用户名: 密码: 验证码:
硅镁胶的制备表征及其吸附性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海水苦卤中含有丰富的镁盐,大量镁盐得不到有效的开发利用,造成了资源浪费和环境污染。所以苦卤镁资源的开发利用不仅是苦卤化学资源综合利用中急需解决的问题,还能为镁盐大规模的开发利用提供新领域。本论文以氯化镁、硫酸镁、九水硅酸钠和水玻璃为原料,采用溶胶-凝胶法和水热法制备了一系列不同镁硅摩尔比的硅镁胶多孔吸附材料;通过比表面及孔径分析仪、X-射线衍射仪、扫描电镜/能谱仪、傅立叶红外光谱仪等现代分析仪器和多种化学分析手段,研究了硅镁胶的比表面积、孔径分布、表面活性基团、结构形貌、表面酸碱性和稳定性等;考察了硅镁胶对水溶液中染料、重金属离子和磷酸根离子的吸附性能,并研究了吸附过程的热力学和动力学原理,初步探讨了硅镁胶的吸附机理。主要研究内容及结果如下:
     1.采用溶胶-凝胶法和水热法制备了一系列不同镁硅摩尔比的硅镁胶多孔吸附材料,以亚甲基蓝作为评价硅镁胶吸附能力的目标对象,系统地研究了反应物浓度、时间、水热温度等因素对硅镁胶制备的影响。结果表明,物料添加顺序、反应物浓度、硅酸钠溶液pH值、Mg/Si摩尔比、镁源和硅源、水热温度等都会影响硅镁胶的吸附性能。硅镁胶的最佳合成条件是:反应物浓度为1mol·L-1、Mg/Si摩尔比为1:1、pH值在10-12之间、水热温度为120℃。
     2.采用现代分析仪器和多种化学分析手段对硅镁胶多孔吸附材料的结构形貌进行了表征。结果表明,氮气吸附脱附曲线都属于经典的IV型,具有明显的滞后环,溶胶-凝胶法制备的硅镁胶的比表面积介于202.49-494.19m2·g-1之间,平均孔径介于2-5nm;水热法制备的硅镁胶的比表面积可达576.38m2·g1,焙烧对样品的比表面积和孔结构影响很大;FT-IR分析表明硅镁胶表面含有丰富的硅羟基(Si-OH)和镁氧基(MgO);硅镁胶衍射图谱中出现三个非晶衍射峰,表明具有非晶态的晶相结构;SEM分析表明,硅镁胶都是无定型结构,颗粒分散性好,颗粒间易聚集;硅镁胶表面酸碱性和化学稳定性实验表明,硅镁胶具有很好的缓冲作用和化学稳定性。
     3.亚甲基蓝评价硅镁胶的吸附性能表明不同镁硅摩尔比的硅镁胶的吸附性能不同,R-MS-Cl-1的吸附性能最好;水热条件下制备的硅镁胶的吸附性能均较好,水热温度对不同镁硅摩尔比的硅镁胶的吸附影响较大。根据硅镁胶对不同性质的污染物的吸附性能不同,考察了污染物的浓度、硅镁胶的用量、溶液pH值、吸附时间和温度等对硅镁胶吸附性能的影响。
     4.分别选用亚甲基蓝、弱酸性红2R、碱性棕和直接冻黄G为染料吸附对象,研究了不同种类的硅镁胶的吸附性能。结果表明,四种染料在硅镁胶上的脱除率随着投加量增加而增大,溶液pH值对脱色率影响不大。吸附热力学研究表明,Langmuir吸附模型能够很好地描述硅镁胶对各种染料的吸附,且吸附为优惠吸附;吸附自由能变△G<0,表明吸附过程是自发进行的不可逆过程;吸附焓变△H>0表明吸附过程为吸热反应,△H值较小,说明吸附过程为物理吸附,升高温度有利于吸附进行。吸附动力学研究表明,伪二级动力学方程能够很好描述硅镁胶对各种染料的吸附,吸附平衡在很短时间内完成;颗粒内扩散不是唯一的控速步,整个吸附过程由快速吸附阶段、逐渐吸附阶段和吸附平衡阶段三个吸附阶段完成。
     5. H-MS-C1-2对磷酸根吸附的最佳条件是吸附剂用量为2g·L-1,磷酸根浓度为50mg·L-1,溶液pH值对磷酸根的吸附影响不大,平衡吸附量为41mg·g-1; Freundlich吸附等温模型和伪二级动力学模型都能很好地描述H-MS-Cl-2对磷酸根的吸附行为,吸附速率常数k2随着吸附温度的升高而降低;吸附过程的ΔG<0, ΔH>0, ΔS>0,表明吸附是自发进行的吸热的物理吸附过程,磷酸根和硅镁胶的作用力较弱。
     6. R-MS-Cl-1对Ni2+和CO2+表现出良好的吸附性能,吸附平衡时间在1.5-2h,溶液pH为5时R-MS-Cl-1对两种离子都有很好的脱除效果;伪二级动力学模型能够描述R-MS-Cl-1对两种离子的吸附行为,真实地反映出硅镁胶对两种离子的吸附机理;不同温度下的吸附是自发进行的不可逆过程,△H值介于4.67-35.1kJ·mol-1范围,说明吸附过程为物理吸附。
     本论文立足于自然界中具有高吸附性能的富镁硅酸盐矿物和卤水中丰富的镁资源,通过溶胶-凝胶和水热两种方法制备了一系列不同镁硅摩尔比的硅镁胶多孔吸附材料,并应用于水溶液中染料(亚甲基蓝、弱酸性红2R、碱性棕和直接冻黄G)、重金属离子(Ni2+和Co2+)和磷酸根离子的吸附脱除研究。本研究既得到了一类在环境治理中具有一定的实用价值和明显的环境效益的新型吸附材料,又为卤水中镁盐的大规模利用提供了新领域。因此,该研究不仅具有重要的理论创新意义,还具有潜在的实用价值和明显的环境效益。
Magnesium chloride is very rich in the ocean. Magnesium salt has not been applied effectively, which wastes magnesium resources and pollutes the environment. Therefore, the development and utilization of the marine magnesium resources would resolve the question of the comprehensive utilization of chemical resource and develop the new field of magnesium usage. This thesis involved the preparation of magnesium silicate gels by the ways of sol-gel and hydrothermal methods based on the reaction of magnesium chloride, magnesium sulfate and sodium silicate. The physicochemistry properties (special surface area, pore-size distribution, surface activated group, structure morphology, surface acid-base property and stability) of the obtained samples were characterized through N2adsorption/desorption isotherms analysis, X-ray diffractometer, FT-IR spectrometers, Scanning electron microscope and other chemical analysis methods. Moreover, the adsorption properties of the as-prepared magnesium silicates gel were determined through the remove the dyes, heavy metal ions and PO43-from aqueous solution, and the principle of thermodynamic and kinetics in the adsorption process was also studied, then the adsorption mechanism was discussed. The main research contents and results are as follows:
     1. The different Mg/Si molar ratio magnesium silicate gels were prepared through sol-gel and hydrothermal methods. The adsorption capacity of magnesium silicate gels was evaluated through MB as target object. The effect of reactant concentration, time and hydrothermal temperature on the synthesis of magnesium silicate gels was investigated. The results showed the material adding order, reactant concentration, sodium silicate solution pH value, Mg/Si molar ratio, magnesium source and silicate source and hydrothermal temperature would influence the synthesis of magnesium silicate gels. The optimal synthesis condition could be obtained with reactant concentration as1mol·L-1, Mg/Si molar ratio as1:1, pH value as10-12and hydrothermal temperature as120℃。
     2. The structure morphology of magnesium silicate gels was determined by modern analytical instruments and chemical analysis methods. The results presented the N2 adsorption/desorption isotherms were belonged to the classical type IV with the obvious hysteresis loop. The special surface area of magnesium silicate gels obtained from sol-gel varies from202.49-494.19m2·g-1with the average pore size as2-5nm, and the high special surface area as576.4m2·g-1was obtained through hydrothermal method. The calcinations influenced the special surface area and pore structure seriously. FT-IR showed the abundant silicon hydroxyl group and magnesil group on the magnesium silicate gels surface. XRD diffraction patterns have three amorphous diffraction peaks, which proved magnesium silicate gels were non-critical phase structures. SEM analysis demonstrated that magnesium silicate gels were amorphous structure and the particals showed preferably dispersibility and inter-particles aggregation. The studies of surface acid-based properties and chemical stability showed magnesium silicate gels had good buffer function and chemical stability.
     3. MB chosen as adsorption target object indicated the difference in the adsorption properties of the different Mg/Si molar ratio magnesium silicate gels and R-MS-Cl-1showed the best adsorption efficiency. The samples obtained with hydrothermal method displayed better adsorption properties and the hydrothermal temperature greatly affected the adsorption of the different Mg/Si molar ratio magnesium silicate gels. Based on the difference in the adsorption of the different contaminants onto magnesium silicate gels, the effect of the pollutant concentration, adsorbent dose, solution pH value, contact time and temperature on the adsorption properties was investigated.
     4. MB, WAR2R, basic brow and chrysophenine were chosen as adsorption objects to study the adsorption properties of magnesium silicate gels. The results proved the rate of removal increased with increasing dyes concentration, and it was not affected by solution pH value. The studies of the adsorption thermodynamics showed Langmuir adsorption model could describe the adsorption process of four dyes and the adsorption was preferential adsorption. Adsorption free energy ΔG<0showed the adsorption process were spontaneous, irreversible process. Enthalpy change ΔH>0presented the adsorption action was endothermic, and the little AH value explained the adsorption was physical adsorption in nature, and high temperature was favorable for the adsorption. The studies of kinetics proved Pseudo second-dynamics equation could describe the adsorption behavior and the adsorption equilibriums could be attained in a short time. Intra-particles diffusion was not the unique control step and the whole adsorption process contained three stages:rapid adsorption process, adsorption equilibrium process gradually and adsorption equilibrium process.
     5. The optimal adsorption condition of PO43-onto H-MS-Cl-2was the adsorbent dose as2g·L-1and PO43-initial concentration as50mg·L-1. The solution pH values did not influence the adsorption efficiency and the equilibrium adsorption capacity was41mg·g-1. Freundlich adsorption model and Pseudo second-dynamics equation could describe the adsorption behavior, and the rate constant k2decreased with increasing the adsorption temperature. The thermodynamics parameters with ΔG<0,ΔH>0,ΔS>0presented the adsorption was spontaneous, endothermic and physical adsorption process. The value of adsorption enthalpy change AH showed the weak force between H-MS-Cl-2and PO43-.
     6. The adsorption of nickel and cobalt ions onto R-MS-Cl-1showed good adsorption efficiency and the adsorption equilibrium time was reached in1.5-2h. The maximum removal was attained with solution pH equal to5, Pseudo-second order adsorption kinetics could describe the adsorption behavior very well and reflect the adsorption mechanism of ions adsorbed onto magnesium silicate gel. Adsorption was spontaneous, rapid and physically endothermic process at the different temperature, and the high temperature was favorable for the adsorption of two metal ions.
     The study focused on the natural rich magnesium silicate minerals with the high adsorption properties and the rich magnesium resources in the brine. A series of the different Mg/Si molar ratio magnesium silicate gels were synthesized by sol-gel and hydrothermal methods, and successfully applied in the removal of dyes (MB, WAR2R, Basic brown and Chrysophenine), heavy metal ions (nickel and cobalt ions) and PO43-from aqueous solution. The aims of the research involve in preparing a kinds of new adsorbent materials which could have a certain practical value and high-efficiency environmental benefits in environmental governance and providing the new fields for the utilization of magnesium salt. Therefore, the research would have important theory innovation significance, potential practical value and obvious environmental benefits.
引文
[1]徐慕孺.镁-现代工业社会和自然界不可缺少的组成部分.国外耐火材料,1994,(8):11-15
    [2]Wilson Ien.世界镁资源概论//辽宁省人民政府主要资源保护办公室.第二届中国辽宁国际镁质材料博览会学术报告汇编.沈阳辽宁省人民政府主要资源保护办公室,2006:113-148
    [3]徐丽君,周仲怀.苦卤综合利用技术的研究与开发.海湖盐与化工,2001,30(4):5-8
    [4]袁俊生,吴举,邓会宁,等.中国海洋苦卤综合利用技术的开发进展.盐业与化工,2006,35(4):33-37
    [5]黄西平,张琦等.我国镁资源利用现状及开发前景.海湖盐与化工,2004,33(6):1-6
    [6]陈建军,马玉涛.水氯镁石脱水研究的进展与展望.盐湖研究,1998,6(2):92-97
    [7]张永健.含水氯化镁脱水方法及其利用.轻金属,2001,12:42-45
    [8]王海增,郭鲁钢,于红.絮凝吸附法脱除盐湖卤水中的有色物质.海湖盐与化工,2003,32(1):22-24
    [9]李增新,王彤.天然沸石负载壳聚糖用于苦卤脱色的研究.无机盐工业,2005,37(5):47-49
    [10]李增新,孟韵.活性炭纤维用于苦卤脱色的研究.无机盐工业,2005,37(12):50-52
    [11]宋丽英,胡晓湘,胡庆福.中国氢氧化镁生产现状与展望.盐业与化工,2010,39(5):44-48
    [12]杨金辉,王劲松,陈忠辉,等.氢氧化镁吸附处理水中三价砷的研究.金属矿山,2010,10:169-171
    [13]许荣辉,石海涛,任凤章,等.纳米氢氧化镁晶体阻燃剂的制备及其性质.河南科技大学学报,2010,31(5):8-11
    [14]Soldatkina L M, Purich A N, Menchuk V V. Adsorption of dyes on magnesium hydroxide. Adsorpt. Sci. Technol.,2001,19(4):267-272
    [15]姜述芹,周保学,于秀娟,等.氢氧化镁处理含镉废水的研究.环境化学,2003,22(6):601-604
    [16]郭如新.绿色安全中和剂氢氧化镁.化工科技市场,1999,22(12):18-22
    [17]钟秦.燃煤烟气脱硫脱硝技术及工程实例.北京:化学工业出版社,2002
    [18]Hama I, Okamoto T, Hidai E, et al. Direct ethoxylation of fatty methyl ester over Al-Mg composite oxide catalyst. JAOCS,1997,74(1):19-24
    [19]卢永定.新型矿物材料-水滑石.无机盐工业,1998,30(3):8-10
    [20]邢坤.层状氢氧化镁铝的改性与成型及其对磷/氮阴离子的吸附脱除性能:[博士学位论文].山东:中国海洋大学,2010,6
    [21]孙金香.氧化镁基活性炭复合材料的制备及其性能研究:[博士学位论文].山东:中国海洋大学,2010,6
    [22]Aristov Y I, Restuccia G, Tokarev M M, et al. Selective water sorbents for multiple applications.11. CaCl2 confined to expanded vermiculite. React. Kinet. Catal.,2000,71 (2): 377-384
    [23]李鑫,李忠,刘宇,等.不同金属盐改性对硅胶的水蒸气吸附性能影响.离子交换与吸附,2005,21(5):391-396
    [24]贾春霞.硅胶基复合干燥剂强化除湿机理及其应用研究:[博士学位论文].上海:上海交通大学,2006,10
    [25]崔卫华,董邦真,刘菲.硅胶载体除氟剂的性能.化工进展,2007,26(8):1170-1173
    [26]朱培怡.含镁多孔性材料的制备与性能研究:[博士学位论文].山东:中国海洋大学,2009,6
    [27]赵友星.镁硅复合材料的制备及吸附性能研究:[硕士学位论文].山东:中国海洋大学,2011,6
    [28]冯秀娟,王海宁,普红平.改性海泡石在环境污染治理中的应用.环境污染治理技术与设备,2004,5(4):80-83
    [29]Ozdemir Y, Dogan M, Alkan M. Adsorption of cationic dyes from aqueous solutions by sepiolite. Microporous and Mesoporous Materials,2006,96:419-427
    [30]Sevim A M, Hojiyev R, Gul A, et al. An investigation of the kinetics and thermodynamics of the adsorption of a cationic cobalt porphyrazine onto sepiolite. Dyes and Pigments,2011,88: 25-38
    [31]Eren E, Cubuk O, Ciftci H, et al. Adsorption of basic dye from aqueous solutions by modified sepiolite:Equilibrium, kinetics and thermodynamics study. Desalination,2010,252:88-96
    [32]Tomasevic-Canovic M, Lemic J, Djuricic M, et al. Surface modification of sepiolite with quaternary amines. Journal of Colloid and Interface Science,2005,292:11-19
    [33]Mendioroz S, Guijarro I M, Bermejo P J. Mercury retrieval from flue gas by monolithic adsorbents based on sulfurized sepiolite. Environ. Sci. Thechnol.,1999,33:1697-1702
    [34]Slavica L, Ivona Jankovic-Castvan, Dusan J, et al. Adsorption of Pb2+, Cd2+ and Sr2+ ions onto natural and acid-activated sepiolites. Applied Clay Sci.,2007,37:47-57
    [35]孙传庆,武占省,李春.不同硫酸加量制得活性白土对棉籽油的脱色研究.中国油脂,2007,32(1):42-45
    [36]邓琪,尹平河,赵玲,等.活性白土对餐饮业废油脂脱色工艺的探索.环境污染与防治,2004,26(2):126-128
    [37]马李一,段琼芬,张燕平,等.辣木油脱色工艺研究.食品科学,2007,28(2):102-104
    [38]Rudenko V M, Tarasevich Y L. Kinetics and Oynamics of Adsorption of Anmnic Dyes on a Coal mineral Sorbent. Khim Technology,1993,15(11.12):715-718
    [39]Boki K, Mori H, Kawasaki N. Bleaching Rapeseed and Soybean Oils with Synthetic Adsorbents and Attapulgites. J. Am. Oil Chem. Sci.,1994,71(6):595-601
    [40]胡庆福,李保林,李国庭.医用三硅酸镁的制备.无机盐工业,1995,4:33-34
    [41]冯凌,李敏,刘国强,等.共沉淀法合成三硅酸镁及其微观分析.北京科技大学学报,2009,31(12):1600-1604
    [42]冯凌,李敏,刘国强,等.沉淀法合成三硅酸镁粉体的孔结构及吸附性能.北京化工大学学报,2010,37(2):70-76
    [43]冯凌.改性三硅酸镁多孔吸附剂的制备及其表征:[硕士论文].北京化工大学,2009,6
    [44]陈淑英.六硅酸镁的合成工艺研究.四川化工与腐蚀控制,2000,3(5):3-6
    [45]Brew D R M, Glasser F P, The magnesia-silica gel phase in slag cements:alkali (K, Cs) sorption potential of synthetic gels. Cement and Concrete Research,2005,35:77-83
    [46]El-Naggar I M, Abou-Mesalam M M. Novel inorganic ion exchange materials based on silicates; synthesis, structure and analytical applications of magneso-silicate and magnesium alumino-silicate sorbents. J. Harza. Materi.,2007,149:686-692
    [47]Abou-Mesalam M M, El-Naggar I M. Selectivity modification by ion memory of magneso-silicate and magnesium alumino-silicate as inorganic sorbents. J Harza. Materi.,2008,154: 168-174
    [48]Ali I M, Kotp Y H, El-naggar I M. Thermal stability, structural modifications and ion exchange properties of magnesium silicate. Desalination,2010,259:228-234
    [49]Karami A. Study on modification of colloidal silica surface with magnesium ions. J. Colloid Interface Sci.,2009,331:379-383
    [50]Franco F. Adsorption of Methylene Blue on magnesium silicate:Kinetics, equilibria and comparison with other adsorbents. J. Environ. Sci.,2010,22(3):467-473
    [51]Tanada S, Kita T, Boki K, et al. Mechanism of adsorption of methylene blue on magnesium silicate. Chem. Pharm. Bull.,1980,28(8):2503-2506
    [52]Temuujin J. Formation of layered magnesium silicate during the aging of magnesium hydroxide-silica mixtures. J. Am. Ceram. Soc.,1998,81(3):754-756
    [53]Wang X, Zhuang J, Chen J, et al. Thermally stable silicate nanotubes. Angew. Chem. Int. Ed., 2004,43:2017-2020
    [54]Zhuang Y, Yang Y, Xiang G.L, et al. Magnesium silicate hollow nanostructures as highly efficient adsorbents for toxic metal ions. J. Phys. Chem. C,2009,113:10441-10445
    [55]Wilding M C, Benmre C J, Weber J K R. In situ diffraction studies of magnesium silicate liquidsJ. Mater. Sci.,2008,43:4707-4713
    [56]Krysztafkiewicz A, Lidia K L, Ciesielczyk F, et al. Amorphous magnesium silicate-synthesis, physicochemical properties and surface morphology. Advanced Powder Technol. 2004,15(5):549-565
    [57]Ciesielczyk F, Krysztafkiewicz A, Jesionowski T. Magnesium silicates-potential adsorbents and polymer fillers. Polish J. Chem. Technology,2006,8(4):103-105
    [58]Ciesielczyk F, Krysztafkiewicz A, Jesionowski T. Sedimention and wettability of synthetic magnesium silicates. Physicochemical Problems of Mineral Processing,2006,40:255-263
    [59]Ciesielczyk F, Krysztafkiewicz A, Jesionowski T. Adsorptive properties of synthetic magnesium silicates. Physicochemical Problems of Mineral Processing,2007,41:185-193
    [60]Ciesielczyk F, Krysztafkiewicz A, Jesionowski T. Magnesium silicate-adsorbents of organic compounds. Applied Surface Sci.,2007,253:8435-8442
    [61]Ciesielczyk F, Krysztafkiewicz A, Jesionowski T. Physicochemical studies on precipitated magnesium silicates. J Mater. Sci.,2007,42:3831-3840
    [62]Chaplot S L, Choudhury N, Phase transitions of enstatite MgSiO3:a molecular dynamics study. Solid State Communications,2000,116:599-603
    [63]Tukel S S, Alptekin O. Immobilization and kinetics of catalase onto magnesium silicate. Process Biochemistry,2004,39:2149-2155
    [64]Ozyilmaz G, Tukel S S, Alptekin O. Activity and storage stability of immobilized glucose oxidase onto magnesium silicate. J. Molecular Catalysis B:Enzymatic,2005,35:154-160
    [65]Margarita D, Lopez-Blanco Mar, Pilar A, et al. Microfibrous Chitosan-Sepiolite Nanocomposites. Chem. Mater.,2006,18:1602-1610
    [66]Keiji S, Takahiro N, Koji S. Local Structure of Magnesium in Silicate Glasses:A 25Mg 3QMAS NMR Study. J. Phys. Chem., B 2008,112:6747-6752
    [67]Ciesielczyk F, Magdalena N, Agnieszka P, et al. Dispersive and electrokinetic evaluations of alkoxysilane-modified MgO·SiO2 oxide composite and pigment hybrids supported on it. Colloids and Surfaces A:Physicochem. Eng. Aspects,2011,376:21-30
    [68]Dudkin B N, Vasyutin O A. Synthesis of Magnesium Silicate by Heat Treatment of Sols and Mechanical Activation of Solid Components. Russian J. Applied Chemistry,2011,84(5): 751-755
    [69]Alexandre-Franco M, Albarran-Liso A, Gomez-Serrano V. An identification study of vermiculites and micas Adsorption of metal ions in aqueous solution. Fuel Processing Technology,2011,92:200-205
    [70]Huang P C, Fuerstenau D W. The effect of the adsorption of lead and cadmium ions on the interfacial behavior of quartz and talc. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2001,177:147-156
    [71]Eren E. Afsin B. Removal of basic dye using raw and acid activated bentonite samples. J. Hazard. Mater.,2009,166:830-835
    [72]Tabak A, Eren E, Afsin A, et al. Determination of adsorptive properties of a Turkish Sepiolite for removal of Reactive Blue 15 anionic dye from aqueous solutions. J. Harzard. Mater.,2009, 161:1087-1094
    [73]Jenkins P, Ralston J. The adsorption of a polysaccharide at the talc-aqueous solution interface. Colloids and Surfaces A:Physicochemical and Engineering Aspects,1998,139:27-40
    [74]Jesionowski T, Ciesielczyk F, Krysztafkiewicz A. Influence of precipitation parameters on physicochemical properties of magnesium silicates. Physicochemical Problems of Mineral Processing,2004,38:197-205
    [75]Fouad H K, Bishay A F. Uranium uptake from acidic solutions using synthetic titanium and magnesium based adsorbents. J Radioanal Nucl Chem.,2010,283:765-772
    [76]Al-Ghout M A, Khraisheh M A M, Allen S J, et al. The removal of dyes from texitile wastewater:a study of the physical characteristic and adsorption mechanisms of diatomaceous earth. J. Environ. Manage.,2003,69:229-238
    [77]李家珍.染料、染色工业废水处理.化学工业出版社,北京,1997,90
    [78]冀滨弘.染料工业废水处理的现状与进展.污染防治技术,1998,11(4):250-253
    [79]王振东,张志祥.印染废水的污染与控制.环境科学与技术,2001,4(1):21-23
    [80]Pearce C I, Lloyd J R, Guthrie J T. The removal of colour from textile wastewater using whole bacterialcells:a review. Dyes Pigments,2003,58:179-196
    [81]Wesenberg D, Kyriakides L, Agathos S N. White-rot fungi and their enzymes for the treatment of industrial dye effluents. Bioteehnology Advanees 2003,22:161-187
    [82]Liu P, Zhang L X. Adsorption of dyes from aqueous solutions or suspensions with clay nano-adsorbents. Sep. Purif. Technol.,2007,58:32-39
    [83]Mohammad A A-G, Juiki L, Yousef S, et al. Adsorption mechanisms of removing heavy metals and dyes from aqueous solution using date pits solid adsorbent. J. Hazard. Mater., 2010,176:510-520
    [84]Kim T H, Park C, Yang J M, et al. Comparison of disperse and reactive dye removals by chemical coagulation and Fenton oxidation. J. Hazard. Mater.,2004,112:95-103
    [85]Caizares P, Martinez F, Jimenez C, et al. Coagulation and electrocoagulation of wastes polluted with dyes. Environ. Sci. Technol.,2006,40:6418-6424
    [86]Marto J, Marcos P S, Trindade T. Photocatalytic decolouration of Orange Ⅱ by ZnO active layers screen-printed on ceramic tiles. J. Hazard. Mater.,2009,163:36-42
    [87]Comparelli R, Fanizza E, Curri M L, et al. Photocatalytic degradation of azo dyes by organic-capped anatase TiO2 nanocrystalsimmobilized onto substrates. Appl. Cataly.:B,2005,55: 81-91
    [88]Razo-Flores E, Luijten M, Donlon B A. Complete biodegradation of the azo dye azodisalicylate under anaerobic onditions. Environ. Sci. Technol.,1997,31:2098-2103
    [89]Forgaes E, CsethaT, Oros G. Removal of synthetic dyes from wastewaters:a review. Environment International,2004,30:953-971
    [90]张宇峰,滕洁,张雪英,等.印染废水处理技术的研究进展.工业水处理,2003,23(4):23-27
    [91]李风亭,陆雪非,张冰如.印染废水脱色方法.水处理技术,2003,29(1):12-14
    [92]Slokar Y M, Mareehal L. Methods of decoloration of textile wastewaters. Dyes and Pigments, 1997,37:335-356
    [93]Raghavacharya C. Colour removal from industrial effluents-a comparative review of available technologies. Chem. Eng. World,1997,32:53-54
    [94]RobinsonT, MeMullan G, MarchantR, et al. Remediation of dyes in textile effluent:a critical review on current treatment technologies with a proposed alternative. BioresourceTeehnology, 2001,77:247-255
    [95]Brown B, Ahsanullah M. Effect of heavy metals on mortality and growth. Marine Pollution Bulletin.1971,2(12):182-187
    [96]周本省.工业水处理技术.化学工业出版社,2003
    [97]Sadaoui Z, Hemidouche S, Allalou O. Removal of hexavalent chromium from aqueous solutions by micellar compounds. Desalination,2009,249:768-773
    [98]Yadav S, Srivastava V, Baneriee S, et al. Studies on the removal of nickel from aqueous solution using modified riverbed sand. Environ Sci Pollut Res., DOI 10.1007/s11356-012-0892-2
    [99]Leon G, Martinez G, Amelia Guzman M, et al. Increasing stability and transport efficiency of supported liquid membranes through a novel ultrasound-assisted preparation method. Its application to cobalt(Ⅱ) removal. Ultrasonics Sonochemistry 20 (2013) 650-654
    [100]Revathi M, Saranan M, Chiya A B, et al. Removal of copper, nickel, and zinc ions from electroplating rinse water. Clean-Soil, Air, Water 2012,40(1):66-79
    [101]Kumar P S, Ramakrishnan K, Gayathr r. Removal of nickel(Ⅱ) from aqueous solutions by ceraliteir 120 cationic exchange resins. J. Eng. Sci. Technol.,2010,5(2):232-243
    [102]国家环保局.水和废水监测分析方法.编委会.水和废水监测分析方法(第三版).北京:中国环境科学出版社,250-997
    [103]沈耀良,王宝贞.废水生物处理新技术理论与应用.北京:中国环境科学出版社,1999
    [104]王凯军,贾立敏.城市污水生物处理新技术开发与应用.北京:化学工业出版社,2001
    [105]冯生华.城市中小型污水处理厂的建设与管理.北京:化学工业出版社,2001
    [106]Mino T, Van-Loosdrecht M C M, Heijnen J J. Microbiology and biochemistry of the enhanced biological phosphate removal process. Water Research,1998,32(11):3193-3207
    [107]Song Y H, Hahn H H, Hoffmann E. Effects of solution conditions on the PreeiPitation of PhosPhate for recovery:A thermodynamic evaluation. Chemosphere.2002,48(10):1029-1034
    [108]Montastruc L, Azzaro-Pantel C. A thermochemical approach for calcium phosphate precipitation modeling in a pellet reactor. Chem. Eng. J.,2003,94:41-50
    [109]Lee S I, Weon S Y, Lee C W, et al. Removal of nitrogen and phosphate from wasterwater by addition of bittern. Chemosphere,2003,51:265-271
    [110]Zeng L, li X M, Liu J D. Adsorptive removal of phosphate from aqueous solutions using iron oxide tailings. Water Research,2004,38(5):1318-1326
    [111]Seida Y, Nakano Y. Removal of phosphate by layered double hydroxides containing iron. Water Research,2002,36(5):1306-1312
    [112]Tanada S, Kabayama M, Kawasaki N, et al. Removal of phosphate by aluminum oxide hydroxid. J. Colloid Interf. Sci.,2003,257(1):135-140
    [113]Karageorgiou K, Paschalis M, Anastassakis G N. Removal of phosphate species from solution by adsorption onto calcite used as natural adsorbent. J. Harzard. Mater.,2007, 139(3):447-452
    [114]高分子学会编.新编高分子辞典.日本东京:朝仓书店,1988
    [115]林尚安,陆耘,梁兆熙.高分子化学.北京:科学出版社,2000
    [116]Flory P J.Introductory lecture. Disc Faraday Soc,1974,57:7-18
    [117]李群.纳米材料的制备与应用技术.高等学校“十一五”规划教材,化学工业出版社,2008
    [118]倪星元,姚兰芳,沈军,等.纳米材料制备技术.化学工业出版社,2008
    [119]国家环保局.GB/T 11910-1989.水质镍的测定.丁二酮肟分光光度法.1989
    [120]吴英华,孟杰,任凤莲,等.二甲酚橙分光光度法测定微量钴.怀化医专学报,2008,7(1):8-10
    [121]国家环境保护局.GB 11893-89.水质总磷的测定钼酸铵分光光度法
    [122]Brunauer S. The Physical Adsorption of Gases and Vapours. London:Clarendon Press,1945, 135-139
    [123]Brunauer S, Emmett P H, Teller E. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc.,1938,60:309-319
    [124]Brunauer S, Deming L S, Deming S, et al. On a Theory of the van der Waals Adsorption of Gases. J. Am. Chem. Soc.,1940,62:1723-1732
    [125]De Boer J H, In:Everett D H, Stone F S (eds). The structure and properties of porous materials. London:Butterworths,1958
    [126]Giles C H, Mac Evan T H, Nakhawa S W, et al. Studies in adsorption. Part Ⅺ. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids. J. Chem. Soc.,1960, 3973-3993
    [127]Dogan M, Alkan M, Turkyilmaz A, et al. Kinetics and mechanism of removal of methylene blue by adsorption onto perlit. J. Hazard. Mater.,2004, B109:141-148
    [128]Ozcan A, Ozcan A S. Adsorption of Acid red 57 from aqueous solution onto surfactant-modified sepiolite. J. Hazard. Mater.,2005,125:252-259
    [129]Yu Ying, Zhuang Yuanyi, Wang Zhonghua, et al. Adsorption of water-soluble dyes onto modified resin. Chemosphere,2004,54(30):425-430
    [130]范顺利,孙家寿.活性炭自水溶液中吸附酚的热力学与机理研究.化学学报,1995,53:526-531
    [131]Ghosh D, Bhattacharyya K G. Adsorption of methylene blue on kaolinite. Appl. Clay Sci., 2002,20(6):295-300
    [132]Lagergren S, Svenska B K. Zur theorie der sogenannten adsorption geloester stoffe. Veternskapsakad Handlingar,1898,24(4):1-39
    [133]Ho Y S, McKay G. Sorption of dye from aqueous solution by peat. Chem. Eng. J.,1998,70: 115-124
    [134]Weber W J, Morris J C. Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. Am. Soc. Civ. Eng.,1963,89:31-60
    [135]McKay G, Otterburn M S, Aga J A. Fuller's earth and fired clay as adsorbents for dyestuffs. Water Air Soil Pollut.,1985,24(3):307-322
    [136]Mohana S V, Raoa N C, Karthikeyan J. Adsorptive Removal of Direct Azo Dye from Aqueous Phase onto Coal Based Sorbents:a Kinetic and Mechanistic Study. J. Hazard. Mater.,2002, B90:189-204.
    [137]戴安邦,陈荣三等.南京大学学报(化学版),1963(1):1
    [138]沈钟,赵振国,王果庭.胶体与表面化学.化学工业出版社,2004,142-143
    [139]沈钟,赵振国,王果庭.胶体与表面化学.化学工业出版社,2004,309
    [140]许韵华,尹承龙,朱红.金属离子对硅酸聚合胶凝影响的研究.北方交通大学学报,2003,27(6):97-100
    [141]Liu Peng, Wang Qisui, Li Xi, et al. Investigation of the states of water and OH group on the surface of silica. Colloids and surfaces A:Physicochem. Eng. Aspects 2009,334:112-115
    [142]Farmered V. The Infrared Spectra of Minerals. Mineralogical Society, Adlard & Son, Surrey, UK,1974
    [143]Nakamoto N, Infrared and Raman Spectra of Inorganic and Coordination Compounds. JohnWilly & Sons, NY,1998.
    [144]Brew D R M, Glasser F P. Synthesis and characterization of magnesium silicate hydrate gels. Cem. Concr. Res.,2005,35:85-98.
    [145]Anonymity. Magnesium silicate synthesis from rice hull ash. JAOCS,2004,81 (6):619-620
    [146]Von Open B, Kordel W, Klein W. Sorption of nonpolar and compounds to soils:Process, measurement and experience with the applicability of the modified OCED guideline. Chemosphere,1991,22:285-304
    [147]Hall K R, Eagleton L C, Acrivos A, et al. Pore and solid diffusion kinetics in fixed bed adsorption under constant pattern conditions. Ind. Eng. Chem. Fund,1966,5:212-219
    [148]熊春华,吴香梅.大孔膦酸树脂对镉(Ⅱ)的吸附性能极其机理.环境科学学报,2000,20(5):627-630
    [149]夏畅斌,黄念东,何湘柱.碳黑泥吸附铬(Ⅵ)的热力学研究.水处理技术,27(3):156-158
    [150]彭书传,王诗生,陈天虎.坡缕石吸附水中阳离子桃红FG染料的热力学研究.矿物学报,2005,25(2):113-117
    [151]王重,史作清.酚醛型吸附树脂吸附VB12的热力学研究.功能高分子学报,2003,16(1):1-5
    [152]Gokmen V, Serpen A. Equilibrium and kinetic studies on the adsorption of dark colored compounds from apple juice using adsorbent resin. J. Food Eng.,2002,53(3):221-227
    [153]Ajamal M, Rao A K, Akmad R, et al. Adsorption studies on citrus reticular fruit peel of orange:removal and recovery of Ni (Ⅱ) from electroplating wastewater. J. Hazard. Mater., 2000,79(1-2):117-131
    [154]Pauling, L. The structure of the chorites. Proc. Natl. Acad. Sci. U.S. A.,1930,16,578-582
    [155]Slavica L, Ivona J-C, Dusan J, et al. Adsorption of Pb2+,Cd2+ and Sr 2+ ions onto natural and acid-activated sepiolites. Applied Clay Sci.,2007,37:47-57
    [156]Sagrario M, Guijarro M I, Pedro J B. Mercury Retrieval from flue gas by monolithic adsorbents based on sulfurized sepiolite. Environ Sci Technol,1999,33:1697-1702
    [157]Altug M S, Rustam H, Ahmet G, et al. An investigation of the kinetics and thermodynamics of the adsorption of a cationic cobalt porphyrazine onto sepiolite. Dyes and Pigments 2011, 88:25-38
    [158]6zdemir Y, Dogan M, Alkan M. Adsorption of cationic dyes from aqueous solutions by sepiolite. Microporous and Mesoporous Materi.,2006,96:419-427
    [159]张林栋,李常飞,王先年.改性海泡石除磷吸附动力学研究.化学工程,2010,38(2):5-7
    [160]Ye H P, Chen F Z, Sheng Y Q, et al. Adsorption of phosphate from aqueous solution onto modified palygorskites. Sep. Purifi. Technol.,2006,50:283-290
    [161]仇立干,王茂元.改性凹凸棒土对磷酸根吸附性能的研究.化学研究与应用,2012,22(8):1009-1014
    [162]董庆洁,李乃,邵仕香.新型磷酸根吸附剂的制备.天津理工学院学报,2002,18(1):82-84
    [163]潘敏,陈天虎,黄晓鸣,等.凹凸棒石/氢氧化物纳米复合材料对磷的吸附热力学.硅酸盐学报,2009,37(10):1673-1677
    [164]董庆洁,邵仕香,李乃瑄,等.凹凸棒土复合吸附剂对磷酸根吸附行为的研究.硅酸盐通报,2006,2:19-22
    [165]刘勇,李晖,张永丽.羟基铝柱撑蛭石的制备及其吸附磷酸根性能研究.四川大学学报(工程科学版),2008,40(4),77-82
    [166]A1-Degs Y S, El-Barghouthi M I, Issa A A, et al. Sorption of Zn(II), Pb(II), and Co(II) using natural sorbents:equilibrium and kinetic studies, Water Res.,2006,40:2645-2658
    [167]Sharma Y C, Srivastava V, Upadhyay S N, et al. Alumina nanoparticles for the removal of Ni (Ⅱ) from aqueous solutions. Ind. Eng. Chem. Res.2008,47:8095-8100
    [168]US EPA, Office of Water (4606M), EPA 816-F-03-016 National Primary Drinking Water Standards & National Secondary DrinkingWater Standards,2003,6
    [169]Gupta V K, Goyal R N, Sharma R A. Novel PVC membrane based alizarin sensor and its application; determination of vanadium, zirconium and molybdenum. Int. J. Electrochem. Sci., 2009,4(1):156-172
    [170]Jain A K, Gupta V K, Sahoo B B, et al. Copper(Ⅱ)-selective electrodes based on macrocyclic compounds. Anal. Proc. Incl. Anal. Commun.1995,32(3):99-101
    [171]Shaidan N H, Eldemerdash U, Awad S. Removal of Ni(Ⅱ) ions from aqueous solutions using fixed-bed ion exchange column technique. J. Taiwan Inst. Chem. Eng.,2012,43:40-45
    [172]Min S W, Hasnat M A, Rahim A A,et al. Optimisation of the batch reactor for the removal of cobalt ions from chloride media. Chemosphere,2013,90:674-682
    [173]Nasernejad B, Zadeh T, Pour BB, et al. Zamani A Comparison for biosorption modeling of heavy metals (Cr (Ⅱ), Cu (Ⅱ), Zn (Ⅱ)) adsorption from wastewater by carrot residues. Process Biochem,2005,40:1319-1322
    [174]Panday K K, Prasad G, Singh V N. Copper (Ⅱ) removal from aqueous solutions by fly ash. Water Res.,1985,19:869-873
    [175]Stumm W. Aquatic surface chemistry. Wiley, New York, NY1989
    [176]Sharma Y C, Prasad G, Rupainwar D C. Treatment of Cd (Ⅱ) rich effluents (kinetic modeling and mass transfer). Int. J. Environ. Anal. Chem.,1991,45:11-18

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700