
    [39]Choi J-G, Bae T-H, Kim J-H, et al. The behavior of membrane fouling initiation on the crossflow membrane bioreactor system [J]. Journal of Membrane Science,2002,203(1-2):103.
    [40]Kawakatsu T, Nakao S, Kimura S. Effects of size and compressibility of suspended particles and surface pore size of membrane on flux in crossflow filtration [J]. Journal of Membrane Science,1993, 81(1-2):173-190.
    [41]Hong S P, Bae T H, Tak T M, et al. Fouling control in activated sludge submerged hollow fiber membrane bioreactors [J]. Desalination,2002,143(3):219-228.
    [42]Devereux N, Hoare M. Membrane separation of protein precipitates:studies with cross flow in hollow fibers [J]. Biotechnology and Bioengineering,1986,28(3):422.
    [43]Gui P, Huang X, Chen Y, et al. Effect of operational parameters on sludge accumulation on membrane surfaces in a submerged membrane bioreactor [J]. Desalination,2003,151(2):185-194.
    [44]Magara Y, Itoh M. The effect of operational factors on solid/liquid separation by ultra-membrane filtration in a biological denitrification system for collected human excreta treatment plants [J]. Water Science and Technology,1991,23(7-9):1583.
    [45]Nagaoka H, Yamanishi S, Miya A. Modeling of biofouling by extracellular polymers in a membrane separation activated sludge system [J]. Water Science and Technology,1998,38(4-5):497-504.
    [46]Meng F G, Yang F L, Xiao J N, et al. A new insight into membrane fouling mechanism during membrane filtration of bulking and normal sludge suspension [J]. Journal of Membrane Science,2006, 285:159-165.
    [47]Defrance L, Jaffrin M Y, Gupta B, et al. Contribution of various constituents of activated sludge to membrane bioreactor fouling [J]. Bioresource Technology,2000,73(2):105.
    [48]Harada H, Momonoi K, Yamazaki S, et al. Application of anaerobic-UF membrane reactor for treatment of a wastewater containing high strength particulate organics [J]. Water Science and Technology,1994,30(12):307.
    [49]Choo K H, Lee C H. Effect of anaerobic digestion broth composition on membrane permeability [J]. Water Science and Technology,1996,34(9):173-179.
    [50]刘锐,黄霞,范彬等.膜—生物反应器中溶解性微生物产物的研究进展[J].环境污染治理技术与设备,2002,3(1):1-7.
    [51]Liang S, Liu C, Song L. Soluble microbial products in membrane bioreactor operation:Behaviors, characteristics, and fouling potential [J]. Water Research,2007,41:95-101.
    [52]Yamamoto K, Hiasa M, Mahmood T, et al. Direct solid-liquid separation using hollow fiber membrane in an activated sludge aeration tank [J]. Water Science and Technology,1989,21(4-5):43-54.
    [53]Lim A L, Bai R. Membrane fouling and cleaning in microfiltration of activated sludge wastewater [J]. Journal of Membrane Science,2003,216(1-2):279-290.
    [54]Lee W, Kang S, Shin H. Sludge characteristics and their contribution to microfiltration in submerged membrane bioreactors [J]. Journal of Membrane Science,2003,216(1-2):217.
    [55]Chang I S, Lee C H. Membrane filtration characteristics in membrane-coupled activated sludge system-The effect of physiological states of activated sludge on membrane fouling [J]. Desalination,1998, 120(3):221-233.
    [56]Nagaoka H, Ueda S, Miya A. Influence of bacterial extracellular polymers on the membrane separation activated sludge process [J]. Water Science and Technology,1996,34(9):165-172.
    [57]Otaki M, Okuda A, Tajima K, et al. Inactivation differences of microorganisms by low pressure UV and pulsed xenon lamps [J]. Water Science and Technology,2003,47(3):185-190.
    [58]Kim I S, Jang N. The effect of calcium on the membrane biofouling in the membrane bioreactor (MBR) [J]. Water Research,2006,40:2756-2764.
    [59]Defrance L, Jaffrin M Y. Reversibility of fouling formed in activated sludge filtration [J]. Journal of Membrane Science,1999,157(1):73-84.
    [60]Gander A M, Jefferson B, Judd S. Aerobic MBRs for domestic wastewater treatment:a review with cost considerations [J]. Separation and Purification Technology,2000,18 (2):119-130.
    [61]Ognier S, Wisniewski C, Grasmick A. Membrane bioreactor fouling sub-critical filtration conditions:a local critical flux concept [J]. Journalof Membrane Science,2004,229(1-2):171-177.
    [62]Jiang T, Kennedy M D, Guinzbourg B F, et al. Optimizing the operation of a MBR pilot plant by quantitative analysis of the membrane fouling mechanism. Proceeding of IWA Special Conference: Water Environment-Membrane Technology. Seoul:2004.
    [63]Trussell R S, Merlob R P, Hermanowicz S W,et al. The effect of organic loading on process performance and membrane fouling in a submerged membrane bioreactor treating municipal wastewater [J]. Water Research,2006,40:2675-2683.
    [64]Chua H C, Arnot T C, Howell J A. Controlling fouling in membrane bioreactors operated with a variable throughput [J]. Desalination,2002,149(1-3):225-229.
    [65]Howell J A, Chua H C, Arnot T C. In situ manipulation of critical flux in a submerged membrane bioreactor using variable aeration rates, and effects of membrane history [J]. Journal of Membrane Science,2004,242(1-2):13-19.
    [66]Zhang J S, Chua H C, Li H, et al. Fouling control in submerged membrane bioreactors with intermittent permeation. Proceeding of IWA Special Conference:Water Environment Membrane Technology. Seoul:2004,1485-1492.
    [67]Yu S W, Im W C, Lim B C. Influence of suction time on permeate flux in MBR for wastewater treatment. Proceeding of IWA Special Conference:Water Environment-Membrane Technology. Seoul: 2004,1285-1290.
    [68]Hong S H, Lee W N, Oh H S, et al. The effects of intermittent aeration on the characteristics of bio-cake layers in a membrane bioreactor [J]. Environment Science Technology,2007,41(17): 6270-6276.
    [69]邹联沛,王宝贞,张捍民.膜生物反应器中膜的堵塞与清洗机理研究[J].给水排水,2000,26(9):73-75.
    [70]迪莉拜尔·苏力坦,莫罹,黄霞PAC-MBR组合工艺中膜污染及清洗方法的研究[J].给水排水,2003,29(5):1-4.
    [71]黄霞,莫罹.MBR在净水工艺中的膜污染特征及清洗[J].中国给水排水,2003,19(5):8-12.
    [72]Chang I S, Lee C H, Ahn K H. Membrane Filtration Characteristics in Membrane-Coupled Activated Sludge System:The Effect of Floc Structure on Membrane Fouling [J]. Water Science and Technology,1999,34(9):1743-1758.
    [73]Susanto H, Ulbricht M. Photografted thin polymer hydrogel layers on PES ultrafiltration membranes: characterization, stability, and Influence on separation performance [J]. Langmuir,2007,23: 7818-7830.
    [74]Ulbricht M. Advanced functional polymer membranes [J]. Polymer,2006,47:2217-2262.
    [75]Smorada R. Encyclopedia of chemical technology [M]. New York:Wiley,1996.
    [76]Mayer E, Warren J. Evaluating filtration media:A comparison of polymeric membranes and nonwovens [J]. Filtration and Separation,1998,35:912-920.
    [77]Hajra M G, Mehta K, Chase G G. Effects of humidity, temperature, and nanofibers on drop coalescence in glass fiber media [J]. Separation and Purification Technology,2003,30:79-88.
    [78]Graham K, Gogins M, Schreuder-Gibson H. Incorporation of Electrospun Nanofibers Into Functional Structures [J]. International Non-wovens Journal,2004,13:21-27.
    [79]Schreuder-Gibson H L, Gibson P, Senecal K, et al. Protective textile materials based on electrospun nanofibers [J]. Advance Material,2002,34:44-51.
    [80]Zeman L J, Zydney A L. Microfiltration and ultrafiltration [M]. New York:Marcel Dekker, Inc.,1996.
    [81]Chang M C, Horng R Y, Shao H, et al. Performance and filtration characteristics of non-woven membranes used in a submerged membrane bioreactor for synthetic wastewater treatment [J]. Desalination,2006,191:8-15.
    [82]Seo G T, Moon B H, Lee T S, et al. Non-woven fabric filter separation activated sludge reactor for domestic wastewater reclamation [J]. Water Science Technology,2002,47:133-138.
    [83]Meng Z G, Yang F L, Zhang X W. MBR focus:do non-woven offer a cheaper option [J]. Filtration and Separation,2005,42:28-30.
    [84]Zhang C H, Yang F L, Wang W J, et al. Preparation and characterization of hydrophilic modification of polypropylene non-woven fabric by dip-coating PVA (polyvinyl alcohol) [J]. Separation and Purification Technology,2008,61:276-286.
    [85]Gholap S G, Badiger M V. Molecular origins of wettability of hydrophobic poly(vinylidene fluoride) microporous membranes on poly(vinyl alcohol) adsorption:surface and interface analysis by XPS [J]. Journal of Physical Chemical Part B,2005,109:13941-13947.
    [86]Ba C, Ladnerb D A, Economy J. Using polyelectrolyte coatings to improve fouling resistance of a positively charged nanofiltration membrane [J]. Journal of Membrane Science,2010,347:250-259.
    [87]Wililbert M C, Pellegrino J, Zydney A. Bench-scale testing of surfactant-modified reverse osmosis/nanofiltration membranes [J]. Desalination,1998,115:15-32.
    [88]Kang P K, Shah D O. Filtration of nanoparticles polypropylene with dimethyldioctadecylammonium bromide treated microporous filters [J]. Langmuir,1997,13:1820-1826.
    [89]Campbell P, Srinivasan R, Knoell T, et al. Quantitative structure-activity relationship (QSAR) analysis of surfactants influencing attachment of a Mycobacterium sp to cellulose acetate and aromatic polyamide reverse osmosis membranes [J]. Biotechnology Bioengineering,1999,64 527-544.
    [90]Holland N B, Qiu Y X, Ruegsegger M, et al. Biomimetic engineering of non-adhesive glycocalyx-like surfaces using oligosaccharide surfactant polymers [J]. Nature,1998,392:799-801.
    [91]Reddy A V R, Patel H R. Chemically treated polyethersulfone/polyacrylonitrile blend ultrafiltration membranes for better fouling resistance [J]. Desalination,2008,221:318-323.
    [92]N.A. O, M. M, J. M. Effect of hydrophilicity on fouling of an emulsified oil waster with PVDF/PMMA membranes [J]. Journal of Membrane Science,2003,226:203-211.
    [93]Liu L F, Xiao L, Yang F L. Terylene membrane modification with Polyrotaxanes, TiO2 and Polyvinyl alcohol for better antifouling and adsorption property [J]. Journal of Membrane Science,2009, 333(1-2):110-117.
    [94]Kim K S, Lee K H, Cho K, et al. Surface modification of pofysulfone ultrafiltration membrane by oxygen plasma treatment [J]. Journal of Membrane Science,2002,199:135-145.
    [95]Yuan X Y, Sheng J, He F, et al. Surface modification of acrylonitrile copolymer membranes by grafting acrylamide.1.Initiation by ceric ions [J]. Journal of Applied Polymer Science,1997,66: 1521-1529.
    [96]Pieracci J, Wood D W, Crivello J V, et al. UV-assisted graft polymerization of n-vinyl-2-pyrrolidinone onto poly(ether sulfone) ultrafiltration membranes:comparison of dip versus immersion modification techniques [J] [J]. Chemical Material,2000,12:2123-2133.
    [97]Luo N, Stewart M J, Hirt D E, et al. Surface modification of ethylene-co-acrylic acid copolymer films: Addition of amide groups by covalently bonded amino acid intermediates [J]. Journal of Applied Polymer Science,2004,92:1688-1694.
    [98]Cheng Z Y, Teoh S H. Surface modification of ultra thin poly(epsilon-caprolactone) films using acrylic acid and collagen [J]. Biomaferials,2004,25:1991-2001.
    [99]Zhu Y B, Gao C Y, Shen J C. Surface modification of polycaprolactone with poly(methacrylic acid) and gelatin covalent immobilization for promoting its cytocompatibility [J]. Biomaterials, 2002,23:4889-4895.
    [100]Wavhal D S, Fisher E R. Membrane surface modification by plasma-induced polymerization of acrylamide for improved surface properties and reduced protein fouling [J]. Langmuir,2003,19: 79-85.
    [101]Kusumocahyo S P, Kanamori T, Iwatsubo T, et al. Development of polyion complex membranes based on cellulose acetate modified by oxygen plasma treatment for pervaporation [J]. Journal of Membrane Science,2002,208:223-231.
    [102]Yu H Y, He X C, Liu L Q, et al. Surface modification of polypropylene microporous membrane to improve its antifouling characteristics in an SMBR:N2 plasma treatment [J]. Water Research,2007, 41:4703-4709.
    [103]Yu H Y, Xie Y J, Hu M X, et al. Surface modification of polypropylene microporous membrane to improve its antifouling property in MBR:CO2 plasma treatment [J]. Journal of Membrane Science 2005,254:219-227.
    [104]Yu H Y, Hu M X, Xu Z K, et al. Surface modification of polypropylene microporous membranes to improve their antifouling property in MBR:NH3 plasma treatment [J]. Separation and Purification Technology 2005,45:8-15.
    [105]Yu H Y, Liu L Q, Tang Z Q, et al. Surface modification of polypropylene microporous membrane to improve its antifouling characteristics in an SMBR:Air plasma treatment [J]. Journal of Membrane Science,2008,311:216-224.
    [106]Yu H Y, Tang Z Q, Huang L, et al. Surface modification of polypropylene macroporous membrane to improve its antifouling characteristics in a submerged membrane-bioreactor:H2O plasma treatment [J].Water Research,2008,42:4341-4347.
    [107]Wei X, Wang R, Li Z S, et al. Development of a novel electrophoresis-UV grafting technique to modify PES UF membranes used for NOM removal [J]. Journal of Membrane Science,2006,273: 47-57.
    [108]Taniguchi M, Belfort G. Low protein fouling synthetic membranes by UV-assisted surface grafting modification:varying monomer type [J]. Journal of Membrane Science,2004,231:147-157.
    [109]Kaeselev B, Kingshott P, Jonsson Q. Influence of the surface structure on the filtration performance of UV-modified PES membranes [J]. Desalination,2002,146:265-271.
    [110]Liu Z M, Xu Z K, Wang J Q, et al. Surface modification of polypropylene microfiltration membranes by graft polymerization of N-vinyl-2-pyrrolidone [J]. Europe Polymer Journal,2004,40:2077-2087.
    [111]Yang Q, Xu Z K, Z.Dai, et al. Surface modification of polypropylene microporous membranes with a novel glycopolymer [J]. Chemical Material,2005,17:3050-3058.
    [112]Wang Y, Kim J H, Choo K H, et al. Hydrophilic modification of polypropylene microfiltration membranes by ozone-induced graft polymerization [J]. Journal of Membrane Science,2000,169: 269-276.
    [113]Yameen B, lvarez M A, Azzaroni O, et al. Tailoring of poly(ether ether ketone) surface properties via surface-initiated atom transfer radical polymerization [J]. Langmuir,2009,25(11):6214-6220.
    [114]Li P F, Xie R, Jiang J C, et al. Thermo-responsive gating membranes with controllable length and density of poly(N-isopropylacrylamide) chains grafted by ATRP method [J]. Journal of Membrane Science,2009,337:310-317.
    [115]Madkour A E, Dabkowski J M, sslein K N, et al. Fast Disinfecting Antimicrobial Surfaces [J]. Langmuir,2009,25:1060-1067.
    [116]Wu Z Q, Chen H, Liu X, et al. Protein adsorption on poly(N-vinylpyrrolidone)-modified silicon surfaces prepared by surface-Initiated atom transfer radical polymerization [J]. Langmuir,2009,25 (5):2900-2906.
    [117]Bayramoglu G, Arica M Y. Preparation and characterization of comb type polymer coated poly(HEMA/EGDMA) microspheres containing surface-anchored sulfonic acid:Application in c-globulin separation [J]. Reactive& Functional Polymers,2009,69:189-196.
    [118]Zhu L P, Xu Y Y, Dong H B, et al. Amphiphilic PPESK-graft-P(PEGMA) copolymer for surface modification of PPESK membranes [J]. Materials Chemistry and Physics,2009,115:223-228.
    [119]Grodzinski J. Functional polymers by living anionic polymerization [J]. Journal of Polymer Science Part A,2002,40:2116-2133.
    [120]Zhou Q Y, Fan X W, Xia C J, et al. Living anionic surface initiated polymerization (SIP) of styrene from clay surfaces [J]. Chemical Material,2001,13:2465-2467.
    [121]Coessens V, Pintauer T, Matyjaszewski K. Functional polymers by atom transfer radical polymerization [J]. Progress Polymer Science,2001,26:337-377.
    [122]Cunningham M F. Living/controlled radical polymerizations in dispersed phase systems [J]. Progress Polymer Science,2002,27:1039-1067.
    [123]Borner H G, Matyjaszewski K. Graft copolymers by atom transfer polymerizaticn [J]. Macromolecular Symposia 2002,177:1-15.
    [124]Huang X Y, Wirth M J. Surface-initiated radical polymerization on porous silica [J]. Analytical Chemistry 1997,69:4577-4580.
    [125]Friebe A, Ulbricht M. Controlled pore functionalization of poly(ethylene terephthalate) track-etched membranes via surface-Initiated atom transfer radical polymerization [J]. Langmuir,2007,23(20): 10316-10322.
    [126]Desai S M, Solanky S S, Mandale A B, et al. Controlled grafting of N-isoproply acrylamide brushes onto self-standing isotactic polypropylene thin films:surface initiated atom transfer radical polymerization [J]. Polymer,2003,44:7645-7649. ] Wang J S, Matyjaszewski K. "Living"/controlled radical polymerization transition-metal-catelyzed atom transfer radical polymerization in the presence of a conventional radical initiator [J]. Macromolecules,1995,28:7572-7575.
    [128]Wang G, Zhu X L, Cheng Z P, et al. Reverse atom transfer radical polymerization of methyl methacrylate with FeCl3/pyromellitic acid. [J]. Europe Polymer Journal 2003,39:2161-2165.
    [129]Wang Y P, Pei X W, He X Y, et al. Synthesis of well-defined, polymer-grafted silica nanoparticles via reverse ATRP [J]. Europe Polymer Journal,2005,41:1326-1332.
    [130]Wang Y P, Pei X W, Yuan K. Reverse ATRP grafting from silica surface to prepare well-defined organic/inorganic hybrid nanocomposite [J]. Material Letter,2005,59:520-523.
    [131]Yamamoto K, Tanaka H, Sakaguchi M, et al. Well-defined poly(methyl methacrylate) grafted to polyethylene with reverse atom transfer radical polymerization initiated by peroxides. [J]. Polymer, 2003,44:7661-7669.
    [132]Yamamoto K, Miwa Y, Tanaka H, et al. Living radical graft polymerization of methyl methacrylate to polyethylene film with typical and reverse atom transfer radical polymerization [J]. Journal of Polymer Science Part A,2002,40:3350-3359.
    [133]Huang L N, Wever H D, Diels L. Diverse and distinct bacterial communities induced biofilm fouling in membrane bioreactors operated under different conditions [J]. Environment Science and Technology,2008,42:8360-8366.
    [134]Jeison D, Lier J B v. Cake layer formation in anaerobic submerged membrane bioreactors (AnSMBR) for wastewater treatment [J]. Journal of Membrane Science,2006,284:227-236.
    [135]Lee W N, Cheong W S, Yeon K M, et al. Correlation between local TMP distribution and bio-cake porosity on the membrane in a submerged MBR [J]. Journal of Membrane Science,2009,332:50-55.
    [136]Hwang B K, Lee W N, Yeon K M, et al. Correlating TMP increases with microbial characteristics in the biocake on the membrane surface in a membrane bioreactor [J]. Environment Science Technology,2008,42:3963-3968.
    [137]Drews A, Mante J, Iversen V, et al. Impact of ambient conditions on SMP elimination and rejection in MBRs [J]. Water Research,2007,41:3850-3858.
    [138]Hilal N, Kochkodan V, Al-Khatib L, et al. Surface modified polymeric membranes to reduce (bio)fouling:a microbiological study using E. coli [J]. Desalination,2004,167:293-300.
    [139]Ciston S, Lueptow R M, Gray K A. Bacterial attachment on reactive ceramic ultrafiltration membranes [J]. Journal of Membrane Science,2008,320:101-107.
    [140]Nigmatullin R, Konovalova V, Pobigay G. Development of antimicrobial membranes via the surface tethering of chitosan [J]. Journal of Applied Polymer Science,2009,111:1697-1705.
    [141]Yao C, Li X, Neoh K G, et al. Surface modification and antibacterial activity of electrospun polyurethane fibrous membranes with quaternary ammonium moieties [J]. Journal of Membrane Science,2008,320:259-267.
    [142]王延熹.国外非织造滤料发展现状与前景[J].产业用纺织品,2000,1:1-5.
    [143]张如全.熔喷聚丙烯非织造布纤网结构与性能研究[J].非织造布,1999,5:29-31.
    [144]Owens D K, Wendt R C. Estimation of the surface free energy of polymers [J]. Journal of Applied Polymer Science,1969,13:1741-1747.
    [145]Kaelble D H, Uy K C. Dispersion-Polar Surface Tension Properties of Organic Solids [J]. Journal of Adhesion,1970,2:66-81.
    [146]Jena A, Gupta K, Liquid extrusion techniques for pore structure evaluation of nonwovens [R], Technical Report, New York.
    [147]Takagi R, Hori M, Gotoh K, et al. Donnan potential and ξ-potential of cellulose acetate membrane in aqueous sodium chloride solutions [J]. Journal of Membrane Science,2000,170:19-25.
    [148]水和废水检测分析方法.第四版[M].北京:中国环境科学出版社,2002.
    [149]Chu H P, Li X Y. Membrane fouling in a membrane bioreactor (MBR):sludge cake formation and fouling characteristics [J]. Biotechnology and Bioengineering,2005,90:322-331.
    [150]Chae S R, Ahn Y T, Kang S T, et al. Mitigated membrane fouling in a vertical submerged membrane bioreactor (VSMBR) [J]. Journal of Membrane Science,2006,280:572-581.
    [151]Fr(?)lund B, Palmgren R, Keiding K, et al. Extraction of extracellular polymers from activated sludge using a cation exchange resin [J]. Water Research,1996,30:1749-1758.
    [152]耿霞,梁冰,梁玉祥等.苯酚-硫酸导数光谱法快速测定中药中多糖的研究[J].四川大学学报,2002,34(3):62-64.
    [153]Lowry O H, Rosebrough N J, Farr A L, et al. Protein measurement with the folin phenol reagent [J]. Journal of Biological Chemical,1951,193:265-275.
    [154]严瑞煊.水溶性聚合物[M].北京:化学工业出版社,1998.
    [155]Sen J, Shen X. Crosslinked PVA-PS thin-film composite membrane for reverse osmosis [J]. Desalination,1987,62:395-403.
    [156]Li R H, Barbari T A. Performance of poly(vinyl alcohol)thin-gel composite uhrafihration membranes [J]. Journal of Membrane Science,1995,105:71-78.
    [157]Kozlov M, Quarmyne M, Chen W, et al. Adsorption of poly(vinyl alcohol) onto hydrophobic substrates:a general approach for hydrophilizing and chemically activating surfaces [J]. Macromolecules,2003,36:6054-6059.
    [158]Nash D C, McCreath G E, Chase H A. Modification of polystyrenic matrices for the purification of proteins. Effect of the adsorption of poly(vinyl alcohol) on the characteristics of poly(styrene-divinylbenzene) beads for use in affinity chromatography [J]. Journal of Chromatography A,1997,758:53-64.
    [159]Gao B J, He S X, Guo J F, et al. Preparation and antibacterial character of a water-insoluble antibacterial material of grafting polyvinylpyridinium on silica gel [J]. Material Letter,2007,61: 877-883.
    [160]Yao C, Li X S, Neoh K G, et al. Surface modification and antibacterial activity of electrospun polyurethane fibrous membranes with quaternary ammonium moieties [J]. Journal of Membrane Science,2008,320:259-267.
    [161]Hu F X, Neoh K G, Cen L, et al. Antibacterial and antifungal efficacy of surface functionalized polymeric beads in repeated applications [J]. Biotechnology Bioengineering,2005,89:474-484.
    [162]Zheng S Y, Chen Z C, Lu D S, et al. Graft copolymerization of water-soluble monomers containing quaternary ammonium group on poly(vinyl alcohol) using ceric ions [J]. Journal of Applied Polymer Science,2005,97:2186-2191.
    [163]Liu Y H, Liu X H, Deng K L, et al. Graft copolymerization of methyl acrylate onto poly(vinyl alcohol) initiated by potassium diperiodatonickelate(IV) [J]. Journal of Applied Polymer Science, 2003,87:529-534.
    [164]Li L, Chan C M, Weng L T, et al. Specific interaction between poly(styrene-co-4-vinylphenol) and poly(styrene-co-4-vinylpyridine) studied by C-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry [J]. Macromolecules,1998,31:7248-7255.
    [165]Cesterosl L C, Isasi J R, Katime I. Study of the miscibility of poly(vinyl pyridines) with poly(vinyl acetate), poly(vinyl alcohol) and their copolymers [J]. Journal of polymer Science Part B,1994,32: 223-230.
    [166]Troger J, Lunkwotz K, Burger W. Determination of the surface tension of microporous membranes using contact angle measurement [J]. Journal of Colloid and Interface Science,1997,194:281-286.
    [167]Goosen M F A, Sablani S S, Hinai H A, et al. Fouling of reverse osmosis and ultrafiltration membranes:a critical review [J]. Separation Science and Technology,2004,39:2261-2297.
    [168]Li B K, Logan B E. Bacterial adhesion to glass andmetal-oxide surfaces [J]. Colloids and Surfaces B, 2004,36:81-90.
    [169]Shi Z L, Neoh K G, Zhong S P, et al. In vitro antibacterial and cytotoxicity assay of multilayered polyelectrolyte-functionalized stainless steel [J]. Journal of Biomedical Material Research Part A, 2006,76:826-832.
    [170]Tiller J C, Liao C J, Lewis K, et al. Designing surfaces that kill bacteria on contact [J]. Process Natl. Academic Science 2001,98:5981-5985.
    [171]A.M. Klibanov. Permanently microbicidal materials coatings [J]. Journal of Material Chemical,2007, 17:2479-2482.
    [172]Rege P R, Block L H. Chitosan proocessing:influence of process parameters during acidic and alkaline hdrolysis and effect of the processing sequence on the resultant chitosan's properties [J]. Carhohydrate Research,1999,321:235-245.
    [173]杜予民.甲壳素化学与应用的新进展[J].武汉大学学报(自然科学版),2000,46:181-186.
    [174]蒋挺大.甲壳素[M].北京:化学工业出版社,2003
    [175]余艺华,何内林.甲壳质/壳聚糖的化学修饰[J].高分了通报,1997,12:232-236.
    [176]N.V. M, Kumar R. A review of chitin and chitosan applition [J]. Reactive& Functional Polymers, 2000,46:1-27.
    [177]王小红,马建标,何炳林.甲壳素、壳聚糖及其衍生物的应用[J].功能高分了学报,1999,12(2):197-202.
    [178]张廷军.甲壳素/壳聚糖及其衍生物的应用情况[J].水产科技情报,1999,26:243-247.
    [179]陈尧.混合交联壳聚糖/聚砜荷正电复合纳滤膜的制备与性能研究[D].中国海洋大学,2006.
    [180]蒋挺大.壳聚糖[M].北京:化学工业出版社,2001.
    [181]马晓莉,姚子华,徐伟伟.医用多孔壳聚糖膜的制备及性能研究[J].功能高分子学报,2005,18(3):434-440.
    [182]郎雪梅,赵建青.壳聚糖超滤膜的孔结构研究[J].华南理工大学学报(自然科学版),2003,31(11):20-23.
    [183]Musale D A, Kumar A, Pleizier G. Formation and characte-rization of polylacryonitrile/chitosan composite ultrafiltratio nmembrane [J]. Journal of Membrane Science,1999,154(11):163-173.
    [184]Boributh S, Chanachai A, Jiraratananon R. Modification of PVDF membrane by chitosan solution for reducing protein fouling [J]. Journal of Membrane Science,2009,342:97-104.
    [185]Bergbreiter D E, Boren D, Kippenberger A M. New routes to hyperbranched poly(acrylic acid) surface grafts on polyethylene films and powders [J]. Macromolecules,2004,37:8686-8691.
    [186]Nakamura K, Matsumoto K. Properties of protein adsorption onto pore surface during microfiltration: Effects of solution environment and membrane hydrophobicity [J]. Journal of Membrane Science, 2006,280:363-374.
    [187]Jones K L, O'Melia C R. Protein and humic acid adsorption onto hydrophilic membrane surfaces: effects of pH and ionic strength [J]. Journal of Membrane Science,2000,165:31-46.
    [188]Cari M, Milanovi S D, Krsti D M, et al. Fouling of inorganic membranes by adsorption of whey proteins [J]. Journal of Membrane Science,2000,165:83-88.
    [189]Nakamura K, Matsumoto K. Adsorption behavior of BSA in microfiltration with porous glass membrane [J].1998,145:119-128.
    [190]Chen X, Shao Z Z, Huang Y F, et al. Influence of crosslinking agent content on structure and properties of glutaraldehyde crosslinked chitosan membranes [J]. Acta Chimica Sinica,2000,58: 1654-1659.
    [191]Hoven V P, Tangpasuthadol V, Angkitpaiboon Y, et al. Surface-charged chitosan:preparation and protein adsorption [J]. Carbon Polymer,2007,68:44-53.
    [192]Li B K, Logan B E. Bacterial adhesion to glass andmetal-oxide surfaces [J]. Colloid and Surface B, 2004,36:81-90.
    [193]Chapman R G, Ostuni E, Liang M N, et al. Polymeric thin films that resist the adsorption of proteins and the adhesion of bacteria [J]. Langmuir,2001,17:1225-1233.
    [194]杨冬芝,刘晓非,李治等.壳聚糖抗菌活性的影响因素[J].应用化学,2000,17:598-602.
    [195]杨声,冯小强,王廷璞等.壳聚糖对大肠杆菌的抑制作用规律及抗菌机理初探[J].天然产物研究与开发,2007,19:39-43.
    [196]Fane A G, Fell C J D, Waters A G. Ultrafiltration of protein solutions through permeable membranes-the effect of adsorption and solution environment [J]. Journal of Membrane Science,1983,16: 211-224.
    [197]Li N, Liu Z Z, Xu S G. Dynamically formed poly (vinyl alcohol) ultrafiltration membranes with good antifo uling characteristics [J]. Journal of Membrane Science,2000,169:17-28.
    [198]Nabe A, Staude E, Belfort G. Surface modification of polysulfone ultrafiltration membranes and fouling by BSA solutions [J]. Journal of Membrane Science,1997,133:57-72.
    [199]Li N, Liu Z Z, Xu S G. Dynamically formed poly (vinyl alcohol) ultrafiltration membranes with good anti-fouling characteristics [J]. Journal of Membrane Science,2000,169:17-28.
    [200]Al-Halbounia D, Traberb J, Lykoc S, et al. Correlation of EPS content in activated sludge at different sludge retention times with membrane fouling phenomena [J]. Water Research,2008,42:1475-1488.
    [201]Deepak A M, Ashwani K. Effects of surface crosslinking on sieving characteristics of chitosan: poly(acrylonitrile) composite nanofiltration membranes [J]. Separation and Purification Technology, 2000,21:27-38.
    [202]Griffiths P R, de Haseth J A. [M]. New York:Wiley,1986.
    [203]Van Damme H S, Hogt A H, J. F. Surface mobility and structural transitions of poly(n-alkyl methacrylates)probed by dynamic contact angle measurements [J]. Journal of Colloid Interface Science,1986,114(1):167-172.
    [204]Deborah H C, Stephen J G, Gregory S F. Entropically influenced reconstruction at the PBD-OX/water interface:the role of physical cross-linking and rubber elasticity [J]. Macromolecules, 2000,33(23):8802-8810.
    [205]Weikart C M, Miyama M, Yasuda H K. Surface modification of conventional polymers by depositing plasma polymers of trimethylsilane and trimethylsilane [J]. Journal of Colloid Interface Science, 1999,211(1):18-27.
    [206]Nie H Y, Walzak M J, Berno B, et al. Atomic force microscopy study of polypropylene surfaces treated by UV and ozone:modification of morphology and adhesion force [J]. Applied Surface Science,1999,144-145:627-632.
    [207]Queiroz J A, C. Tomaz T, Cabral J M S. Hydrophobic interaction chromatography of proteins [J]. Journal of Biotechnology,2001,87:143-159.
    [208]Zhang J S, Chua H C, Zhou J, et al. Factors affecting the membrane performance in submerged membrane bioreactors [J]. Journal of Membrane Science,2006,284:54-66.
    [209]Meng F G, Zhang H M, Yang F L, et al. Characterization of Cake Layer in Submerged Membrane Bioreactor [J]. Environment Science and Technology,2007,41(11):4065-4070.
    [210]Comte S, Guibaud G, Baudu M. Biosorption properties of extracellular polymeric substances (EPS) resulting from activated sludge according to their type:soluble or bound [J]. Process Biochemistry, 2006,41:815-823.
    [211]Arabi S, Nakhla G. Impact of protein/carbohydrate ratio in the feed wastewater on the membrane fouling in membrane bioreactors [J]. Journal of Membrane Science,2008,324:142-150.
    [212]Faibish R S, Elimelech M, Cohen Y. Effect of interparticle electrostatic double layer interactions on permeate flux decline in crossflow membrane filtration of colloidal suspensions:An experimental investigation [J]. Journal of Colloid and Interface Science,1998,204:77-86.
    [213]Faibish R S, Yoshida W, Cohen Y. Fouling-resistant ceramic-supported polymer membranes for ultrafiltration of oil-in-water microemulsions [J]. Journal of Membrane Science,2001,185:129-143.
    [214]Currie E P K, Norde W, Stuart M A C. Tethered polymer chains:surface chemistry and their impact on colloidal and surface properties [J]. Advances in Colloid and Interface Science,2003,100-102: 205-265.
    [215]Yeung C, Balazs A C, Jasnow D. Lateral instabilities in a grafted layer in a poor solvent [J]. Macromolecules,1993,26:1914-1921.
    [216]Husemann M, Morrison M, Benoit D, et al. Manipulation of surface properties by patterning of covalently bound polymer brushes [J]. Journal of American Chemical Social,2000,122:1844-1852.
    [217]Bhattacharya A, Misra B N. Grafting a versatile means to modify polymers:techniques, factors and applications [J]. Progress Polymer Science,2004,29:767-773.
    [218]Matyjaszewski K, Xia J H. Atom transfer radical polymerization [J]. Chemical Revise,2001,101: 2921-2990.
    [219]Xu F J, Zhao J P, Kang E T, et al. Functionalization of nylon membranes via surface-initiated atom-transfer radical polymerization [J]. Langmuir,2007,23:8585-8592.
    [220]Zhai M, Chen J, Hasegawa S, et al. Synthesis of fluorinated polymer electrolyte membranes by radiation grafting and atom transfer radical polymerization techniques [J]. Polymer,2009,50: 1159-1165.
    [221]Bhuta B V, Wickramasinghe S R, Hussona S M. Preparation of high-capacity, weak anion-exchange membranes for protein separations using surface-initiated atom transfer radical polymerization [J]. Journal of Membrane Science,2008,325:176-183.
    [222]Matyjaszewski K, Shipp D A, J.L.Wang, et al. Utilizing halide exchange to improve control of atom transfer radical polymerization [J]. Macromolecules,1998,31:6836-6842.
    [223]Xia J H, Zhang X, Matyjaszewski K. Atom transfer radical polymerization of 4-vinylpyridine [J]. Macromolecules,1999,32:3531-3533.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700