用户名: 密码: 验证码:
基于Tr(?)ger's Base的∧-型有机硼类光电功能材料的设计、合成与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机固体发光材料在固态光化学基础学科和光电子器件领域有着举足轻重的应用价值,因而一直是材料领域的研究热点。虽然绝大多数有机荧光材料在稀溶液中具有强的荧光发射,但当其处于浓度较高的溶液或固态时就会形成了诸如强的分子间π-π作用、激基复合物或H-聚集体等,导致荧光强度急剧下降甚至完全淬灭,即产生“聚集态荧光淬灭(Aggregation-Caused Quenching, ACQ)”效应。因为大部分器件都要求发光材料的使用必须是在薄膜或者晶态下,所以这种ACQ效应大大限制了有机发光材料在光电器件方面的发展。因此,设计与探索高效固态荧光材料具有十分重要的理论和实践意义。
     近年来的研究发现,除了在分子中引入大体积取代基、错位平行偶极堆积(J-聚集)及聚集态诱导发光等常用方法外,还可以通过在分子共轭体系中引入极度扭折或非平面的构型来有效改善固态荧光淬灭现象。而具有特殊刚性、立体(?)-型扭转构型的Troger's Base (TB)类化合物,理论上其空间位阻作用在分子堆积时不利于形成易引起“固态荧光淬灭”的π-π密堆积,可以有效改善由π-π密堆积引起的固态荧光淬灭现象。针对上述问题,我们课题组成功地开发了一系列兼具大π共轭芳香侧翼(芴基,葸基)或吡啶盐的高效固态发光的TB类化合物,并将其成功地应用在了有机电致发光和蛋白质检测领域,验证了分子设计的正确性。然而,基于TB的光电功能材料的发展才刚刚起步,材料的种类还有待于丰富、结构与性能的关系仍需深入探讨,其在有机光电材料及器件领域的应用也需进一步探索。基于以上考虑,本论文以电致发光、荧光传感、离子识别与检测等功能为导向,从有机光电材料分子设计的角度出发,选择(?)-型TB骨架为分子的基本框架,将具有多功能性质的有机硼化合物引入其中,设计合成了一系列具有济液与固态强荧光性质的(?)-型硼类有机光电功能材料,详细研究了这类化合物的光物理性质和结构特性,分析讨论了结构与性能之间的关系,初步探索了其在阴离子探针领域的应用前景。主要研究内容如下:
     1.新型固态发光的A-型BODIPY化合物的晶体结构及固态荧光性质研究
     我们报道了一种新的有效提高BODIPY类荧光物质固态荧光量子效率的设计策略,通过在BODIPY分子中引入扭折的(?)-型TB骨架来抑制π共轭平面之间的π-π密堆积,从而达到改善固态荧光淬灭现象,提高固态荧光强度的目的。在此策略的基础上,我们合成了一类新型(?)-型TB-BODIPY化合物2,8-二(1,3,5,7-四甲基-氟硼二吡咯)-6H,12H-5,11-甲基二苯[b,f][1,5]二氮芳辛(DFTMB)和2,8-二(2,6-二乙基-1,3,5,7-四甲基-氟硼二吡咯)-6H,12H-5,11-甲基二苯[b,f][1,5]二氮芳辛(DFDEB)。这两个化合物在溶液和聚集态下均发射强荧光,通过晶体结构分析发现,分子在堆积时,相邻BODIPY平面间不存在经典的π-π密堆积,且两个化合物由于取代基不同而表现出截然不同的堆积形式,因而重叠程度最大的近平行BODIPY平面间的距离分别为16.98A(DFTMB)和13.26A (DFDEB),说明DFTMB晶体中分子间相互作用力更弱,这与它们的粉末荧光光谱红移现象一致,即DFDEB (?)的多晶粉末荧光峰相对其溶液的红移程度(103nm)大于DFTMB(85nm)。此外,通过比较这两个化合物与其它固态强荧光的BODIPY衍生物的粉末荧光光谱,我们发现基于Troger's Base的八-型BODIPY化合物具有更强的固态荧光,证明了将具有扭折构型的A-型TB骨架引入到BODIPY母体结构上,相对于在分子中修饰大体积取代基来说,是一种更有效地提高BODIPY化合物固态荧光效率的策略。2.具有双发射性质的A-型三芳基硼烷
     受具有特殊双发射性质的U-和V-型三芳基硼烷的启发,并结合Troger's Base的结构特点——刚性的(?)-型扭折构型,我们以非共轭(?)-型TB骨架为连接桥,合成了一系列同时包含电子给体和受体(2-(4-N,N-二甲基苯胺)-8-二米基硼基-6H,12H-5,11-甲基二苯[b,f][1,5]二氮芳辛(TBBN)(?)(?)2-(4-N,N-二苯基苯胺)-8-二米基硼基-6H,12H-5,11-甲基二苯[b,f][1,5]二氮芳辛(TBBN2)),或者只含有电子受体(2,8-二(二米基硼基)-6H,12H-5,11-甲基二苯[b,f][1,5]二氮芳辛(TBB))或给体(2,8-二(4-N,N-二甲基苯胺)-6H,12H-5,11-甲基二苯[b,f[1,5]二氮芳辛(TBNN))的(?)-型三芳基硼化合物。前三个化合物在溶液和固态下均发射荧光晶体结构分析表明这主要贡献于扭折的(?)-型TB骨架和二米基硼基团的位阻效应。同时,(?)-型TB骨架为胺基和二米基硼基团提供了空间独立的非共面构型,使得具有D-A构型的TBBN和TBBN2的HOMO、LUMO能级分别定域在电子给体和受体侧翼上,分子内D-A电荷转移更倾向于通过空间发生而不是通过(?)-型TB骨架,因此其荧光光谱都表现出双发射性质:D-A间的空间电荷转移发射和胺基上的π-π*跃迁发射,但前者的跃迁振子强度f较低(分别为00194,0.0055),不利于高量子效率荧光产生,故这两个化合物在溶液中的荧光比较弱。而具有D-π-A构型的TBB分子表现出明显的分子内电荷转移发射峰,其最低电子跃迁对应于分子内TB骨架的N中心到二米基硼基团的B中心的电荷转移,且具有较高的跃迁振子强度(f=02215),因此在溶液中表现出较强的荧光发射。
     3.具有空间电荷转移发射的(?)-型三芳基硼烷作为氟离子、氰离子荧光探针的应用研究
     将上述具有特殊双发射性质的化合物TBBN、TBBN2及参比化合物TBB应用到氟离子和氰离子的检测领域,并探索了其与氟离子相互作用的机理。实验结果表明,当TBBN和TBBN2(?)分子中的硼原子与F-或CN-络合后,双发射途径中的D-A空间电荷转移发射被破坏,使得胺基的π-π-跃迁发射成为最低电子跃迁发射,引起溶液的发射光谱和荧光颜色显著变化,其中发射峰显示出72-140nm的蓝移,且结合离子后两处波长的荧光强度比值差两三个数量级,表明这类化合物可以用作高灵敏度的氟离子和氰离子(?)'switch-on"(?)型比率、比色荧光探针。而只含有二米基硼的TBB则表现为“switch-off"(?)型荧光探针的性质。我们通过将(?)-型TB骨架引入到三芳基硼化合物中,开发了一种有效设计高选择性、高灵敏度的阴离子比率、比色荧光探针的方法。
Organic fluorophores with strong solid-state emission have aroused great interest for their important use in the fundamental research field of solid-state photochemistry and in the applied field of optoelectronic devices. However, most organic fluorophores exhibit "Aggregation-Caused Quenching (ACQ)" effect:showing high fluorescence in dilute solution but weak luminescence in the solid state due to the formation of close π-π stacking, excimer, and H-aggregation. The ACQ problem must be properly tackled because the luminescent materials are commonly used as solid films or crystalline states in their practical applications. Thus, design and searching of highly emissive solids, which can overcome this problem, would be very rewarding and significant for both theory and applications.
     Rencently, much effort has been devoted to developing effective solid-state emissive fluorophores, such as the introduction of bulky substituents to the original fluorophores, fluorescent J-Aggregates, aggreration-induced emission (AIE) and so on. Besides of these, another approach to alleviate the undesirable intermolecular close π-π stacking that occurs is to attach the conjugated backbones of the molecules to a severely twisted or noncoplanar scaffold. In this application, Troger's base will serve as the scaffold. In theory, its special A-shaped steric configuration does not readily engage in close π-π stacking. Based on this assumption, our group has recently developed a class of TB analogues containing large π-conjugated aromatic groups or pyridinium salts. These compounds with strong fluorescence in aggregate states have been successfully applied in OLEDs and biosensor fields. However, new optoelectronic materials based on TB, the relationship between structures and properties, and the application in optoelectronic fields need to be explored deeply. Aiming at the functionality such as organic light-emitting, fluorescent sensor and ion recognition, we developed a series of new A-shaped organoboron compounds based on Troger's Base which exhibit intense fluorescence in both dilute solution and solid state. We studied their photophysical properties, crystal structures and the relationship between structure and properties in detail. In addition, we also explore their applications in ionprobes filed. The main contents are as follows:
     1. Crystal structures and solid-state fluorescence of BODIPY dyes based on A-shaped Troger's base
     A strategy to prevent the close π-π stacking and thus enhance the solid-state fluorescence has been developed by introducing the twisted Λ-shaped TB skeleton into the BODIPY core. Based on this strategy, two A-shaped BODIPY dyes based on Troger's base, namely2,8-Di(4,4-difluoro-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene)-(6H,12H-5,11-methanodibenzo[b,f][1,5]diazocineylene)(DFTMB) and2,8-Di(4,4-difluoro-2,6-diethyl-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene)-(6H,12H-5,11-methanodibenzo[b, f][1,5]diazocineylene)(DFDEB), were synthesized. Both compounds display intense fluorescence in dilute solutions and aggregation state. The analysis of the crystal structure indicates that molecules are stacked in an off-set fashion which is unfavourable for the formation of close π-π stacking. In addition, different substituted alkyl groups on the BODIPY core influence the molecular stacking modes such that the shortest distance between the closest overlapping nearparallel BODIPY wings in DFTMB (16.98A) is larger than that in DFDEB (13.26A). This result agrees well with the fluorescent behavior; that is, PL spectra of DFDEB powder exhibit a greater red shift compared with that of the solution. Moreover, we compared the powder PL spectra of the two TB-BODIPY dyes with another two solid-state emissive BODIPY dyes. It is noted that the emission of the two A-shaped BODIPY dyes, especially that of DFDEB, are much stronger than that of the reported BODIPY dyes. The results clearly indicate that our A-shaped BODIPY dyes can exhibit brighter emission compared with the bulky substituted BODIPY derivatives.
     2. Dual emission pathways in A-shaped triarylboranes
     Encouraged by the unusual dual emission pathways in the U-and V-shaped triarylboron molecules and their various potential applications, we developed a new class of A-shaped triarylboranes including two donor-acceptor triarylboron molecules (namely2-(4-(N, N-dimethylamino)-8-dimesitylboryl-6H,12H-5,11-methano-dibenzo [b, f][1,5]diazocine (TBBN) and2-(4-(N, N-diphenylamino)-8-dimesitylboryl-6H,12H-5,11-methanodibenzo[b, f][1,5]diazocine (TBBN2)) and two acceptor-only or donor-only molecules (namely2,8-Di(dimesitylboryl)-6H,12H-5,11-methanodibenzo [b,f][1,5]diazocine (TBB) and2,8-Di(4-N, N-dimethylamino)-6H,12H-5,11-methanodibenzo[b, f][1,5]diazocine (TBNN)), in which the twisted A-shaped TB scaffold is selected as the spacer. The first three compounds exhibit twisted structures and intense fluorescence in the aggregated states. For compounds TBBN and TBBN2, the A-shaped TB scaffold endows the amino substituents and the dimesitylboryl group with a nonplanar framework, by virtue of which their HOMO and LUMO are localized on the amine side and boryl side, respectively, thus charge transfer from the donor to acceptor most likely occurs through space rather than through the non-conjugated bridge. As a consequence, dual fluorescent pathways, namely through-space charge transfer and π*-π transitions, are observed to coexist in each molecule. However, the lowest electronic transitions (HOMO→LUMO transitions) possess quite small oscillator strength of0.0194and0.0055for TBBN and TBBN2, respectively, which are unfavorable for efficient fluorescence. While compound TBB exhibits intense donor-acceptor charge-transfer emission owing to the D-π-A geometry in both of two sides, thus the lowest electronic transition is consistent with the charge transfer from the N centers on TB scaffold to the two boron centers with the oscillator strength of0.2215.
     3. Through space charge-transfer emission in A-shaped triarylboranes and the use in Fluorescent Sensing for Fluoride and Cyanide Ions
     Considering the characteristic through-space charge transfer emission of TBBN and TBBN2, we studied their abilities in fluorescence sensing of fluoride and cyanide. With absence of fluoride ion, the dual fluorescent pathways coexist in TBBN and TBBN2. While the binding of fluoride ions or cyanide ions to the boron center disrupts the through-space charge transfer, and the π*-π transitions become the lowest electronic transitions and gain intensity, leading to dramatic blue shifts (about80-140nm) and color changes in the fluorescence. Thus TBBN and TBBN2can be potentially applied as ratiometric and colorimetric "switch-on" fluorescent sensors for fluoride and cyanide. With both sides of boryl substituents, TBB is a "switch-off" fluorescence sensor. By intruding the twisted and nonplanar Λ-shaped TB scaffold to triarylboranes, we provide an efficient strategy to develop boryl compounds applied as visually colorimetric and ratiometric fluorescent sensors for fluoride and cyanide.
引文
[1]A. J. Heeger, Semiconducting and Metallic Polymers:The Fourth Generation of Polymeric Materials (Nobel Lecture), Angew. Chem. Int. Ed.,2001,40,2591-2611.
    [2]胡蕾,硕士学位论文,安徽大学,2009.
    [3]A. Hayer, V. Halleux, A. Kohler, A. El-Garoughy, E. W. Meijer, J. Barbera, J. Tant, J. Levin, M. Lehmann, J. Gierschner, J. Comil, Y. H. Geerts, Highly Fluorescent Crystalline and Liquid Crystalline Columnar Phases of Pyrene-Based Structures, J. Phys. Chem. B., 2006,110,7653-7659.
    [4]辛倩,博士学位论文,山东大学,2008.
    [5]I. D. W. Samuel. G. A. Tumbull, Organic Semiconductor Lasers, Chem. Rev.,2007,107, 1272-1295.
    [6]N. Tessler, G. J. Tenton. R. H. Friend, Lasing from Conjugated-Polymer Microcavities. Nature,1996,382,695-697.
    [7]Q. H. Cui, Y. S. Zhao, J. Yao, Photonic Applications of One-Dimensional Organic Single-Crystalline Nanostructurcs:Optical Waveguides and Optically Pumped Lasers,J. Mater. Chem.,2012,22,4136-4140.
    [8]R. Capelli. S. Toffanin, G. Generali, H. Usta. A. Facchctti, M. Muccini, Organic Light-Emitting Transistors with an Efficiency That Outperforms the Equivalent Light-Emitting Diodes, Nature Mater,2010,9,496-503.
    [9]R. H. Friend, R.W. Grmer, A. B. Holmes, J. H. Burroughes, R. N. Marls, C Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Bredas, M. Logdlund, W. R. Salaneck, Electroluminescence in Conjugated Polymers, Nature,1999,397,121-128.
    [10]C.-T. Chen. Evolution of Red Organic Light-Emitting Diodes:Materials and Devices, Chem. Mater.,2004,16,4389-4400.
    [11]T. Ozdemir, S. Atilgan, I. Kutuk, L. T. Yildirim, A. Tulek, M. Bayindir, E. U. Akkaya, Solid-State Emissive BODIPY Dyes with Bulky Substituents as Spacers, Org. Lett.,2009, 11,2105-2107.
    [12]Y. Kubota, J. Uehara, K. Funabiki, M. Ebihara, M. Matsui, Strategy for the Increasing the Solid-State Fluorescence Intensity of Pyrromethene-BF2 Complexes, Tetrahedron Lett., 2010,51,6195-6198.
    [13]D. Zhang, Y. Wen, Y. Xiao. G. Yu, Y. Liu, X. Qian, Bulky 4-Tritylphenylethynyl Substituted Boradiazaindacene:Pure Red Emission, Relatively Large Stokes Shift and Inhibition of Self-Quenching, Chem. Commun.,2008,4777-4779.
    [14]J. Wang, Y. Zhao, C. Don, H. Sun, P. Xu, K. Ye, J. Zhang, S. Jiang, F. Li, Y. Wang, Alkyl and Dendron Substituted Quinacridones:Synthesis, Structures, and Luminescent Properties, J. Phys. Chem. B,2007,111,5082-5089.
    [15]T. Qin, G. Zhou, H. Scheiber, R. E. Bauer, M. Baumgarten, C. E. Anson, E. J. W. List, K. Mullen, Polytriphenylene Dendrimers:A Unique Design for Blue-Light Emitting Materials, Angew. Chem. Int. Ed.,2008,47,8292-8296.
    [16]J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D. Zhu, B. Z. Tang, Aggregation-Induced Emission of 1-methyl-1,2,3,4,5-pentaphenylsilole, Chem. Commun.,2001,1740-1741.
    [17]J. Chen, C. C. W. Law, J. W. Y. Lam, Y. Dong, S. M. F. Lo, I. D. Williams, D. Zhu, B. Z, Tang, Synthesis. Light Emission, Nanoaggregation, and Restricted Intramolecular Rotation of 1,1-Substituted 2,3,4,5-Tetraphcnylsiloles, Chem. Mater.,2003,15, 1535-1546.
    [18]B. Mi, Y. Dong, Z. Li. J. W. Y. Lam, M. Haussler. H. H. Y. Sung, H. S. Kwok, Y. Dong, I. D. Williams, Y. Liu, Y. Luo, Z. Shuai, D. Zhu, B. Z. Tang, Making Silole Photovoltaically Active by Attaching Carbazolyl Donor Groups to the Silolyl Acceptor Core, Chem. Commun.,2005,3583-3585.
    119] G. Yu, S. Yin, Y. Liu, J. Chen, X. Xu, X. Sun, D. Ma, X. Zhan, Q. Peng, Z. Shuai, B. Z. Tang, D. Zhu, W. Fang, Y. Luo, Structures, Electronic States, Photoluminescence, and Carrier Transport Properties of 1,1-Disubstituted 2,3,4,5-Tetraphenylsiloles, J. Am. Chem. Soc..2005,127,6335-6346.
    [20]Z. Li, Y. Dong, B. Mi, Y. Tang, M. Haussler, H. Tong. Y. Dong, J. W. Y. Lam, Y. Ren, H. H. Y. Sung, K. S. Wong, P. Gao, I. D. Williams, H. S. Kwok, B. Z. Tang, Structural Control of the Photoluminescence of Silole Regioisomers and Their Utility as Sensitive Regiodiscriminating Chemosensors and Efficient Electroluminescent Materials,J. Phys. Chem. B,2005,109,10061-10066.
    [21]W. Holzer, A.Penzkofer, R. Stockmann, H. Meyscl, H. Liebegott, H. H. Horhold, Photophysical Characterization of Diphenyl-Substituted Phenylenevinylene and Diphenylenevinylene Polymers, Polymer,2001,42,3183-3194.
    [22]C. Belton, D. F. O'Brien, and W. J. Blau, A. J. Cadby, P. A. Lane, D. D. C. Bradley, H. J. Byrne, R. Stockmann, H-H. Horhold. Excited-State Quenching of a Highly Luminescent Conjugated Polymer, Appl.Phys. Lett.,2001,78,1059-1061.
    [23]S.-J. Lim, B.-K. An, S.-D. Jung, M.-A. Chung, S. Y. Park, Photoswitchable Organic Nanoparticles and a Polymer Film Employing Multifunctional Molecules with Enhanced Fluorescence Emission and Bistable Photochromism, Angew. Chem., Int. Ed.,2004,43, 6346-6350.
    [24]B.-K. An, S.-K. Kwon, S.-D. Jung, S. Y. Park, Enhanced Emission and Its Switching in Fluorescent Organic Nanoparticles, J. Am. Chem. Soc.,2002,124,14410-14415.
    [25]X. Tong, Y. Zhao, B.-K. An, S. Y. Park, Fluorescent Liquid-Crystal Gels with Electrically Switchable Photoluminescence. Adv. Funct. Mater.,2006,16,1799-1804.
    [26]H. Tong. Y. Hong, Y. Dong, Y. Ren, M. Haussler, J. W. Y. Lam, K. S. Wong, B. Z. Tang, Color-Tunable, Aggregation-Induced Emission of a Butterfly-Shaped Molecule Comprising a Pyran Skeleton and Two Cholesteryl Wings,J. Phys. Chem. B,2007,111, 2000-2007.
    [27]H. Tong. Y. Dong, M. Haussler. Y. Hong, J. W. Y. Lam, H. H-Y. Sung. I. D. Williams, H. S. Kwok, B. Z Tang, Molecular Packing and Aggregation-Induced Emission of 4-dicyanomethylene-2.6-distyryl-4H-pyran Derivatives, Chem. Phys. Lett.,2006,428, 326-330.
    [28]Y. Li, F. Li, H. Zhang, Z. Xie, W. Xie, H. Xu, B. Li, F. Shen, L. Ye, M. Han if, D. Ma, Y. Ma, Tight Intermolecular Packing Through Supramolecular Interactions in Crystals of Cyano Substituted Oligo(para-phenylene vinylene):A Key Factor for Aggregation-Induced Emission, Chem. Commun.,2007,231-233.
    [29]Z. Xie, B. Yang, W. Xie, L. Liu, F. Shcn, H. Wang, X. Yang, Z. Wang, Y. Li, M. Hanif, G. Yang. L. Ye, Y. Ma. A Class of Nonplanar Conjugated Compounds with Aggregation-Induced Emission:Structural and Optical Properties of 2,5-Diphenyl-1,4-distvrylbenzene Derivatives with All Cis Double Bonds,J. Phys. Chem. B,2006,110, 20993-21000.
    [30]Z. Xie, B. Yang, G. Cheng, L. Liu, F. He, F. Shen, Y. Ma, S. Liu, Supramolecular Interactions Induced Fluorescencein Crystal:Anomalous Emission of 2,5-Diphenyl-1,4-distvrylbenzene with All cis Double Bonds, Chem. Mater.,2005,17,1287-1289.
    [31]Y. Liu, X. Tao, F. Wang, X. Dang, D. Zou, Y. Ren, and M. Jiang, Aggregation-Induced Emissions of Fluorenonearylamine Derivatives:A New Kind of Materials for Nondoped Red Organic Light-Emitting Diodes, J. Phys. Chem. C,2008,112,3975-3981.
    [32]Y. Liu, X. Tao, F. Wang, J. Shi, J. Sun, W. Yu, Y. Ren, D. Zou, M. Jiang, Intermolecular Hydrogen Bonds Induce Highly Emissive Excimers:Enhancement of Solid-State Luminescence,J. Phys. Chem. C,2007,111,6544-6549.
    [33]C.-X. Yuan, X.-T. Tao, Y. Ren, Y Li, J.-X. Yang, W.-T. Yu, L. Wang, M.-H. Jiang, Synthesis, Structure, and Aggregation-Induced Emission of a Novel Lambda (A)-Shaped Pyridinium Salt Based on Troger's Base,J. Phys. Chem. C,2007,111,12811-12816.
    [341 T. He, X.-T. Tao. J.-X. Yang, D. Guo, H.-B. Xia, J. Jia, M.-H. Jiang, Aggregation-Induced Emission Enhancement of Polycyclic Aromatic Alkaloids Derivatives and the Crucial Role of Excited-State Proton-Transfer. Chem. Commun., 2011,47,2907-2909.
    [35]Z. Wang, H. Shao, J. Ye, L. Tang, P. Lu, Dibenzosuberenylidene-Ended Fluorophores: Rapid and Efficient Synthesis, Characterization, and Aggregation-Induced Emissions,J. Phvs. Chem.B,2005,109,19627-19633.
    [36]S. Y. Ryu, S. Kim, J. Seo, Y-W. Kim, O-H. Kwon, D-J. Jang, S. Y. Park, Strong Fluorescence Emission Induced by Supramolecular Assembly and Gelation:Luminescent Organogel from Nonemissive Oxadiazole-based benzene-1,3,5-tricarboxamide Gelator, Chem. Commun..2004,70-71.
    [37]Y. Qian, S. Y. Li, G. Q. Zhang, Q. Wang, S. Q. Wang, H. J. Xu, C. Z. Li, Y. Li, G. Q. Yang, Aggregation-Induced Emission Enhancement of 2-(2-Hydroxyphenyl) benzothiazole-Based Excited-State Intramolecular Proton-Transfer Compounds.J. Phys. Chem. B,2007,111,5861-5868.
    [38]T. E. Kaiser, H. Wang, V. Stepanenko, F. Wurthner, Supramolecular Construction of Fluorescent J-Aggregates Based on Hydrogen-Bonded Perylene Dyes, Angew. Chem. Int. Ed.,2007,46,5541-5544.
    [39]F. Wurthner, T. E. Kaiser, C. R. Saha-Moller, J-Aggregates:From Serendipitous Discovery to Supramolecular Engineering of Functional Dye Materials, Angew. Chem. Int. Ed.,2011,50,3376-3410.
    [40]M. Shimizu, Y. Takeda, M. Higashi, T. Hiyama, 1,4-Bis(alkenyl)-2,5-dipiperidino-benzenes:Minimal Fluorophores Exhibiting Highly Efficient Emission in the Solid State, Angew. Chem. Int. Ed.,2009,48,3653-3656.
    [41]A. Wakamiya, K. Mori, S. Yamaguchi,3-Boryl-2,2'-bithiophene as a Versatile Core Skeleton for Full-Color Highly Emissive Organic Solids, Angew. Chem. Int. Ed.,2007, 46,4273-4276.
    [42]C.-H. Zhao, E. Sakuda, A. Wakamiya, S. Yamaguchi, Highly Emissive Diborylphenylene-Containing is (Phenylethvnyl)benzenes:Structure-Photophysical Property Correlations and Fluoride Ion Sensing, Chem.-Eur.J.,2009,15,10603-10612.
    [43]C.-H. Zhao, Y.-H. Zhao. H. Pan, G.-L. Fu, Highly Solid-State Emissive Para-terphenyls Laterally Substituted with a Diphenylamino Group, Chem. Comimtn.,2011,47, 5518-5520.
    [44]付光亮,硕士学位论文,山东大学,2012.
    [45]马於光,沈家骢,光电功能有机晶体研究进展,中国科学B辑:化学,2007,37,105-123.
    [46]A. Bilge, A. Zen, M. Forster, H. B. Li, F. Galbrecht, B. S. Nehls, T. Farrell, D. Neher, U. Scherf, Swivel-Cruciform Oligothiophene Dimmers, J. Mater. Chem,2006,16, 3177-3182.
    [47]Z. Xie, B. Yang, F. Li, G. Cheng, L. Liu, G. Yang, H. Xu, L. Ye, M. Hanif, S. Liu, D. Ma, Y. Ma, Cross Dipole Stacking in the Crystal of Distyrylbenzene Derivative:The Approach toward High Solid-State Luminescence Efficiency,J. Am. Chem. Soc.,2005, 127,14152-14153.
    [48]F. He, H. Xu, B. Yang, Y. Duan, L. Tian, K. Huang, Y. Ma, S. Liu, S Feng, J. Shen, Oligomeric Phenylenevinylene with Cross Dipole Arrangement and Amorphous Morphology:Enhanced Solid-State Luminescence Efficiency and Electroluminescence Performance,Adv. Mater.,2005,17,2710-2714.
    [49]D. Katsis, Y. H. Geng, J. J. Ou, S. W. Culligan, A. Trajkovska, S. H. Chen, L. Rothberg, Spiro-Linked Ter-, Penta-, and Heptafluorenes as Novel Amorphous Materials for Blue Light Emission., Chem. Mater.,2002,14,1332-1339.
    [50]C. Poriel, N. Cocherel, J. Rault-Berthelot. L. Vignau, O. Jeannin, Incorporation of Spiroxanthene Units in Blue-Emitting Oligophenylene Frameworks:A New Molecular Design for OLED Applications, Chem.-Eur. J.,2011,17,12631-12645.
    [51]B. Dolensky. M. Havlik, V. Kral, Oligo Trgoer's Bases-New Molecular Scaffolds, Chem. Soc. Rev.,2012,41,3839-3858.
    [52]J. Troger, Ueber einige mittelst nascirenden Formaldehydes entstehende Basen, J. Prakt. Chem.,1887,36,225-245.
    [53]M. A. Spielman, The Structure of Troger's base,J. Am. Chem. Soc.,1935,57,583-585.
    [54]S. B. Larson, C. S. Wilcox, Structure of 5,11-methano-2,8-dimethyl-5,6,11,12-tetrahydrodibenzo[b,f][1,5]diazocine (Troger's base) at 163 K,Acta. Crystallogr. C,1986, 42.224-227.
    [55]M. Demeunynck, A.Tatibouet, In Progress in Heterocyclic Chemistry, G. W. Gribble, T. L. Gilchrist, Eds., Pergamon:Oxford, UK,1999,1-20.
    [56]J. C. Adrian, Jr., C. S. Wilcox, Orderly Functional Group Dyads. Recognition of Biotin and Adenine Derivatives by a New Svnthetic Host, J. Am. Chem. Soc.,1989,111, 8055-8057.
    [57]A. Manjula, M. Nagarajan, New Supramolecular Hosts:Synthesis and Cation Binding Studies of Novel Troger's Basc-Crown Ether Composites, Tetrahedron,1997,53, 11859-11868.
    [58]Y. Kubo, T. Ohno, J. Yamanaka, S. Tkita, T. Iida, Y. Ishimaru, Chirality-Transfer Control Using a Heterotopic Zinc(II) Porphyrin Dimer,J. Am. Chem. Soc.,2001,123, 12700-12701.
    [59]S. Goswami, K. Ghosh, S. Dasgupta, Troger's Base Molecular Scaffolds in Dicarboxylic Acid Recognition, J. Org. Chem.,2000,65,1907-1914.
    [60]C. Baily, W. Laine, M. Demeunynck, J. Lhomme. Enantiospecific Recognition of DNA Sequences by a Proflavine Troger's Base, Biochem. Biophys. Res. Commun.,2000,273, 681-685.
    [61]M. Valik. J. Malina, L. Palivec, J. Foltynova, M. Tkadlecova, M. Urbanova, V. Brabec, V. Kral, Troger's Base Scaffold in Racemic and Chiral Fashion as a Spacer for Bisdistamycin Formation. Synthesis and DNA Binding Study, Tetrahedron,2006,62, 8591-8600.
    [62]T. Mas, C. Pardo, J. Elguero, Use of Troger's Base as a Scaffold for New Chiral Molecular Tweezers:Synthesis of Trimeric, Fused Troger's Base, Helvetica Chimica Acta,2005,1199-1207.
    [63]J. Artacho, P. Nilsson, K.-E. Bergquist, O. F. Wendt, K. Warnmark, The Synthesis and Characterization of All Diastereomers of a Linear Symmetrically Fused Tris-Troger's Base Analogue:New Chiral Cleft Compounds, Chem. Eur.J.,2006,12,2692-2701.
    [64]袁春雪,博士学位论文,山东大学:2009.
    [65]C. X. Yuan, X. T. Tao. Y. Ren, Y. Li, J. X. Yang, W. T. Yu, L. Wang, M. H. Jiang, Synthesis, Structure, and Aggregation-Induced Emission of a Novel Lambda (A)-shaped Pyridinium Salts Based on Troger's Base, J. Phys. Chem. C,2007,111,12811-12816.
    [66]C. X. Yuan, X. T. Tao, L. Wang, J. X. Yang, Y. Ren, W. T. Yu, M. H. Jiang, Fluorescence Turn-On Detection and Assay of Protein Based on Lambda (A)-Shaped Pyridinium Salts with Aggregation-Induced Emission Characteristics,J. Phys. Chem. C, 2009,113.6809-6814.
    [67]Q. Xin, X. T. Tao, H. J. Liu, Y. Ren, M. H. Jiang, Synthesis, Structure and Packing Properties of Three Troger's Base Analogues Containing Substituted Fluorene Units, CrystEngComm,2008,10,1204-1210.
    [68]Q. Xin, X. T. Tao, F. Z. Wang, J. L. Sun, D. C. Zou, F. J. Wang, H. J. Liu, Z. Liu, M. H. Jiang, Fluorene-Based Troger's Base Analogues:Potential Electroluminescent Materials, Org. Electron.,2008,9,1076-1086.
    [69]S. Sergeyev, D. Didier, V. Boitsov, A. Teshome, I. Asselberghs, K. Clays, C. M. L. Vande Velde, A. Plaquet, B. Champagne, Symmetrical and Nonsymmetrical Chromophores with Troger's Base Skeleton:Chiroptical, Linear, and Quadratic Nonlinear Optical Properties-A Joint Theoretical and Experimental Study, Chem.-Eur.J., 2010,16,8181-8190.
    [70]E. B. Veale, T. Gunnlaugsson, Synthesis, Photophysical, and DNA Binding Studies of Fluorescent Troger's Base Derived 4-amino-1,8-naphthaliimde Supramolecular Clefts,J. Org. Chem.,2010,75,5513-5525.
    [71]A. Prasanna De Silva, H. Q. Nimal Gunaratne, T. Gunnlauggson, A. J. M. Huxley, C. P. McCoy, J. T. Radmancher, T. E. Rice, Signaling Recognition Events with Fluorescent Sensors and Switches. Chem. Rev.,1997,97,1515-1566.
    [72]B. Valeur, Molecular Fluorescence:Principles and Applications,1 ed., Wiley-VCH Verlag GmbH,2001,273.
    [73]龙凌亮,博士学位论文,湖南大学,2010
    [74]O. Nakagawa, S. Ono, Z Li, A. Tsujimoto, S. Sasaki, Specific Fluorescent Probe for 8-Oxoguanosine, Angew. Chem. Int. Ed.,2007,46,4500-4503.
    [75]H. Maeda, K. Yamamoto, I. Kohno, L. Hafsi, N. Itoh, S. Nakagawa, N. Kanagawa, K. Suzuki, T. Uno, Design of a Practical Fluorescent Probe for Superoxide Based on Protection-Deprotection Chemistry of Fluoresceins with Benzenesulfonyl Protecting Groups, Chem.-Eur.J.,2007,13,1946-1954.
    [76]O. S. Wolfbeis, Optical Sensors, Springer-Verlag:Heidelberg,2004.
    [77]N. Umezawa, K. Tanaka. Y. Urano. K. Kikuchi, T. Higuchi, T. Nagano, Novel Fluorescent Probes for Singlet Oxygen, Angew. Chem. Int. Ed.,1999,38,2899-2901.
    [78]L. Pu. Fluorescence of Organic Molecules in Chiral Recognition. Chem. Rev.,2004,104, 1687-1716.
    [79]B. Valeur, I. Leray, Design Principles of Fluorescent Molecular Sensors for Cation Recognition. Coord. Chem. Rev.,2000,205,3-40.
    [80]A. P. De Silva, Fluorescent Signaling Crown Ethers:Switching on of Fluorescence by Alkali Metal Ion Recognition and Binding in Situ, Chem. Commun.,1986,1709-1710.
    [81]Y. Wu, X. Peng, B. Guo, Boron Dipyrromethene Fluorophore Based Fluorescence Sensor for the Selective Imaging of Zn(Ⅱ) in Living Cells, Org. Biomol. Chem.,2005,3, 1387-1392.
    [82]T. Gunnlaugsson, T. Clive Lee, R. Parkesh. Highly selective fluorescent chemosensors for cadmium in water. Tetrahedron,2004,60,11239-11249.
    [83]G. D. Santis, L. Fabbnzzi, M. Lichelli, C. Mangano, D. Sacchi, N. Sardone, A Fluorescent Chemosensor for the Copper(Ⅱ) Ion, Inorg. Chim. Acta.,1997,257,69-76.
    [84]樊美公等著,光化学基本原理与光子学材料科学,第1版,北京,科学出版社,2001.326-331.
    [85]X. Peng, J. Du, J. Fan, J. Wang, Y. Wu. J. Zhao, S. Sun, T. Xu, A Selective Fluorescent Sensor for Imaging Cd2+ in Living Cells,J. Am. Chem. Soc.,2007,129,1500-1501.
    [86]J. Wang, X. Qian, J. Qian, Y. Xu, Micelle-Induced Versatile Performance of Amphiphilic Intramolecular Charge-Transfer Fluorescent Molecular Sensors, Chem.-Eur. J.,2007,13, 7543-7552.
    [871 F. Cosnard, V. Wintgens. A New Fluoroionophore Derived from 4-amino-N-methyl-1,8-naphthalimide, Tetrahedron Lett.,1998, 39,2751-2754.
    [88]M. Kolimannsberger, K. Rurack, U. Resch-Genger, J. Daub, Ultrafast Charge Transfer in Amino-Substituted Boron Dipyrromethene Dyes and Itsinhibition by Cation Complexation:A New Design Concept for Highly Sensitive Fluorescent Probes,J.Phys. Chem. A.1998,102,10211-10220.
    [89]Z. R. Grabowski, K. Rotkiewicz, Structural Changes Accompanying Intramolecular Electron Transfer:Focus on Twisted Intramolecular Charge-Transfer States and Structures. Chem. Rev.,2003,103,3899-4031.
    [90]W. Rettig, Charge Seperation in Excited States of Decoupled System-TICT Compounds and Implications Regarding the Development of New Laser Dyes and the Primary Processes of Vision and Photosynthesis, Angew. Chem. Int. Ed.,1986,25,971-988.
    [91]K. A. Zachariasse, S. I. Druzhimn, Bosch W., R. Machinek, Intramolecular Charge Transfer with the Planarized 4-Aminobenzonitrile 1-tert-Butv1-6-cvano-1,2,3,4-tetra hydroquinoline (NTC6),J. Am. Chem. Soc,2004; 126,1705-1715.
    [92]J. F. Letard. S. Delmond. S. P. Lapoyyade, New Intrinsic Fluoroionophores with Dual Fluorescence:DMABN-Crown-4 and DMABN-Crown-5. Recueil Des Travaux Chimiques Des Pays-Bas, Recl. Trav. Chim. Pays-Bas,1995,114,517-527.
    [93]G. E. Collins, L. S. Choi, J. H. Callahan, Effect of Solvent Polarity, pH, and Metal Complexation on the Triple Fluorescence of 4-(N-1,4,8,11-tetraazacyclo tetradecyl)-benzonitrile, J. Am. Chem. Soc.,1998,120,1474-1475.
    [94]A. B. Othman, J. W. Lee, J.-S. Wu, J. S. Kim, R. Abidi, P. Thuery, J. M. Strub, A. V. Dorsselaer, J. Vicens, Calix[4]arenc-Based, Hg2+-Induced Intramolecular Fluorescence Resonance Energy Transfer Chemosensor,J. Org. Chem.,2007,72,7634-7640.
    [95]S. Speiser, Photophysics and Mechanisms of Intramolecular Electronic Energy Transfer in Bichromophoric Molecular Systems:Solution and Supersonic Jet Studies. Chem. Rev. 1996,96,1953-1976.
    [96]R. Swanson, M. P. Raghavendra, W. Zhang, C. Froelich, P. G.W. Gettins, S. T. Olson, Serine and Cysteine Proteases are Translocated to Similar Extents upon Formation of Covalent Complexes with Serpins,J.Biol. Chem.,2007,282,2305-2313.
    [97]S. Ko, S. A. Grant, Development of a Novel FRET Method for Detection of Listeria or Salmonella, Sens. Actuators B,2003,96,372-378.
    [98]C. B. Sherrill, D. J. Marshall, M. J. Moser, C. A. Larsen, L. Daude-Snow, J. R. Prudent, Nucleic Acid Analysis Using an Expanded Genetic Alphabet to Quench Fluorescence, J. Am. Chem. Soc.,2004,126,4550-4556.
    [99]H. Takakusa,K. Kikuchi, Y. Urano, S. Sakamoto, K. Yamaguchi, T. Nagano, Design and Synthesis of an Enzyme-Cleavable Sensor Molecule for Phosphodiesterase Activity Based on Fluorescence Resonance Energy Transfer,J. Am. Chem. Soc.2002,124, 1653-1657.
    [100]Y. Zhao, Z. Lin, H. Liao, C. Duan, Q. Mcng, A Highly Selective Fluorescent Chemosensor for Al3+ Derivated from 8-Hydroxyqitinoline, Inorg. Chem. Commun.,2006, 9,966-968.
    [101]S. K. Kim, J. H. Bok, R. A. Bartsch, J. Y. Lee. J. S. Kim, A Fluoride-Selective PCT Chemosensor Based on Formation of a Static Pyrene Excimer, Org. Lett.,2005,7, 4839-4842.
    [102]J. S. Kim. M. G. Choi, K. C. Song, K. T. No, S. Ahn, S.-K. Chang, Ratiometric Determination of Hg2+ Ions Based on Simple Molecular Motifs of Pyrene and Dioxaoctanediamide, Org. Lett.,2007,9,1129-1132.
    [103]M. Boiocchi, L. Fabbrizzi, M. Licchelli, D. Sacchi, M. Vazquez, C. Zampa, A Two-Channel Molecular Dosimeter for the Optical Detection of Copper(Ⅱ), Chem. Commun.,2003,1812-1813.
    [104]S. Y. Moon, N. R. Cha, Y. H. Kim, S.-K. Chang, New Hg2+-Selective Chromo- and Fluoroionophore Based upon 8-Hydroxyquinoline.,J.Org. Chem,2004,69,181-183.
    [1051 Y. K. Yang, K. J. Yook, J. Tae, A Rhodamine-Based Fluorescent and Colorimetric Chemodosimeter for the Rapid Detection of Hg2+ Ions in Aqueous Media,J. Am. Chem. Soc.,2005,127,16760-16761.
    [106]Grandini P., F. Mancin, P. Tecilla, P. Scrimin, U. Tonellato, Exploting the Self-Assembly Strategy for the Design of Selective Cu2+ Ion Chemosensors, Angew. Chem. Int. Ed., 1999,35,3061-3064.
    [107]D.-R. Bai, X.-Y. Liu, S. Wang, Charge-Transfer Emission Involving Three Coordinate Organoboron:V-Shape versus U-Shape and Impact of the Spacer on Dual Emission and Fluorescent Sensing, Chem.-Eur. J.2007,13,5713-5723.
    [1]A. Treibs, F. H. Kreuzer, Synthesis and Spectra Properties of 4,4-Difluoro-4-bora-3a, 4a-diaza-s-indacene Derivatives, Justus Liebigs Ann. Chew.,1968,718,208-216.
    [2]N. Boens, V. Leen, W. Dehaen, Fluorescent Indicators Based on BODIPY, Chew. Soc. Rev.2012,41,1130-1172.
    [3]王东川,博士学位论文,大连理工大学,2009
    [4]D. Zhang. Y. Wen, Y. Xiao, G. Yu, Y. Liu, X. Qian, Bulky 4-Tritylphenylethynyl Substituted Boradiazaindacene:Pure Red Emission, Relatively Large Stokes Shift and Inhibition of Self-Quenching, Chew. Comwun.,2008,4777-4779.
    [5]T. T. Vu, S. Badre, C. c. Dumas-Verdes, J.-J. Vachon, C. Julien, P. Audebert, E. Y. Senotrusova, E. Y. Schmidt, B. A. Trofimov, R. B. Pansu, G. Clavier, R. Meallet-Renault, New Hindered BODIPY Derivatives:Solution and Amorphous State Fluorescence Properties,J.Phys. Chem. C,2009,113,11844-11855.
    [6]T. Ozdemir, S. Atilgan, I. Kutuk, L. T. Yildirim, A. Tulek, M. Bayindir, E. U. Akkaya, Solid-State Emissive BODIPY Dyes with Bulky Substituents As Spacers, Org. Lett., 2009,11,2105-2107.
    [7]Y. Kubota, J. Uehara, K. Funabiki, M. Ebihara, M. Matsui, Strategy for the Increasing the Solid-State Fluorescence Intensity of Pvrromethene-BF2 Complexes, Tetrahedron Lett., 2010,51,6195-6198.
    [8]C. X. Yuan, X. T. Tao, Y. Ren, Y. Li, J. X. Yang, W. T. Yu, L. Wang, M. H. Jiang, Synthesis, Structure, and Aggregation-Induced Emission of a novel Lambda (A)-shaped Pyridinium Salts based on Troger's base,J. Phys. Chem. C,2007,111,12811-12816.
    [9]C. X. Yuan, X. T. Tao, L. Wang, J. X. Yang, Y. Ren, W. T. Yu, M. H. Jiang, Fluorescent Turn-On Detection and Assay of Protein Based on Lambda (A)-Shaped Pyridinium Salts with Aggregation-Induced Emission Characteristics, J. Phys. Chem. C,2009,113, 6809-6814.
    [10]Q. Xin, X. T. Tao, F. Z. Wang, J. L. Sun, D. C. Zou, F. J. Wang, H. J. Liu, Z. Liu, M. H. Jiang, Fluorene-Based Troger's Base Analogues:Potential Electroluminescent Materials, Org. Electron.,2008,9,1076-1086.
    [11]袁春雪,博士学位论文,山东大学,2009
    [12]K. D. Belfield, S. Yao, A. R. Morales, J. M. Hales, D. J. Hagan, E. W. V. Stryland, V. M. Chapela, J. Percino, Synthesis and Characterization of Novel Rigid Two-Photon Absorbing Polymers, Polym. Adv. Technol.,2005,16,150-155.
    [13]辛倩,博士学位论文,山东大学,2008
    [14]M. Kollmannsberger, K. Rurack, U. Resch-Genger, J. Daub, Ultrafast Charge Transfer in Amino-Substituted Boron Dipyrromethene Dyes and Its Inhibition by Cation Complexation:A New Design Concept for Highly Sensitive Fluorescent Probes,J. Phys. Chem. A,1998,102,10211-10220.
    [15]牟鑫,刘淑娟,戴春雷,马廷春.赵强,凌启淡,黄维.三芳基硼烷在有机电子学领域的研究与应用,中国科学,2010.8.979-990.
    [16]S. Yamaguchi, A. Wakamiya. Boron as a Key Component for New π-Electron Materials, Pure Appl. Chem.,2006,7,1413-1424.
    [17]P. J. Grisdale, J. L. R. Williams, M. E. Glogowsri, B. E. Babb. Boron Photochemistry. Ⅵ. The Possible Role of Bridged Intermediatesin the Photolysis of Borate Complexes,J.Org. Chem.,1971,36,544-549.
    [18]C. D. Entwistle, T. B. Marder, Boron Chemistry Lights the Way:Optical Properties of Molecular and Polymeric Systems, Angew. Chem. Int. Ed.2002,41,2927-2931.
    [19]B. Y. Lee, G. C. Bazan,4-Boratastyrylstilbcne and 1,4-Bis(boratastyryl)benzene: Synthesis, Structural Characterization, and Photophysics,J. Am. Chem. Soc.2000,122, 8577-8578.
    [20]G. C. Welch, R. R. San Juan, J. D. Masuda, D. W. Stcphan, Reversible. Metal-Free Hydrogen Activation, Science 2006,314,1124-1126.
    [21]T. W. Hudnall, C. W. Chiu. Gabbai, F. P., Fluoride Ion Recognition by Chelating and Cationic Boranes, Acc. Chem. Res.2009,42,388-397.
    [22]M. S. Yuan, Z. Q. Liu. Q. Fang, Donor and Acceptor Substituted Truxenes as Multifunctional Fluorescent Probes,J. Org. Chem.,2007,72,7915-7922.
    [23]Z. Liu, Q. Fang, D. Wang, D. Cao, G. Xue, W. Yu, H. Lei, Trivalent Boron as an Acceptor in Donor-π-Acceptor-Type Compounds for Single- and Two-Photon Excited Fluorescence. Chcm.-Eur.J.2003,9,5074-5084.
    [24]D.-R. Bai, X.-Y. Liu, S. Wang, Charge-Transfer Emission Involving Three-Coordinate Organoboron:V-Shape versus U-Shape and Impact of the Spacer on Dual Emission and Fluorescent Sensing. Chem.-Eur. J.2007,13,5713-5723.
    [25]袁春雪,博士后研究工作报告,山东大学,2011
    [26]A. L. Reiff, E. M. Garcia-Frutos, J. M. Gil, O. P. Anderson, L. S. Hegedus, Synthesis and Properties of Cobalt (Ⅲ) Complexes of 4-Substituted Pyridine-Capped Dioxocyclams, Inorg. Chem.,2005,44,9162-9167.
    [1]J. M. Lehn, Supramolecular Chemistry Concepts and Perspectives, Weinheim, New York, 1995, p12.
    [2]刘会军,博士学位论文,山东大学,2007
    [3]赵耀鹏,孙震,超分子化学,78,北京,2006,p272.
    [4]C. V. K. Sharma, Crystal Engineering-Where Do We Go from Here? Cryatal Growth & Design.,2002,2,465-474.
    [5]G. R. Desiraju, Review of General Principles, in Comprehensive Supramolecular Chemistry, Oxford:Pergamon,1996,6, p 1-22.
    [6]D. Braga, F. Grepioni, G. R. Desiraju, Crystal Engineering and Organometallic Architecture, Chem. Rev.,1998,98,1375-1406.
    [7]张礼和.化学学科进展,化学工业出版社,北京,2005,p135.
    [8]G. R. Desiraju, A. Gavezzotti, From Molecular to Crystal Structure:Polynuclear Aromatic Hydrocarbons, Chem. Commun.,1989,621-623.
    [9]G. R. Desiraju. Crystal Engineering:from Molecules to Materials.J. mol. Struct.,2003, 656,5-15.
    [10]辛倩,博士学位论文,山东大学,2008.
    [11]袁春雪:博士学位论文,山东大学,2009.
    [12]G. M. Sheldrick, SHELX-97, Program for Crystal Structure Solution and Refinement, University of Gottingen:Gottingen, Germany,1997.
    [13]S. B. Larson, C. S. Wilcox, Structure of 5,11-methano-2,8-dimethyl-5,6,11,12-tctrahydrodibenzo[b,f][1,5]diazocine (Troger's base) at 163 K, Acta Crystallogr Sect. C 1986.C42,224-227.
    [14]C. Pardo, E. Sesmilo, E. Gutierrez-Pucbla, A. Monge, J. Elguero, A. Fnichicr, New Chiral Molecular Tweezers with a Bis-Troger's Base Skeleton,J. Org. Chem.,2001,66, 1607-1611.
    [15]C. A. Hunter, Jeremy K. M. Sanders. The Nature of T-T Interactions,J. Am. Chem. Soc. 1990,112,5525-5534.
    [16]T. Ozdemir, S. Atilgan, I. Kutuk, L. T. Yildirim, A. Tulek, M. Bayindir, E. U. Akkaya, Solid-State Emissive BODIPY Dyes with Bulky Substituents As Spacers, Org. Lett., 2009,11,2105-2107.
    [17]A. L. Spek, Single-crystal Structure Validation with the Program PLATON, J. Appl.Cryst., 2003,36,7-13.
    [18]G. M. Sheldrick, SHELXTL, Version 6.12, Bruker Analytical X-ray Instruments, Inc.: Madison, WI, USA,2001.
    [19]L. J. B. O. V. Dolomanov, R. J. Gildea, J. A. K. Howard. H. Puschmann, OLEX2:A Complete Structure Solution, Refinement and Analysis Program,J. Appl. Cryst.,2009,42, 339-341.
    [20]J. R. Lakowicz. Principles of Fluorescence Spectroscopy[M], New York, Plenum Press. 1983,187-214.
    [21]周公度等,物质结构原理,北京大学出版社,2002.
    [22]袁春雪,博士后研究工作报告,山东大学,2011.
    [23]W. Qin, M. Baruah, M. Van der Auweraer, F. C. De Schryver, N. Boens, Photophysical Properties of Borondipyrromethene Analogues in Solution,J.Phys. Chem. A,2005,109, 7371-7384.
    [24]S. Rihn, P. Retaillcau. N. Bugsaliewicz, A. D. Nicola, R. Zicssel, Versatile Synthetic Methods for the Engineering of Thiophene-substituted Bodipy Dyes, Tetrahedron Lett., 2009, 50,7008-7013.
    [25]W. Qin, V. Lecn, T. Rohand,W.Dehaen, P.Dedecker, M. Van der Auweracr, K. Robeyns, L. Van Mcervelt, D. Beljonne, B. Van Averbeke, J. N. Clifford, K. Driesen, K. Binnemans, N.l. Boens, Synthesis, Spectroscopy, Crystal Structure, Electrochemistry, and Quantum Chemical and Molecular Dynamics Calculations of a 3-Anilino Difluoroboron Dipyrromethene Dye, J. Phys. Chem. A,2009,113,439-447.
    [26]W. Qin, V. Leen, W. Dehaen, J. Cui, C. Xu, X. Tang, W. Liu, T. Rohand, D. Beljonne, B. V. Averbeke, J. N. Clifford, K. Driesen, K. Binnemans, M. V. d. Auweraer, N.l. Boens. 3,5-Dianilino Substituted Difluoroboron Dipyrromethene:Synthesis, Spectroscopy, Photophysics, Crystal Structure, Electrochemistry, and Quantum-Chemical Calculations, J.Phys. Chem. C,2009,113,11731-11740.
    [27]G.-L. Fu, H. Pan, Y.-H. Zhao, C.-H. Zhao, Solid-state Emissive Triarylborane-based BODIPY Dyes:Photophysical Properties and Fluorescent Sensing for Fluoride and Cyanide Ions, Org. Biomol. Chem.,2011,9,8141-8146.
    [28]Gaussian 09, Revision A.02, M. J. Frisch, G.W. Trucks, H. B. Schlegel, G. E. Scuseria,M. A. Robb, J. R. Cheeseman. G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima,Y.Honda,O.Kitao,H.Nakai,T.Vreven, J.A.Montgomery, Jr., J. E. Peralta, F. Ogliaro,M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand,K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi,M. Cossi, N. Rega, J. M.Millam,M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo. R, Gomperts, R. E. Stratmann. O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels,O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian, Inc., Wallingford CT,2009.
    [1]X.-Y. Liu, D.-R. Bai, S. Wang, Charge-Transfer Emission in Nonplanar Three Coordinate Organoboron Compounds for Fluorescent Sensing of Fluoride, Angew.Chem. Int. Ed. 2006,118.5601-5604.
    [2]D.-R. Bai, X.-Y. Liu, S. Wang, Charge-Transfer Emission Involving Three Coordinate Organoboron:V-Shape versus U-Shape and Impact of the Spacer on Dual Emission and Fluorescent Sensing, Chem.-Eur. J.2007,13,5713-5723.
    [3]S. B. Larson, C. S. Wilcox, Structure of 5,11-Methano-2,8-dimeth1-5,6,11,12-tetrahydrodibenzo[b,f][1,5]diazocine (Troger's base) at 163 K, Acta Crystallogr. Sect. C 1986, C42,224-227.
    [4]C. Pardo, E. Sesmilo, E. Gutierrez-Puebla, A. Monge, J. Elguero, A. Fruchier, New Chiral Molecular Tweezers with a Bis-Troger's Base Skeleton, J. Org. Chem.,2001,66, 1607-1611.
    [5]A. L. Spek, Single-Crystal Structure Validation with the Program PLATON, J. Appl.Cryst.,2003,36,7-13.
    [6]C. A. Hunter, Jeremy K. M. Sanders, The Nature of T-T Interactions, J. Am. Chem. Soc. 1990,112,5525-5534.
    [7]袁春雪,博士后研究工作报告,山东大学,2011.
    [8]E. Condon,A Theory of Intensity Distribution in Band Ststems,Phys. Rev.1926,28. 1182-1201.
    [9]J. R. Lakowicz, Principles of Fluorescence. Spectroscopy [M].New York:Plenunm press. 1983.
    [1]A. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M. Huxley, C. P. McCoy, J. T. Rademacher. T. E. Rice, Signaling Recognition Events with Fluorescent Sensors and Switches. Chew. Rev.,1997,97,1515-1566.
    [2]F. P. Schmidtchen, M. Berger, Artificial Organic Host Molecules for Anions. Chem. Rev. 1997,97,1609-1646.
    [3]K. L. Kirk. Biochemistry of the Halogens and Inorganic Halides, New York:Plenum Press,1991,p58-59.
    [4]C. B. Black, B. Andrioletti, A. C. Try, C. Ruiperez, J. L. Sessler, Dipyrrohiquin- oxalines: Efficient Sensors for Fluoride Anion in Organic Solution,J. Am. Chem. Soc.,1999,121, 10438-10439.
    [5]G. Zhou, M. Baumgarten, K. Mullen, Mesitylboron-Substituted Ladder-Type Pentaphenylenes:Charge-Transfer, Electronic Communication, and Sensing Properties,J. Am. Chem. Soc.,2008.130.12477-12484.
    [6]R. Martincz-Manez, F. Sancenon, Fluorogcnic and Chromogcnic Chemosensors and Reagents for Anions, Chem. Rev.,2003,103,4419-4476.
    [7]L. Pu, Fluorescence of Organic Molecules in Chiral Recognition, Chem. Rev.,2004,104, 1687-1716.
    [8]Z H. Lin, S. J. Ou, C. Y. Duan, B. G. Zhang, Z. P. Bai, Naked-Eye Detection of Fluoride Ion in Water:A Remarkably Selective Easy-to-Prepare Test Paper, Chem. Commun., 2006,624-626.
    [9]牟鑫,刘淑娟,戴春雷,马廷存,赵强,凌启淡,黄维,三芳基硼烷在有机电子学领域的研究与应用,中国科学:化学,2010,8,979-990.
    [10]S. Yamaguchi, T. Shirasake, K. Tamao, Tridury lboranes Extended by Three Arylethynyl Groups as a New Family of Boron-Based π-Electron Systems, Org. Lett.,2000,2, 4129-4132.
    [11]R. Stahl, C. Lambert, C. Kaiser, R. Wortmann, R. Jakober, Electrochemistry and Photophysics of Donor-Substituted Triarylboranes:Symmetry Breaking in Ground and Excited State. Chem.-Eur.J.,2006,12,2358-2370.
    [12]S. Yamaguchi, A. Wakamiya, Boron as a Key Component for New π-Electron Materials, PureAppl. Chem.,2006,7,1413-1424.
    [13]W. L. Jia, X. D. Feng, D. R. Bai, Z. H. Lu, S. Wang, G. Vamvounis, Mes2B(p-4,4'-biphenyl-NPh(1-naphthyl)):A Multifunctional Molecule for Electrolumin-escent Devices, Chem. Mater.,2005,17,164-170.
    [14]S. Aldridge, C. Bresner, I. A. Fallis, S. J. Coles, M. B. Hursthouse, Multidentate Lewis Acids:Synthesis, Structure and Mode of Action of a Redox-Based Fluoride Ion Sensor, Chem. Commun.,2002,740-741.
    [15]S. Yamaguchi, T. Shirasaka, S. Akiyama, K. Tamao, Dibenzoborole-Containing π-Electron Systems:Remarkable Fluorescence Change Based on the "On/Off" Control of the pπ-π* Conjugation,J. Am. Chem. Soc.,2002,124,8816-8817.
    [16]袁茂森,博士学位论文,山东大学,2008.
    [17]杨柳:郭成海,张国胜,荧光比率探针及其应用研究进展,生命科学仪器,2006,4,7-10
    [18]X. Peng, Y. Wu, J. Fan, M. Tiart, K. Hart, Colorimetric and Ratiometric Fluorescence Sensing of Fluoride:Tuning Selectivity in Proton Transfer,J. Org. Chem.,2005,70, 10524-10531.
    [19]K. A. Connors. Binding Constants, John Wiley and Sons:New York.1987.
    [20]S. Yamaguchi, S. Akiyama, K. Tamao, Colorimetric Fluoride Ion Sensing by Boron-Containing π-Electron Systems,J. Am. Chem. Soc.,2001,123,11372-11375.
    [21]M. Melaimi, F. P. Gabbai, A Heteronuclear Bidentate Lewis Acid as a Phosphorescent Fluoride Sensor,J.Am. Chem. Soc.,2005,127,9680-9681.
    [22]S. Aldridge, C. Bresner, I. A. Fallis. S. J. Coles, M. B. Hursthouse, Multidentate Lewis Acids:Synthesis. Structure and Mode of Action of a Redox-Based Fluoride Ion Sensor, Chem. Commun.,2002.740-741.
    [23]A. E. J. Broomsgrove, D. A. Addy, C. Bresner,I. A. Fallis, A. L. Thompson, S. Aldridge, AND/NOT Sensing of Fluoride and Cyanide Ions by Ferrocene-Derivatised Lewis Acids, Chem.-Eur.J.,2008,14,7525-7529.
    [24]C. R. Wade, F. O. P. Gabbai, Cyanide Anion Binding by a Triarylborane at the Outer Rim of a Cyclometalated Ruthenium(Ⅱ) Cationic Complex, Inorg. Chem.,2010,49,714-720.
    [25]陈红海,硕士学位论文,陕西科技大学,2011.
    [26]T. W. Hudnall, F. P. Gabbai, Ammonium Boranes for the Selective Complexation of Cyanide or Fluoride Ions in Water,J. Am. Chem. Soc.2007,129,11978-11986.
    [27]Liu, X.-Y.;Bai, D.-R.; Wang, S., Charge-Transfer Emission in Nonplanar Three Coordinate Organoboron Compounds for Fluorescent Sensing of Fluoride, Angew.Chem. Int. Ed.2006,118,5601-5604.
    [28]H. Pan, G.-L. Fu, Y.-H. Zhao, C.-H. Zhao, Through-Space Charge-Transfer Emitting Biphenyls Containing a Boryl and an Amino Group at the o,o'-Positions, Org. Lett.2011, 13,4830-4833.
    [29]Y.-H. Zhao, H. Pan, G.-L. Fu, J.-M. Lin, C.-H. Zhao, A Highly Emissive Cruciform Triarylborane as A Ratiometric and Solid State Fluorescence Sensor for Fluoride Ions, Tetrahedron Lett.,2011,52,3832-3835.
    [30]D.-R. Bai, X.-Y. Liu, S. Wang, Charge-Transfer Emission Involving Three Coordinate Organoboron:V-Shape versus U-Shape and Impact of the Spacer on Dual Emission and Fluorescent Sensing, Chem.-Eur.J.2007,13,5713-5723.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700