用户名: 密码: 验证码:
冲击电压下半导体材料表面闪络现象与机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着脉冲功率技术的迅速发展,固态开关器件正逐渐被广泛应用,其中光导半导体开关更以其优良的特性受到了关注。但表面闪络现象限制了半导体器件的工作场强,严重阻碍了这类器件在高电压大功率领域的发展。国际上一度形成了对半导体表面闪络现象的研究热潮,然而由于该现象的复杂性,至今对其内在机理还不是十分清楚,对其中的一些关键问题还存在着很大争议。因此,开展半导体材料表面闪络现象与机理的研究对于高场半导体器件寿命和可靠性提高具有相当积极的意义,同时这一研究也是固体材料表面闪络理论的一个重要分支。
     本文首先设计实现了一套较为完整的高电压真空(空气)放电实验平台,该平台包括:真空腔及配套的抽气设备、单级Marx高压短脉冲发生器、两种平面布置的电极系统、基于光电倍增管的光强信号的测量系统以及由高速变像管分幅相机、红外CCD、ICCD设备组成的图像记录系统等,实验证明该平台的性能满足研究需求。
     本文的具体研究工作以探求闪络机理为目标,以不同类型的硅半导体为例,分别从介质环境、电极系统和表面状况等三个方面的影响入手对其闪络现象进行了深入分析,然后根据实验结果对半导体表面闪络发展过程中的关键环节进行了数值分析。主要工作包括以下几方面的内容:
     1.分别在空气、真空和去离子水中进行了半导体表面闪络实验,对比分析了真空和空气中的闪络特性以及闪络通道的动态发展过程,发现了闪络通道起始位置依赖于半导体材料类型的现象,并发现在空气中闪络前的电压上升阶段,电极间已经形成贯穿性的发光通道;结合观测到的真空中闪络引起的气体解吸附现象,分别提出了空气和真空中闪络的不同物理模型,认为半导体闪络起始于电极处的电流注入现象,空气中的闪络模型强调了表面层电流引起表面电场畸变导致外围气体电离的过程,而真空中的闪络模型则强调了表面层电流发热造成表面气体解吸附进而形成闪络通道的过程。
     2.对比分析了有无金属膜电极及退火工艺对闪络特性的影响,发现电极接触对闪络现象具有两方面的作用:一方面良好且均匀的接触能够降低电极区电场、提高闪络电压;另一方面,电极接触区的界面态可以抑制注入电流从而提高闪络电压。本文还设计了嵌入式电极结构,实验中发现闪络特性与电极嵌入深度有关系,在嵌入较深的样品上,能够获得较高的闪络电压。通过对半导体闪络电流极性效应的分析,提出了少数载流子占预闪络电流主要成分的理论,同时考虑到半导体内多数载流子的弛豫条件和丝状电流通道的红外分析结果,提出了少子注入引导表面丝状电流形成的理论。
     3.基于表面腐蚀、表面钝化工艺影响闪络特性的实验规律,分析了表面态和闪络特性之间的关系,提出了清除表面态可以提高半导体表面闪络电压的理论,利用该理论不但能够解释表面腐蚀和表面钝化影响闪络的实验结果,还为粗糙表面试样在空气和真空中的反常闪络特性提供了理论依据。
     4.在对表面闪络通道发展过程的研究中,本文对电极边缘的电场进行了数值分析,并计算了电极接触势垒引起的电场畸变。基于细丝电流通道的模型,对表面层内丝状通道的热过程进行了数值仿真,证明在脉冲作用下细丝电流通道的温度可以达到硅材料的熔点,这一结果不仅可以解释材料的表面破坏现象,还支持了真空中热致气体解吸附的理论模型。
With the rapid development of pulsed power technology, solid switch devices are being gradually applied. In these devices, the photoconductive semiconductor switch (PCSS) with good performances arouses broad attention. However, the flashover phenomena across a semiconductor device always occur at a much lower electric field stress than its intrinsic breakdown strength, which have limited its development in the field of high voltage and power. Much attention has been ever paid on the flashover phenomena across semiconductor all over the world, but because the phenomena are so complicated and uncertain, up to now the latent mechanism is not very clear and some key problems are still in debate. So it is greatly instructive to study the phenomena and its mechanism for promoting the lifetime and reliability of high-field semiconductor devices. Furthermore, the research is also an important branch of the flashover across solid dielectric.
     Firstly, a high-voltage vacuum (atmosphere) discharge experimental platform is designed and implemented. The main part of the platform include: the vacuum chamber and vacuum pumps, a one-stage Marx generator of short pulse, two kinds of planar electrode configurations, the light intensity measurement system based on photomultiplier tube (PMT), and the image recording system, consisting of high speed image converter camera, CCD system with infrared filter lens and ICCD camera. It is proved that the platform can satisfy the demand of the experiments in this thesis.
     For investigating the mechanism of the flashover across semiconductor, the silicon wafers with different types are employed. The influences of dielectric ambient, electrode system and surface status on flashover phenomena are discussed. Based on the experimental results, some key procedures during flashover development are analyzed by numerical method. The main works are as following: 1. The flashover experiments in atmosphere, vacuum and deionized water are performed. The characteristics and process of flashover channel in air and vacuum are compared. It is found that, the starting position of the flashover channel depends on the type of the semiconductor, and the perforative light channel has been formed in the period of the voltage climbing up. Considering the observed gas desorption phenonmena during the flashover in vacuum, two different models of flashover in vacuum and air are presented, respectively. It is recognized that the flashover is originated from the injected current. The model about air emphasizes that injected current in surface layer could cause the disturbance of electric filed, which may arouse the ionization of gas ouside. The model in vacuum regards that the gas desorption process induced by the injected current is more important.
     2. The effects of metalized layer contact and its annealing craft on flashover phenomena are compared and analyzed. Based on the results, two cognitions are given: the good and uniform contact may decrease the electric field stress near the electrode and increase the flashover voltage; the interface states at the contact area are able to restrain the injected current and elevate the flashover voltage. The experimental sample with a novel structure of insert contact is also tested, and its flashover performance is related with the inserting depth. The higher flashover voltage was acquired for the sample with larger depth. It is found that the flashover current behaves some relations with applied voltage polarity, and it is considered that minority carriers play main role on the preflashover current. Considering the relaxation condition of majority carriers and the infrared image of filament current, a theory that minority carriers play major role on inducing current filament is presented.
     3. Based on the experimental results about the effects of etching and passivation surface on the flashover, the relationship between surface states and flashover characteristics is analyzed. A theoretical model that removing surface states could elevate flashover voltage is presented. The model can not only interpret the effects of surface etching and passivation but also provide a support for the abonormal flashover phenomena of the sample with coarse surface in air and vacuum.
     4. In the study on the process of the flashover channel, the electric field at the edge of electrodes is calculated with the numerical method, and the electric field disturbance aroused by contact barrier is also calculated. Based on the filament current channel model, the related thermal process is simulated, which proves that the temperature is high enough to reach the melting point of silicon. The simulating results can explain the damage phenomena on silicon surface and also support the presented theoretical model of gas desorption aroused by thermal process.
引文
[1]刘锡三.高功率脉冲功率技术[M].北京:国防工业出版社,2005: 9, 333-335, 379.
    [2]曾正中.实用脉冲功率技术引论[M].西安:陕西科学技术出版社,2003:序言.
    [3]邱爱慈.脉冲X射线模拟源技术的发展[J].中国工程科学,2000,2(9): 24-27.
    [4] Smith I. The early history of western pulsed power [J]. IEEE Transactions on Plasma Science, 2006, 34(5):1585-1690.
    [5] Novac BM, Istenic M, Luo J, et al. A 10-GW pulsed power supply for hpm sources [J]. IEEE Transactions on Plasma Science, 2006, 34(5): 1814-1821.
    [6] Wilson M, Given MJ, Macgregor SJ, et al. Application of pulsed power generated high power ultrasound to waste comminution and the recovery of metals [C]//Pulsed Power Conference, Basingstoke,UK, 2005:26/1-26/5.
    [7]清华大学电力系高电压专业.冲击大电流技术[M].北京:科学出版社, 1978:前言
    [8]李正瀛.脉冲功率技术[M].北京:水利电力出版社, 1992: 1-5
    [9]余存仪.高电压技术的应用[M].北京:水利电力出版社, 1995: 87-88.
    [10]王莹.高功率脉冲电源[M].北京:原子能出版社, 1991: 3-4.
    [11]屈光辉,施卫.光导开关中感生电流与传导电流[J].物理学报, 2006,55(11): 6068-6072.
    [12] Nunnally WC. Photoconductive power switches, a review [C]// Proc of 5th pulsed power conference, 1985: 235-241.
    [13] Nunnally WC. 80-MW photoconductor power switch [J]. Applied Physics Letters, 1984, 44(10): 980-982.
    [14] Schoenbach K, Lakdawata V, Ko S, et al. Optical and electron-beam control of semiconductor switches [C]// Proc the 18th Power Modulator Symposium, 1988:318-324,.
    [15]何锋,苏建仓,李永东,等.半导体断路开关数值模拟[J].强激光与粒子束, 2005, 17(12): 1893-1896.
    [16] Zutavern FJ, Baca AG, Chow WW, et al. Electron-hole plasmas in semiconductors [C]// Digest of Technique Papers on Pulsed Power Plasma Science Conference, 2001,1: 289-293.
    [17]施卫,赵卫,张显斌.用光激开关产生高功率亚纳秒电脉冲的研究[J].强激光与粒子束, 2001, 13(6):734-738.
    [18] Thomas BL and Nunnally WC. Recent developments in the investigation of surface flashover on silicon photoconductive power switches [C]// Proc the 7th IEEE Pulsed Power Conference, 1989: 893-896.
    [19] Gaudet JA, Prather WD, Burger J. Progress in gallium arsenide photoconductive switch research for high power applications [C]//the 25th International Power Modulator Symposium and High-Voltage Workshop, 2002: 699-702.
    [20]支婷婷,陈蓝荣.硅光电子开关的应用[J].光学学报, 1983, 3(4): 369-373.
    [21]粱振宪,施卫.高压超快GaAs光电导开关的研制[J].电子学报, 1998, 26(11): 104-106.
    [22]施卫,粱振宪,徐传骧.高倍增GaAs光电导开关的设计与研制[J].西安交通大学学报, 1998, 32(8): 19-23,110.
    [23] Cooperstock DM. Design, construction, and implementation of a high voltage, pulsed power test bed for the study of GaAs and SiC optically triggered switches [D]. Ann Arbor: ProQuest Information and Learning Company, 2004: 30-32.
    [24] Nunnally WC, Cooperstock DM, Kelkar K, et al. Compact, high power, photo-conductive, switch project status [R/OL]. University of New Mexico, 2002. http://www.eece.unm.edu/cp3/AbqReview0 602/presentations/Beams02.ppt
    [25] Nunnally WC, Cooperstock D. Methods and configurations for improving photo-conductive switch performance [C]// Proc the 25th International Power Modulator Symposium and High-Voltage Workshop, 2002: 183-186.
    [26] Jackson CK, Glen MM, Michael DP, et al. A low leakage 10000-V silicon photoconductive switch [J]. Applied Physics Letters, 1984, 45(10): 1130-1131.
    [27]施敏.现代半导体器件物理[M].北京:科学出版社, 2001: 413.
    [28] Gradinaru G. and Sudarshan TS. Prebreakdown and breakdown phenomena in high-fieldsemiconductor-dielectric systems [J]. J. Appl. Phys., 1993, 73(11): 7643-7666.
    [29]施卫,田立强.半绝缘GaAs光电导开关的击穿特性[J].半导体学报, 2004, 25(6):691-696.
    [30] Zutavern FJ, Loubriel GM, Helgeson WD, et al. High gain photoconductive semiconductor switches (PCSS) device lifetime, high current testing, optical pulsed generators [C]// SPIE Optical Activated Switching IV, 1994 (2343): 146-154.
    [31] Garrett CGB and Brattain WH. Some experiments on, and a theory of surface breakdown [J]. J. Appl. Phys., 1956, 27(3): 299-306.
    [32]徐传骧.高压硅半导体器件的耐压与表面绝缘技术[M].北京:机械工业出版社, 1981: 85, 110-127.
    [33] Elizondo JM, Moeny WM. Photoconductive switches vacuum surface flashover improvements [C]// Proc. of the 8th Pulsed Power Conference, 1991: 1020-1023.
    [34] Pocha MD, Druce RL. 35-kV GaAs subnanosecond photoconductive switches. IEEE Transactions on Electron Device, 1990, 37(12):2486-2492.
    [35]夏建白.现代半导体物理[M].北京:北京大学出版社, 2001: 226-236.
    [36]张冠军,严璋,刘源兴,等.真空中冲击电压下硅半导体的泄漏电流及沿面闪络特性[J].电工技术学报, 2000, 15(5):53-57.
    [37] Anderson NC. Photoconductive power switches [C]// IEE Colloquium on Pulsed Power Technology, 1992: 4/1 - 4/5.
    [38] Kambour K, Hjalmarson HP, Myles CW. A collective theory of lock-on in photoconductive semiconductor switches [C]// Proc 14th IEEE International Pulsed Power Conference, 2003,1: 345-348.
    [39] Gundersen MA, Hur JH and Zhao H, et al. Lock-on effect in pulsed power semiconductor switches [J]. J. Appl. Phys,, 1992, 71(6): 3036-3038.
    [40] Kambour K. A theory of lock-on and electrical breakdown [D]. Ann Arbor: ProQuest Information and Learning Company, 2003: 49-54,68.
    [41]张显斌,施卫,李琦,等.用红外激光触发半绝缘GaAs光电导开关的实验研究[J].强激光与粒子束, 2002, 14(6): 815-818.
    [42]施卫,戴慧莹,张显斌.用1064nm激光脉冲触发半绝缘Ga As光电导开关的奇特光电导现象[J]. 2005,半导体学报, 26(3): 460-464.
    [43] Brinkmann RP, Schoenbach K H. Modeling of electron-beam controlled diamond switches. SPIE, 1992, 1632 (Optically Activated Switching II): 242-252.
    [44] Gunda R. Performance analysis of high power photoconductive switch at elevated temperature [D]. Ann Arbor: ProQuest Information and Learning Company, 2005: 56.
    [45] Grove AS. Physics and technology of semiconductor devices[M]. New York: John Wiley and Sons, Inc, 1976: 334-342.
    [46] Davanloo F, Collins CB, Agee FJ. High-power photoconductive semiconductor switches treated with amorphic diamond coatings [J]. IEEE Transactions on Plasma Science, 2002, 30(5): 1897-1904.
    [47] Hawley R. Solid insulators in vacuum– a review [J]. Vacuum, 1968, 18(7): 383-390.
    [48] Miller HC. Flashover of insulators in vacuum, review of the phenomena and techniques to improve holdoff voltage. IEEE Transactions on Electrical Insulation, 1993, 28(4): 512~527
    [49] Anderson RA,Branard J P.Mechanism of pulsed surface flashover involving electron-stimulated desorption[J].J. Appl. Phys, 1980, 51(3): 1414-1421.
    [50] Gressus CL,Blaise G.Breakdown phenomena related to trapping/ detrapping processes in wide band gap insulators[J].IEEE Transactions. on Electrical Insulation, 1992, 27(3): 472-481.
    [51] Blaise G, Gressus LC. Charging and flashover induced by surface polarization relaxation process. J. Appl. Phys, 1991, 69(9): 6334~6339
    [52] Miller HC. Surface flashover of insulators. IEEE Transaction on Electrical Insulation, 1989, 24(5): 765~786
    [53] STYGAR WA, Ives HC, Wagoner TC, et al. Flashover of a vacuum-insulator interface: A statistical mode l [J]. Phys. Rev. ST Accel. Beams, 2004, 7: 070401.
    [54] Avdienko AA, Malev MD. Surface flashover of solid dielectric in vacuum. II mechanism of surface breakdown. Sov. Phys. Tech. Phys, 1977, 22(8): 986-991.
    [55] Avdienko AA, Malev MD. Flashover in vacuum. Vacuum, 1977, 27(12): 643-651.
    [56] Neuber AA, Butcher M, Krompholz H, et al. The role of outgassing in surface flashover under vacuum. IEEE Transactions on Plasma Science, 2000, 28(5): 1593-1598.
    [57] Neuber AA, Butcher M, Hatfield LL, et al. Electric current in dc surface flashover in vacuum. Journal of Applied Physics, 1999, 85(6): 3084-3091.
    [58]杨百屯,屠德民,刘耀南.碰撞电离退陷阱化[J].电工技术学报, 1991, 6(2): 59-64
    [59] Nam SH and Sudarshan TS. Observation of three distinct phases leading to pulsed surface flashover along silicon without end contacts in vacuum [J]. IEEE Transaction on Electrical Insulation, 1989, 24(6): 979-983.
    [60] Gradinaru G, Madangarli VP and Sudarshan TS. Surface flashover in silicon-vacuum systems [J]. IEEE Transaction On Electrical Insulation, 1993, 28(4): 555-565
    [61] Zhang GJ, Yan Z and Liu YS, et al. Preflashover and flashover phenomena of silicon- vacuum system under pulsed excitation. Appl. Phys. Lett., 2002, 80(20): 3742-3744.
    [62] Loubriel GM, O’Malley MV, Zutavern FJ. Surface flashover threshold and switched fields of photoconductive semiconductor switches [C]// Proc IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), 1988: 430-441.
    [63] Donaldson WR, Mourou G. Improve contacts on intrinsic silicon for high voltage photoconductive switching [C]//Proc the 5th IEEE Pulsed Power Conference, Arlington, 1985: 590-593.
    [64] Donaldson WR, Mourou G., Kingsley L, et al. Characterization of High-Voltage photoconductive switches [C]// Proc the 6th IEEE Pulsed Power Conference, 1987: 141-144.
    [65] Feuerstein R and Senitzky B. Contact effects on silicon surface flashover studies [C]//Proc. the 7th IEEE Pulsed Power Conference, 1989: 358-361.
    [66] Nam SH, Sudarshan TS. New findings of pulsed surface breakdown along silicon in vacuum [J]. IEEE Transactions on Electron Devices, 1990, 37(12), 2466-2471.
    [67] Zutavern FJ and O’Malley MW. Engineering limits of photoconductive semiconductor switches in pulsed power application [C]// Proc the 16th Power Modulator Symposium, 1986: 214-218.
    [68] Thomas BL and Nunnally WC. Investigation of surface flashover in silicon photoconductive power switches [C]// Proc the 7th IEEE Pulsed Power Conference, 1987: 149-152.
    [69] Feuerstein RJ and Senitzky B. Surface Breakdown of Silicon [J]. J. Appl. Phys., 1991, 70(1): 288-298.
    [70] Williams PF and Peterkin FE. A mechanism for surface flashover of semiconductors [C]// Proc the 7th IEEE Pulsed Power Conference, 1989: 890-892.
    [71] Schoenbach KH, Kenney JS, Peterkin FE, et al. Temporal development of electric field structures in photoconductive GaAs switches. Applied Physics Letters, 1993, 63(15): 2100-2102.
    [72] Peterkin FE, Block R and Schoenbach KH. Electric field mapping system with nanosecond temporal resolution. Review of Science Instrument, 1995, 66(4): 2960-2966.
    [73] Gradinaru G, Madangarli VP, and Sudarshan TS. On the negative differential resistance effect in high-field semiconductor-dielectric systems. Applied Physics Letters, 1992, 61(1): 55-57
    [74] Jaitly NC, Sudarshan TS. DC surface flashover mechanism along solids in vacuum based on a collision-ionization model [J]. J. Appl. Phys., 1988, 64(7): 3411-3418.
    [75] Krile J T, Neuber AA., Dickens JC, et al. DC and pulsed dielectric surface flashover at atmospheric pressure [J]. IEEE Transactions on Plasma Science, 2005, 33(4): 1149-1154.
    [76] Sudarshan TS, Li CR. Dielectric surface flashover in vacuum. Experimental design issues [J]. IEEE Transcations. on Electrical Insulation., 1997, 2(3): 483-491.
    [77] Li CR, Sudarshan TS. Characteristics of preflashover light emission from dielectric surfaces in vacuum [J]. IEEE Transcations. on Electrical Insulation, 1995, 4(5): 657-662.
    [78] Sundararaman R, Li CR, Sudarshan TS. Influence of surface microstructure on the electric and spectroscopic characteristics of dielectric surface flashover [J]. IEEE Transcations. on Electrical Insulation, 1994, 1(2): 315-322.
    [79]丛培天,赵军卫,蒯斌,等.利用光纤传感器诊断气体开关放电特性的初步研究[J].高压电器, 2003, 39(4): 1-3.
    [80]于力,刘晶儒,胡志云,等.横向表面放电光泵浦源特性研究[J].强激光与粒子束, 2001, 13(1): 43-46.
    [81]何锋,刘纯亮,李永东,等.一种新的五电极交流等离子体显示板触发驱动方法[J].西安交通大学学报, 2005, 39(10): 1147-1154.
    [82] Gamble JP, Sudarshan TS, Faust JR. Pulsed voltage pre-breakdown observations on silicon in vacuum [C]// Annual Report of conference on Electrical Insulation and Dielectric Phenomena (CEIDP), 1990: 533-538.
    [83]朱京平.光电子技术基础[M].北京:科学出版社, 2003: 193-194.
    [84]姚启钧.光学教程[M].北京:高等教育出版社, 1989: 185-192.
    [85] Zhao WB, Zhang GJ, Zheng N et al. Pulsed Surface Discharge and Flashover Phenomena Across Silicon in Atmosphere [C]// Proc 14th International Symposium on High Voltage Engineering, 2005:24-28.
    [86] Asokan T, Sudarshan. Effect of test environment on surface breakdown characteristics of photoconducting silicon[C]// SPIE Optical Activated Switching II, 1992 (1632): 231-241.
    [87]严璋,朱德恒.高电压绝缘技术[M].北京:中国电力出版社, 2002: 70-72, 111-118, 201-202.
    [88]杨津基.气体放电[M].北京:科学出版社, 1983: 459-383.
    [89] Pillai AS, Hackam R. Surface flashover of solid insulators in atmospheric air and in vacuum [J]. J. Appl. Phys, 1985, 58(1): 146-153.
    [90]刘恩科,朱秉升,罗晋生,等.半导体物理学[M].北京:国防工业出版社, 1994: 105-110, 134-137.
    [91]高观志,黄维,雷清泉(译).固体中的电输运[M].北京:科学出版社, 1991: 169-250.
    [92]薛增泉,吴全德.电子发射与电子能谱.北京:北京大学出版社, 1991: 50-52.
    [93]刘元震,王仲春,董亚强.电子发射与光电阴极.北京:北京理工大学出版社, 1995: 68-81.
    [94] Simmons JG. Transition from electrode-limited to bulk-limited conduction processes in metal-insulator-metal systems [J]. Physic Review, 166(3):912-920.
    [95] Johnston GR, Lyons LE. Dark conduction through anthracene crystals [J]. Australian Journal of Chemistry 23(11): 2187-2204.
    [96] Wagener JL, Milnes AG. Post-breakdown conduction in forward-biased p-i-n silicon diodes [J]. Applied Physic Letters, 5(9): 186-188.
    [97] Hwang W, Kao KC. Electroluminescence in anthracene crystals caused by field-induced minority carriers at moderate temperatures [J]. Journal of chemical physics, 1973, 58(8):3521-3522.
    [98] Peterkin FE, Ridolfi T, Buresh L L et al. Surface flashover of silicon [J]. IEEE Transcations. Electron Devices, 1990, 37(12): 2459-2465.
    [99] Hankla BJ, Williams PF. Schilen Photography of current filaments in surface-related breakdown of silicon [J]. IEEE Transactions on Plasma Science, 1996, 24(1): 67-68.
    [100] Warner RM, Grung BL. Transistors fundamentals for the intergrated-circuit engineer[M]. New York: Wiley-Interscience Publication, 1983:210-224.
    [101]冯慈璋,马西奎.工程电磁场导论[M].北京:高等教育出版社, 2000: 70-79.
    [102]张厥宗.硅单晶抛光片的加工技术[M].北京:化学工业出版社, 2005: 153-170.
    [103] Gradinaru G., Korony G, and Sudarshan T S. Surface flashover sensvity of silicon in vacuum [C]// SPIE Optical Activated Switching, 1994 (2259): 336-339.
    [104]姚宗熙,郑德修,封学民.物理电子学[M].西安:西安交通大学出版社, 1991: 265-275.
    [105]施敏(著),黄振岗(译).半导体器件物理[M].北京:电子工业出版社, 1987: 169-213.
    [106] Rhoderick EH. Metal-semiconductor contacts[M]. London: Oxford University Press, 1978: 1-15.
    [107]黄昆(著),韩汝琦(改编).固体物理学[M].北京:高等教育出版社, 1988:236-255.
    [108]许振嘉.近代半导体材料的表面科学基础[M].北京:北京大学出版社, 2002: 423-481.
    [109]钱佑华.半导体物理[M].北京:高等教育出版社, 1999: 294-336.
    [110]正田英介,春木弘(编著),绍志标(译).半导体器件[M].北京:科学出版社, 2003: 19-33.
    [111]夏海良,张安康.半导体器件制造工艺[M].上海:上海科学技术出版社, 1986: 141-151.
    [112] Madangarli VP, Gradinaru G, Sudarshan T S et al. Improved voltage hold-off capability of photoconductive silicon in sf6 environment [C]//the 20th International Power Modulator Symposium, 1992: 297-300.
    [113]关旭东.硅集成电路工艺基础[M].北京:北京大学出版社, 2003: 235-240.
    [114]陈力俊.微电子材料与制程[M].上海:复旦大学出版社, 2005: 273-277.
    [115] Kao KC, Elsharkawi AR. On the theory of double injection in solids with traps non-uniformly distributed in energy and in spac [J]. International Journal of Electronics, 1976, 41(6): 607-616.
    [116] Kao KC. Theory of high-field electric conduction and breakdown in dielectric liquids [J]. IEEE Transactions on Electrical Insulation, 1976, 11(4): 121-128.
    [117]孙大明,席光康.固体的表面与界面[M].合肥:安徽教育出版社, 1996: 1-9.
    [118]恽正中.表面与界面物理[M].成都:电子科技大学出版社, 1993: 32-56.
    [119]郑广恒.近代物理(上册)[M].上海:复旦大学出版社, 1991: 123-132.
    [120]李梧龄.量子力学概论[M].上海:同济大学出版社, 1990: 84-93.
    [121]孙恒慧,包宗明.半导体物理实验[M].北京:高等教育出版社, 1985: 11-23.
    [122] Zhao WB, Zhang GJ, Xie L, et al. Investigation on pulse surface discharge phenonmena of silicon in atmosphere [C]// Proc 2004 IEEE International Conference on Solid Dielectrics (ICSD), 2004: 888-891.
    [123] Zhao WB, Zhang GJ, Qin GB, et al. Surface Microcosmic phenomena induced by pulsed flashovers [C]// Proc International Symposium on Electrical Insulation Materials, 2005: 324-327.
    [124] Gradinaru G, Madangarli VP, Sudarshan TS. The influence of the semiconductor and dielectric properties on surface flashover in silicon-dielectric system [J]. IEEE Transactions on Electron Devieces, 41(7):1233-1238.
    [125] Gradinaru G, Sudarshan. Surface filamentation in semi-insulating silicon [J]. J. Appl. Phys., 1996, 79(11): 8557-8564.
    [126] Dabrowski J, Mussig H J. Silicon sufaces and formation of interfaces[M]. Singapore: World Sciencific Publishing Co. 2000: 47-49.
    [127]丁立健.真空中绝缘子沿面预闪络和闪络现象的研究[D].北京:华北电力大学, 2000: 46-56
    [128] Li CR, Ding LJ, Lv JZ et al. The relation of trap distribution of alumina with surface flashover performance in vacuum [J]. IEEE Transactions on Dielectric and Electrcial Insulation, 2006, 13(1): 79-84.
    [129] Zhao WB, Zhang GJ, Yang Y, et al. Correlation between trapping parameters and surface insulation strength of solid dielectric under pulse voltage in vacuum [J]. IEEE Transactions on Dielectric and Electrcial Insulation, 2007, 14(1): 170-178.
    [130]林为干,符果行,邬琳若.电磁场理论[M].北京:人民邮电出版社, 1996: 84-104
    [131] Crowell CR, Sze SM. Current transport in metal-semiconductor barriers [J]. Solid-State Electronics, 1966, 9: 1035-1048.
    [132] Fulkerson W, Moore JP, Willams RS, et al. Thermal conductivity electrical resistivity, and seebeck coefficient of silicon from 100 to 1300°K. 1968, 167(3): 167-781.
    [133] Zhao WB, Zhang GJ, Qin GB, et al. Thermal process of the flashover across the silicon surface under pulsed stimulation. Proc 16th International Conference on Gas Discharges, 2006: 305-308.
    [134]曾树荣.半导体器件物理基础[M].北京:北京大学出版社, 2002: 30-32.
    [135] Robiscoe RT, Sui ZF. Circuit model of surface arching [J]. Jonarl of Applied Physics, 1988, 64(9):4364-4374.
    [136]邱关源.电路(上册)[M].北京:高等教育出版社, 1989: 238-239.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700