用户名: 密码: 验证码:
中压电力线通信关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来我国智能配电网发展迅速,对通信平台也提出了越来越高的要求。鉴于我国配电网覆盖面广、结构复杂的特点,需要因地制宜地选取合适的通信技术。其中,中压电力线通信技术具有自身独特的优势和广阔的应用前景,同时也面临着诸多技术难点需要进一步完善和解决。本文结合国家自然科学基金面上项目“面向智能电网的中压电力线通信关键技术研究”(61172075),重点研究了中压电力线信道模型和相关通信技术,在此基础上,设计实现了基于中压电力线通信的馈线自动化系统。本文主要研究成果如下:
     1.基于多导体传输线理论建立了中压三相架空电力线路的传输和输入阻抗模型。结合典型的线路结构分析了各模量信号在三相线路上的传播特性,指出了Clarke矩阵在整个频段内可以作为相模变换矩阵,降低了信道建模的难度。分析了相地和相相输入阻抗的特性。提出了一段均匀三相线路在相地和相相耦合方式下传输衰减的简化计算公式,揭示了不同模量间相互耦合的规律,得出了相相耦合方式下终端匹配电阻的计算方法。
     2.基于对多台配电变压器的测量数据,分析了电力线通信频段内变压器高压端口的阻抗特性。利用其输入阻抗矩阵的对称性,提出了一种简化的变压器端口建模方法。
     3.建立了中压电力线通信信道的整体模型。典型现场实测的阻抗和衰减数据证明了模型的正确性。分析了主要模型参数对建模结果的影响,进一步简化了模型的复杂度。建立了中压电力线路输入阻抗的宽频宏模型,可以用于实验室环境下研究阻抗匹配电路的设计。
     4.基于直接优化法和简化实频法提出了中压电力线路宽带阻抗匹配的方法,利用这些方法可以有效地提高注入电力线的信号功率。设计了基于锁相放大器的电力线阻抗在线测量系统,具有较强噪声抑制能力,并同时测量阻抗的实部和虚部。为了验证阻抗匹配的效果,设计了通过测量直流电源供给功放的电流,从而间接检测功放输出电流的方案。
     5.设计了基于10kV一体化智能柱上开关的馈线自动化系统,并首次应用于配电网。分析了其中具有自主知识产权的电力线通信、测控和保护等关键技术。为了应对电力线通信信道的恶劣环境,提出了一种自适应通道选择策略,设计了相应的通信规约。结合某实际馈线自动化系统的运行情况,证明了中压电力线通信技术可以为配电自动化系统提供稳定可靠的通信服务。根据系统的通信信号强度数据,分析了信道衰减和噪声的一般规律,总结了中压电力线路的信道特性,进一步验证了建模方法的可行性,这些数据可以为相关科研工作者提供设计帮助。
In recent years, with the rapid development of smart distribution network, there are more and more demands for communication system. Since distribution network in China has the characteristics of wide coverage and complex structure, the appropriate communication technologies must be chose to suit the local conditions. Among them, the medium voltage power line communication (MVPLC) technology has its own unique advantages and broad prospects. Whereas there are still a number of technical problems need to be further improved and solved. The thesis is combined with the subject 'Research on key technologies of medium voltage power line communication oriented to smart grid'which is supported by the National Natural Science Foundation of China (Grant No.61172075). The modeling of MVPLC channel and related communication technologies are studied and a feeder automation system which is based on MVPLC is designed and implemented. The main innovative achievements are presented as follows:
     1. Based on the theory of multi-conductor transmission lines, the transmission and impedance models of overhead medium voltage power lines are proposed. Combined with a typical line structure the signal propagation characteristics of each mode in the three-phase line are analyzed, which shows that the Clarke matrix can be used as phase mode transformation matrix in the whole frequency band. This method reduces the difficulty of channel modeling. The characteristics of phase to ground and phase to phase impedance are analyzed. The simplified calculation formulas are proposed for calculating the transmission attenuation of a uniform three-phase power lines in the manner of phase to ground and phase to phase coupling, which revel the relationship of mutual coupling of different modes, then the calculation method of matching resistor in the manner of phase to phase coupling is proposed.
     2. Based on measured data of several distribution transformers, the impedance characteristics of MV terminals are analyzed in the power line communication frequency band. Applying the symmetry of input impedance matrix, a simplified transformer port modeling is proposed.
     3. The systematic model of MVPLC channel is proposed. The field test of impedance and attenuation data proves the validity of the model. The effects of modeling parameters on the results are discussed, which further simplifies the complexity of the model. A wideband macromodel of medium voltage power line input impedance is proposed, which can be employed to the design of impedance matching circuit in the laboratory.
     4. The wideband impedance matching method of medium voltage power line is proposed by direct optimization and simplified real frequency techniques, which can effectively improve the signal power into the power line. The online power line impedance detection system is proposed by lock-in amplifier, which has strong ability of noise suppression and measurement of the real and imaginary part of the input impedance. In order to verify the effect of impedance matching, a scheme is designed that replaced the detection object of amplifier output current by DC power supply current.
     5. A feeder automation system based on integrated intelligent10kV switch is designed, which is applied to distribution network firstly. The key technologies with the independent intellectual property of MVPLC, measurement and protection are analyzed. Aiming at the hostile channel environments of power line communication, an adaptive channel selection strategy is employed and the corresponding communication protocol is designed. The field operation data of a feeder automation system has proved that the MVPLC technologies can achieve stable and reliable communication service for distribution automation system. According to the data of communication signal strength, the general law of channel attenuation and noise are analyzed. Then the channel characteristics of distribution network are summarized, which verified the feasibility of modeling method. These data can be referenced by the related researchers.
引文
[1]秦立军,马其燕.智能配电网及其关键技术[M].北京:中国电力出版社,2010
    [2]Q/GDW 382-2009.配电自动化技术导则[S].北京:国电电网公司企业标准,2009
    [3]曹惠彬.电力线通信(PLC)技术综述[C].中国电机工程学会年会,海南,中国,2004:660-667
    [4]Carson J R. Wave propagation in overhead wires with ground return [J]. Bell System Technical Journal,1926,5(4):539-554
    [5]Deri A, Tevang G, Semlyen A, et al. The complex ground return plane a simplified model for homogeneous and multi-layer earth return[J]. IEEE Transactions on Power Apparatus and Systems,1981,100(8):3686-3693
    [6]Kikuchi H. Wave propagation along an infinite wire above ground at high frequencies[J]. Proc. Electrotech. J,1956,2:73-78
    [7]Kikuchi H. On the transition from a ground return circuit to a surface waveguide[C]. International Congress on Ultrahigh Frequency Circuits Antennas, Paris, France,1957:39-45
    [8]Wait J R. Theory of wave propagation along a thin wire parallel to an interface[J]. Radio Science,1972,7:675-679
    [9]Amore M D, Sarto M S. A new formulation of lossy ground return parameters for transient analysis of multi-conductor dissipative lines[J]. IEEE Transactions on Power Delivery,1997,12(1):303-314
    [10]Amore M D, Sarto M S. Simulation models of a dissipative transmission line above a lossy ground for a wide-frequency range-part I:single conductor configuration[J]. IEEE Transactions on Electromagnetic Compatibility,1996,38(2):127-138
    [11]Olsen R, Young J, Chang D. Electromagnetic wave propagation on a thin wire above earth[J]. IEEE Transactions on Antennas and Propagation,2000,48(9): 1413-1419
    [12]Wedepohl L M. Application of matrix methods to the solution of travelling-wave phenomena in polyphase systems [J]. Proceedings of the Institution of Electrical Engineers,1963,110(12):2200-2212
    [13]Ushirozawa, Michihiro. High-frequency propagation on nontransposed power line[J]. IEEE Transactions on Power Apparatus and Systems,1964,83(11): 1137-1145
    [14]Perz M C. Natural modes of power line carrier on horizontal three-phase lines[J]. IEEE Transactions on Power Apparatus and Systems,1964,83(7):679-686
    [15]Perz M C.A method of analysis of power line carrier problems on three-phase lines[J]. IEEE Transactions on Power Apparatus and Systems,1964,83(7): 686-691
    [16]Brandao Faria J A, Briceno Mendez J H. Modal analysis of untransposed bilateral three-phase lines-a perturbation approach[J]. IEEE Transactions on Power Delivery,1997,12(1):497-504
    [17]Prado A J, Filho J P, Kurokawa S, Bovolato L F. Modal transformation obtained from Clarke's matrix-asymmetrical three-phase case[C]. Power Engineering Society General Meeting, Tampa, FL,2007:1-6
    [18]Prado A J, Kurokawa S, Filho J P, Bovolato L F. Step by step analyses of Clarke's matrix correction procedure for untransposed three-phase transmission line cases[C]. IEEE Power and Energy Society General Meeting, Minneapolis, MN, 2010:1-9
    [19]Nermin Suljanovic, Aljo Mujcic, Matej Zajc, Jurij F Tasic. Approximate computation of high-frequency characteristics for power line with horizontal disposition and middle-phase to ground coupling[J]. Electric Power Systems Research,2004,69(1):17-24
    [20]Amirshahi P, Kavehrad M. Medium voltage overhead power line broadband communications:transmission capacity and electromagnetic interference[C]. International Symposium on Power Line Communications and Its Applications, Vancouver, Canada,2005:2-6
    [21]Mombello E, Moller K. A new power transformer model for the calculation of electromagnetic resonant transient phenomena including frequency dependent losses[J]. IEEE Transactions on Power Delivery,2000,5(1):167-174
    [22]Guishu Liang, Haifeng Sun, Xile Zhang, Xiang Cui. Modeling of transformer windings under very fast transient overvoltages[J]. IEEE Transactions on Electromagnetic Compatibility,2006,48(4):621-627
    [23]Lupo G, Petrarca C, Vitelli M, et al. Multiconductor transmission line analysis of steep-front surge in machine windings [J]. IEEE Transactions on Dielectrics and Electrical Insulation,2002,3(9):467-478
    [24]Hemminger R C, Gale L J, Amoura F, et al. The effect of distribution transformers on distribution line carrier signals[J]. IEEE Transactions on Power Delivery,1987, 2(1):36-40
    [25]Andrieu C, Dauphant E, Boss D. A frequency-dependant model for a MV/LV transformer[C]. International Conference on Power Systems Transients, Budapest, Hungary,1999
    [26]Oguz Soysal A. A method for wide frequency range modeling of power transformers and rotating machines[J]. IEEE Transactions on Power Delivery,1993, 8(4):1802-1810
    [27]Carlo Tornelli, Luciano Capetta. Effect of MV/LV transformer substations on MV power line signals propagation[C]. Third Workshop on Power Line Communication, Udine, Italy,2009
    [28]Noda T, Nakamoto H, Yokoyama S. Accurate modeling of core-type distribution transformers for electromagnetic transient studies [J]. IEEE Transactions on Power Delivery,2002,17(4):969-976
    [29]Chimklai S, Marti J R. Simplified three-phase transformer model for electromagnetic transient studies[J]. IEEE Transactions on Power Delivery,1995, 10(3):1316-1325
    [30]Tran-Anh T, Auriol P, Tran-Quoc T. High frequency power transformer modeling for power line communication applications [C]. Power Systems Conference and Exposition, Atlanta, USA,2006
    [31]Gustavsen B. Frequency-dependent modeling of power transformers with ungrounded windings[J]. IEEE Transactions on Power Delivery,2004,19(3): 1328-1334
    [32]Gustavsen B. Wide band modeling of power transformer [J]. IEEE Transactions on Power Delivery,2004,19(1):414-421
    [33]Gustavsen B. Removing insertion impedance effects from transformer admittance measurements[J]. IEEE Transactions on Power Delivery,2012,27(2):1027-1029
    [34]Cataliotti A, Cosentino V, Di Cara D, et al. Oil-filled MV/LV power-transformer behavior in narrow-band power-line communication systems[J]. IEEE Transactions on Instrumentation and Measurement,2012,61(10):2642-2652
    [35]Suh J D, Hardy M E, Sasan Ardalan, et al. Measurements of communication signal propagation on three phase power distribution lines[J]. IEEE Transactions on Power Delivery,1991,6(3):945-951
    [36]Hardy M E, Sason Ardalan, O'Neal J B, et al. A model for communication signal propagation on three phase power distribution lines[J]. IEEE Transactions on Power Delivery,1991,6(3):966-972
    [37]Aquilue R, Ribo M, Regue J R, et al. Urban underground medium voltage channel measurements and characterization[J]. International Symposium on Power Line Communications and Its Applications, Jeju city, Jeju Island,2008:70-75
    [38]Jae-Jo Lee, Sungsoo Choi, Sugoog Shon, et al. Analysis of impedance characteristics of MV power distribution line for BPLC[C]. International Symposium on Power Line Communications and its Applications, Jeju city, Jeju Island,2008:24-29
    [39]Varadarajan B, Kim I, Dabak A, et al. Empirical measurements of the low-frequency power-line communications channel in rural North America[C]. International Symposium on Power Line Communications and Its Applications, Udine, Italy,2011:463-467
    [40]Zimmermann M, Dostert K. An analysis of the broadband noise scenario in power-line network[C]. International Symposium on Power Line Communications and Its Applications, Limerick, Ireland,2000:131-138
    [41]Zimmermann M, Dostert K. The low voltage power distribution network as last mile access network-signal propagation and noise scenario in the HF-range[J]. International Journal of Electronics and Communications,2000,54(1):13-22
    [42]Dae-Eun Lee, Dong-Seok In, Jae-Jo Lee, et al. A field trial of medium voltage power line communication system for AMR and DAS[C]. Transmission & Distribution Conference & Exposition:Asia and Pacific, Seoul, Korea,2009:1-4
    [43]Amirshahi P, Kavehrad M. High-frequency characteristics of overhead multiconductor power lines for broadband communications [J]. IEEE Journel on Selected Areas in Communications,2006,24(7):1292-1303
    [44]蔡世龙,汪晓岩,刘胤龙,等.中压配电线传输特性的测量与研究[J].电力系统通信,2004,4:11-15
    [45]王坤,陆昱,易浩勇,等.10kV混合配电线路载波通道特性测试与分析[J].电力系统通信,2012,33(121):57-60
    [46]杨晓宪.10kV中压电力线信道宽带特性研究[D].博士论文,西安交通大学,西安,中国,2006
    [47]杨晓宪,郑涛,张保会,等.10kV中压电力线信道传输特性测量与研究(一)—信道传输的—般特性[J].电力自动化设备,2006,26(11):1-7
    [48]杨晓宪,郑涛,张保会,等.10kV中压电力线信道传输特性测量与研究(二)—信道传输路径损失[J].电力自动化设备,2006,26(12):6-12
    [49]李艳龙,陈维千.在城市10kV配网上实现载波通信[J].电力系统通信,2001,22(3):5-11
    [50]焦邵华,刘万顺,郑卫文,等.配电网载波通信的衰耗分析[J].电力系统自动化,2000,24(8):37-40
    [51]程晓荣,苑津莎,侯思祖,等.中压宽带电力线通信接入及信道特性测试与分析[J].电力系统自动化,2005,29(14):69-72
    [52]李建岐,李祥珍.配电网载波通信耦合方式的探讨[J].电力系统通信,2007,28(174):34-38
    [53]Zimmermann M, Dostert K. A multi-path signal propagation model for the powerline channel in the high frequency range[C]. International Symposium on Power Line Communications and its Applications, Lancaster, U K,1999:45-51
    [54]Philipps H. Modeling of powerline communication channels[C]. International Symposium on Power Line Communications and its Applications, Lancaster, U K, 1999:14-21
    [55]Zimmermann M, Dostert K. A multipath model for the powerline channel[J]. IEEE Transactions on Communications,2002,50(4):553-559
    [56]易浩勇,汪晓岩,等.中压配电网载波通信的多径反射模型研究[J].电力系统通信,2004,1:21-23
    [57]张辉敏,吴青,等.利用多径模型对中压电力线传输特性建模[J].电力系统通信,2008,29(190):22-25
    [58]Esmailian T, Kschischang F R, and Gulak P G. An in-building power line channel simulator[C]. International Symposium on Power Line Communication and its Applications, Athens, Greece,2002
    [59]Meng H, Chen S, Guan Y L, et al. Modeling of transfer characteristics for the broadband power communication channel [J], IEEE Transactions on Power Delivery,2004,19(3):1057-1064
    [60]Meng H, Chen S, Guan Y L, et al. A transmission line model for high-frequency power line communication channel [C]. International Conference on Power System Technology, Kunming, China,2002:1290-1295
    [61]Galli S, Banwell T. A novel approach to the modeling of the indoor power line channel-part Ⅱ:transfer function and its properties [J]. IEEE Transactions on Power Delivery,2005,20(3):1869-1878
    [62]Benato R, Caldon R. Distribution line carrier:analysis procedure and applications to DG[J]. IEEE Transactions on Power Delivery,2007,22(1):575-583
    [63]李荣伟,吴乐南.10kV中压配电线载波信道的建模[J].电路与系统学报,2006,11(6):19-24
    [64]Lazaropoulos A G, Cottis P G. Transmission characteristics of overhead medium-voltage power-line communication channels [J]. IEEE Transactions on Power Delivery,2009,24(3):1164-1173
    [65]Lazaropoulos A G. Broadband transmission characteristics of overhead high-voltage power line communication channels [J]. Progress In Electromagnetics Research B,2012,36:373-398
    [66]蔡伟,乐健,刘开培,等.基于信息节点的智能配电网中压电力线载波通信信道建模方法[J].中国电机工程学报,2012,32(28):150-156
    [67]Cataliotti A, Daidone A, Tine G. A Medium-voltage cables model for power-line communication[J], IEEE Transactions on Power Delivery,2009,24(1):129-135
    [68]Cataliotti A, Daidone A, Tine G. Power line communication in medium voltage systems:characterization of MV cables[J]. IEEE Transactions on Power Delivery, 2008,23(4):1896-1902
    [69]Cataliotti A, Cosentino V, Di Cara D, Tine G. Simulation and laboratory experimental tests of a line to shield medium-voltage power-line communication system[J]. IEEE Transactions on Power Delivery,2011,26(4):2829-2836
    [70]Cataliotti A, Di Cara D, Fiorelli R, Tine G. Power-line communication in medium-voltage system:simulation model and onfield experimental tests[J]. IEEE Transactions on Power Delivery,2012,27(1):62-69
    [71]Meyer W, Dommel H. Numerical modelling of frequency-dependent transmission-line parameters in an electromagnetic transients program[J]. IEEE Transactions on Power Apparatus and Systems,1974,93:1401-1409
    [72]Mork B A, Ishchenko D, Wang X, et al. Power line carrier communications system modeling[C]. International Conference on Power Systems Transients, Montreal, Canada,2005
    [73]Anatory J, Theethayi N, Thottappillil R. Power-line communication channel model for interconnected networks-part I:two conductor system[J]. IEEE Transactions on Power Delivery,2009,24(1):118-123
    [74]Anatory J, Theethayi N, Thottappillil R. Power-line communication channel model for interconnected networks-part II:multi-conductor system[J]. IEEE Transactions on Power Delivery,2009,24(1):124-128
    [75]Van Rensburg P A J, Ferreira H C. Design and evaluation of a dual impedance-adapting power-line communications coupler[J]. IEEE Transactions on Power Delivery,2010,25(2):667-673
    [76]Chong-Yeun Park, Kwang-Hyun Jung, Won-Ho Choi. Coupling circuitry for impedance adaptation in power line communications using VCGIC[C]. International Symposium on Power Line Communications and Its Applications, Jeju city, Jeju Island,2008:293-298
    [77]Yuhao Sun, Amaratunga G. High-current adaptive impedance matching in narrowband power-line communication systems[C]. International Symposium on Power Line Communications and Its Applications, Udline,Italy,2011:329-334
    [78]Issa F, Goldberg M, Haiyu L, Rowland S. Wideband impedance matching using Tchebycheff gain functions [C]. International Symposium on Power Line Communications and Its Applications, Vancouver, Canada,2005:278-280
    [79]刘述钢,刘宏立.低压电力线载波通信的无源耦合电路设计[J].电子技术应用,2011,37(4):98-105
    [80]马国峰.G3-PLC开放式通信标准促进智能电网发展[J].今日电子,2016,(6):39-44
    [81]杨碧玲.HomePlug技术推动家庭互联网络发展[J].集成电路应用,2012,(4):28-31
    [82]汤效军.电力线载波通信技术的发展及特点[J].电力系统通信,2003,24(1): 47-51
    [83]GB/T 14430-93.单边带电力线载波系统设计导则[S].北京:中华人民共和国标准,1993
    [84]郑雪,乐健,蔡伟,等.电力线载波通信元件阻抗模型研究综述[J].电力系统保护与控制,2012,40(6):135-141
    [85]DL/T 5220-2005.10kV及以下架空配电线路设计技术规程[S].北京:中华人民共和国电力行业标准,2005
    [86]施围.电力系统过电压计算[M].北京:高等教育出版社,2006
    [87]Lovric D, Boras V, Vujevic S. Accuracy of approximate formulas for internal impedance of tubular cylindrical conductors for large parameters [J]. Progress in Electromagnetics Research,2011(16):171-184
    [88]张有兵,程时杰,何海波,等.低压电力线高频载波通信信道的建模研究[J].电力系统自动化,2002,26(23):62-66
    [89]Hemminger R C, Gale L J, Amoura F, et al. The effect of distribution transformers on distribution line carrier signals[J]. IEEE Transactions on Power Delivery,1987, 2(1):36-40
    [90]Cataliotti A, Cosentino V, Cara D Di, et al. Simulation and laboratory experimental tests of a line to shield medium-voltage power-line communication system[J]. IEEE Transactions on Power Delivery,2011,26(4):2829-2836
    [91]Katayama M, Yamazato T, Okada H. A mathematical model of noise in narrowband power line communication systems [J]. IEEE Journal on Selected Areas in Communications,2006,24(7):1267-1276
    [92]吴军基,郭昊坤,孟绍良,等.电力线通信信道背景噪声建模研究[J].电力系统保护与控制,2011,39(23):6-10
    [93]Zimmermann M, Dostert K. Analysis and modeling of impulsive noise in broad-band power line communications [J]. IEEE Transactions on Electromagnetic Compatibility,2002,44(1):249-258
    [94]Acciani G, Amoruso V, Fornarelli G, et al. Numerical analysis of synchronous impulsive noise on naval powerline communications [C]. International Symposium on Industrial Electronics, Bari, Italy,2010:2973-2978
    [95]Nassar M, Gulati K, Mortazavi Y, et al. Statistical modeling of asynchronous impulsive noise in powerline communication networks [C]. IEEE Global Telecommunications Conference, Houston, USA,2011:1-6
    [96]吴茂林,崔翔.电压互感器宽频特性的建模[J].中国电机工程学报,2003,23(10):1-5
    [97]梁贵书,张喜乐,王晓晖,等.特快速暂态过电压下变压器绕组高频电路模型 的研究[J].中国电机工程学报,2006,26(4):144-148
    [98]Giulio Antonini. SPICE equivalent circuit of frequency-domain responses[J]. IEEE Transactions on Electromagnetic Compatibility,2003,45(3):502-512
    [99]Gustavsen B, Semlyen A. Rational approximation of frequency domain responses by vector fitting[J]. IEEE Transations on Power Delivery,1999,14 (3):1052-1061
    [100]Gustavsen B, Semlyen A. Enforcing passivity for admittance matrices approximated by rational functions[J]. IEEE Transactions on Power Delivery,2001, 16(1):97-104
    [101]Gustavsen B. Improving the pole relocating properties of vector fitting[J]. IEEE Transactions on Power Delivery,2006,21(3):1587-1592
    [102]眭晓飞.电压互感器高频无源电路模型建立方法研究[D].硕士论文,华北电力大学,河北,中国,2008
    [103]Guillemin E A. Synthesis of Passive Networks[M]. New York:Wiley,1957
    [104]湖南省邮电学校.有线传输原理[M].北京:人民邮电出版社,1979
    [105]SJ/Z 9099-97.单边带电力线载波系统设计[S].北京:中华人民共和国电子工业部标准,1997
    [106]范函,张浩.一种电力线载波通信自适应匹配方案[J].电力系统保护与控制,2009,37(8):79-82
    [107]程书田.宽带匹配网络理论及其应用[D].博士论文,西安电子科技大学,陕西,中国,1998
    [108]Carlin H J. A new approach to gain-bandwidth problems[J]. IEEE Transactions on Circuit and Systems,1977,24(4):170-175
    [109]Yarman B S, Carlin H J. A simplified real frequency technique applicable to broadband multistage microwave amplifiers [J]. IEEE Transactions on Microwave Theory and Techniques,1982,30(12):2216-2222
    [110]Guolin Sun, Jansen Rolf H. Broadband doherty power amplifier via real frequency technique[J]. IEEE Transactions on Microwave Theory and Techniques,2012, 60(1):1-13
    [111]Hongming An, Nauwelaers B K J C, Antoine R. Van de Capelle. Broadband microstrip antenna design with the simplified real frequency technique[J]. IEEE Transactions on Antennas and Propagation,1994,42(2):139-136
    [112]Wu D, Mkadem F, Boumaiza S. Design of a broadband and highly efficient 45 W GaN power amplifier via simplified real frequency technique[J]. IEEE MTT-S International Microwave Symposium Digest, Anaheim, CA,2010:1090-1093
    [113]柳超,刘其中,梁玉军,等.舰用短波宽带鞭状天线研究[J].电波科学学报,2006,21(6):955-958
    [114]程鹏志,佘京兆.电力线载波通信中的自适应阻抗匹配系统模型[J].华北电 力技术,2006,(8):12-15
    [115]齐传凤,王学伟,韩东,等.低压电力线载波信道阻抗测试终端的设计与应用[J].电测与仪表,2012,49(1):57-62
    [116]高晋占.微弱信号检测[M].北京:清华大学出版社,2004
    [117]朱晓莉,厉霞.基于AD630的双锁相放大器设计[J].机电工程技术,2012,41(6):19-23
    [118]杨志民,马义德,张新国.现代电路理论与设计[M].北京:清华大学出版社,2008
    [119]Yarman B S. Design of ultra wideband antenna matching network via simplified frequency technique[M]. Berlin:Springer,2008
    [120]Yarman B S. Design of ultra wideband power transfer network[M]. Hoboken:John Wiley & Sons,2010
    [121]Belevitch V. Elementary applications of the scattering formalism in network design [J]. IRE Transactions on Circuit Theory,1956,3(2):97-104
    [122]吴宁.电网络分析与综合[M].北京:科学出版社,2003
    [123]王毅,郭寅昌.配电自动化技术发展综述[J].电气时代,2012,(1):43-45
    [124]张岚,高鹏,王澄.南方电网配网自动化通信系统的建设[J].电力系统通信,2010,31(217):20一24
    [125]梁芝贤,王剑,谷明英.智能配用电网通信技术应用研究[J].电力系统通信,2012,33(233):75-79
    [126]张廷辉,郑栋梁,熊伟.10 kV馈线自动化解决方案探讨[J].电力系统保护与控制,2010,38(16):150-156
    [127]徐攀,孟文,张彩英.101规约在SCADA系统中的应用及实现[J].电气应用,2010,29(9):42-45
    [128]夏远福,江道灼,黄民翔.101规约在馈线自动化系统中的应用[J].继电器,2002,30(10):29-32

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700