用户名: 密码: 验证码:
西天山智博铁矿石炭纪火山作用与铁成矿研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
火山岩型铁矿是重要的铁矿类型之一,也是近年来国内外铁矿研究的热点。火山作用与铁成矿作用之间的联系是认识这类矿床的关键。本论文选择新疆西天山地区新发现的智博火山岩型铁矿为研究对象,围绕火山作用与铁成矿这一主题,对智博铁矿进行综合研究。在系统的野外地质调查基础上,通过矿物学、矿物化学、-磁铁矿LA-ICP-MS原位微量元素分析、全岩地球化学、锆石U-Pb测年、榍石U-Pb测年、流体包裹体测温以及稳定同位素示踪等研究工作,对成矿地质背景、成矿地质特征、火山岩成因、成矿时代、成矿物质来源、矿床成因及成矿模型等科学问题做了较为深入的研究和探讨。同时,结合前人研究资料,论文对成矿带区域火山作用与铁成矿规律进行了初步总结。
     智博铁矿赋存于石炭纪火山岩中。矿体以厚板状、似层状、透镜状为主。矿石类型主要有块状矿石、浸染状矿石、条带状矿石以及角砾状矿石。矿石矿物以磁铁矿为主,含少量赤铁矿,硫化物以黄铁矿为主;磁铁矿主要呈板条状、半自形-他形粒状结构。围岩蚀变广泛发育,以Na-Ca质蚀变和K-Ca质蚀变为主,形成透辉石、阳起石、绿帘石、钠长石、钾长石等主要脉石矿物。划分出四阶段矿物共生序列:第一阶段矿物组合以透辉石+钠长石±阳起石+磁铁矿为主;第二阶段矿物组合主要为钾长石+阳起石±绿帘石+磁铁矿;第三阶段蚀变以脉状绿帘石+黄铁矿±磁铁矿为主;第四阶段以石英+方解石+赤铁矿细脉状为主。
     智博铁矿的磁铁矿Ti含量较低,亏损热液流体中的惰性元素(如Ti、 Al、Cr, Zr、 Hf、Zn、 Co、 Sc等),富集与岩浆磁铁矿高度不相容的元素(如Si、 Ca、Y等),Ni、 Cr含量呈现解耦现象,Ni/Cr值多大于1,平均为8.6。这些微量元素特征表明磁铁矿主要由富铁的岩浆-热液流体充填交代形成。
     智博矿区火山岩为基性-中性-酸性连续系列,以中基性岩为主,主要由玄武岩、玄武安山岩、安山岩、英安岩以及安山质凝灰岩组成。火山岩属钙碱性到高钾钙碱性系列,富集轻稀土元素(LREE)和大离子亲石元素(LILE;如Rb、Th、K),亏损重稀土元素(HREE)和高场强元素(HSFE;如Nb、Ta、Ti),整体表现出俯冲带弧火山岩的地球化学特征。火山岩母岩浆由俯冲带流体交代地幔楔发生部分熔融形成,低程度的混染了上地壳物质。铁成矿形成于于大陆边缘弧环境的局部伸展地带。
     利用LA-ICP-MS锆石U-Pb测年技术获得安山岩(12ZB56)和矿化火山岩(12ZB06)的结晶年龄分别为328.7士3.1Ma、329.9士1.5Ma,英安岩(ZB382)和闪长岩(ZB360)的结晶年龄分别为300.3士1.1Ma、305士1.1Ma.三件矿石样品中榍石LA-ICP-MS原位U-Pb年龄分别为310.0±2.1Ma、310.6±2.6Ma.315.2士2.8Ma,表明成矿时代为310-315Ma。智博铁矿与查岗诺尔铁矿成矿时代接近,产于同一火山机构中,属于同一火山-热液成矿事件。年代学数据表明,智博铁矿在石炭纪至少有两期火山-岩浆活动,分别为成矿前中基性火山岩的喷发(330~316Ma)和成矿后中酸性岩浆侵入(307~295Ma),成矿作用发生于晚石炭世(310~315Ma)。
     透辉石平衡水的δ18O在4.0~10.0‰之间,表明早期阶段成矿流体以岩浆水为主;阳起石平衡水的δ18O介于9.9~12.6‰,钾长石平衡水的δ18O为7.9~18.9%0,可能与成矿流体和火山岩围岩的同位素再平衡有关;晚期阶段的绿帘石平衡水δ18O值为-1.7~4.2‰,石英平衡水618O值为-3.7~1.4‰,显示有大气水的加入。统计资料显示磁铁矿的δ180值为0.5%0~8.8%0,平均为3.3‰,表明铁质以岩浆来源为主。黄铁矿的δ34S集中于-2.4%0~0.3%o,平均为-0.8%0,具幔源硫特征。绿帘石、石英和方解石均一温度分布莅131~391℃,盐度分布于3.23-22.44wt.%NaCleq.和31.85-37.40wt.%NaCleq.两个区间,表明晚期阶段成矿流体以低温中-高盐度为特征。总体而言,智博矿床的成矿物质主要来源于深部岩浆,与火山岩具有同源的特征。
     智博铁矿的形成与区域内石炭纪陆缘弧岩浆-热液活动有关。成矿母岩浆由俯冲流体交代的亏损地幔部分熔融形成,经液态不混溶作用或者低氧逸度下演化分异形成的富铁流体,沿火山通道与断裂向上运移,在火山岩裂隙或层间薄弱带聚集成矿。主成矿阶段以贯入充填成矿为主,形成大量块状富矿石,蚀变不发育,与围岩截然接触,磁铁矿呈板条状、树枝状;中晚期成矿伴有强烈的围岩蚀变,形成浸染状、条带状矿石。角砾状矿石的形成与隐爆作用或者贯入充填成矿作用有关。智博铁矿属于火山岩浆-热液型矿床。
     本论文对阿吾拉勒铁成矿带区域成矿规律进行了总结,认为区内火山岩型铁矿存在成因联系,成矿过程具有整体性,受区域火山岩浆-热液作用及火山沉积作用的控制,成矿物质以深部岩浆来源为主。
Voleanogenic iron deposit is an important type of iron deposit, and has recently been the subject of research. The association between volcanisim and Fe mineralization is the key to undertand this ore type. In this contribution, we choose Zhibo iron deposit, a recently discovered voleanogenic iron deposit in the Western Tianshan, as the typical deposit to study. An integrated study of field investigation, mineralogy, mineral chemisty, LA-ICP-MS in situ trace element analysis of magnetite, whole-rock geochemistry, zircon U-Pb dating, titanite U-Pb dating, microthermometric studies of fluid inclusions and stable isotope was carried out to investigate the metallogenic tectonic setting, geological characteristics, the age of mineralization, source of metal, ore genesis and metallogenic model. Combined with previous data, we propose a preliminary metallogenic model of metallogenic belt.
     The Zhibo iron deposit is hosted by Carboniferous volcanic and volcaniclastic rocks. Most magnetite orebodies are mainly tabular, stratoid and lenticular in shape. Ore types include massive, disseminated, banded, and brecciated ores. Ore minerals are predominantly magnetite, with traces of hematite. Pyrite is the most common sulfides. Magnetite usually occurs as euhedral-subhedral crystals or as dendritic and platy forms. Associated alteration assemblage is mainly characterized by Na-Ca alteration and K-Ca alteration, which produce various gangue minerals including diopside, albite, actinolite, K-feldspar, and epidote. Four paragenetic stages are recognized:stage I, characterized by albite-diopside-magnetitie assemblages; stage II, represented by widespread actinolite-K-feldspar-magnetitie assemblages; stage III, dominated by epidote-pyrite±magnetite veins; and stage IV, occurring chiefly as hematite-calcite-quartz veins.
     Magnetite from Zhibo have low Ti content. Magnetite is depleted in elements that are relatively immobile in hydrothermal fluids (e.g., Ti, Al, Cr, Zr, Hf, Zn, Co, Sc), but is enriched in elements that are highly incompatible into magmatic magnetite (e.g., Si, Ca, Y). In addition, Ni and Cr of magnetite are decoupled and Ni/Cr ratio is high (>1), with an average value of8.6. The trace element characteristics indicated that the ore magnetite was formed by Fe-rich magmatic-hydrothemal fluids.
     The volcanic host rocks of Zhibo display a compositional continuum from basalt to rhyolite, dominated by basalt, basaltic andesite, andesite, dacite, and tuffaceous rocks. Geochemical analyses indicate that the volcanic host rocks are mainly of calc-alkaline to high-K calc-alkaline affinity, enriched in LILEs (e.g., Rb, K) and LREEs, and depleted in HFSEs (e.g., Nb, Ta, Ti) and HREEs, supporting a subduction origin for the volcanic rocks. The most likely origin of the parent magma is partial melting of a mantle wedge that had been fertilized by fluids released from subducted slab. The parental magma was slightly contaminated by crust during ascent. The iron mineralization were suggested to have formed in extensional zones of continental arc-setting.
     LA-ICP-MS U-Pb dating of igneous zircon from an andesite (12ZB56) and a mineralized lava (12ZB06) yielded crystallization ages of328.7±2.1Ma and329.9±1.5Ma, respectively. A dacite (ZB382) and a diorite (ZB360) have been dated at300.3±1.1Ma and305±1.1Ma, respectively. In situ LA-ICP-MS U-Pb dating of hydrothermal titanite in thin sections of three ore sapmle yielded ages of310.0±2.1Ma,310.6±2.6Ma,315.2±2.8Ma, considered to represent the age of mineralization (310--315Ma). Iron mineralization at Zhibo and Chagangnuoer have formed more-or-less coevally in a single metallogenic episode generated by magmatic-hydrothermal activity within the same volcano. Geochronological data indicated that there were at least two episodes of volcanism at Zhibo, i.e. pre-mineralization volcanism (ca.330-316Ma) and post-mineralization magmatic intrusions (ca.307-295Ma). The timing of mineralization at Zhibo was bracketed between310Ma and315Ma.
     Stable isotope compositions of pyroxene indicate a magmatic source for early mineralization stages:calculated δ18O composition of fluids in equilibrium with pyroxene ranging between4.0and10.0%o. Calculated δ18O composition of fluids in equilibrium with actinolite (9.9-12.6%o) and K-feldspar (7.9-18.9%o), probably resulted from the isotope reequilibration between Fe-rich fluids with host rocks. Calculated δ18O composition of fluids in equilibrium with epidote (-1.7-4.2%o) and quartz (-3.7-1.4%o) may indicate ingress of meteoric fluids in the late stage alteration. We show that magnetites from Zhibo have δ18O values between0.5and8.8%o, with an average value of3.3%o, indicative of magmatic origin. The δ18O values for pyrite from Zhibo vary from-2.4to0.3%o, with an average value of-0.8%o, consistent with a deep-seated sulfur source. Homogenization temperatures of epidote, quartz and calcite are between131℃and391℃with salinities of3.23-22.44wt.%NaCleq.and31.85-37.40wt.%NaCleq., indicate an involvement of low-T and medium to high-salinity chloride fluids in the late stage alteration. Taken together, fluid inclusion and stable isotope data suggest that iron is predominantly magmatic in origin, sharing common parental magma with volcanic host rocks.
     Fe mineralzation at Zhibo was attributed to the regional magmatic-hydrothemal during Carboniferous. The most likely origin of the ore-related magma is partial melting of a mantle wedge that had been fertilized by fluids released from subducted slab. Fe-rich melts may be separated from the parent magma by liquid immiscibility or differentiation in low oxygen fugacity. Fe-rich melts were then channeled along major faults and fractures within a volcano into the volcanic hostr rocks, forming iron ores. The intrusive of Fe-rich melts is the dominant mineralization style, whieh formed massive ores, with little alteration, having sharp contacts with host rock, and dendritic or platy forms of magnetite. The banded and disseminated ores resulted from the metasomatic reaction between Fe-rich fluids with host rocks. The brecciated ore can plausibly be interpreted as resulting from an explosion of Fe-rich melt, caused by a sudden release of volatiles in response to decreasing pressure during ascent to near-surface levels. The Zhibo ore is typical of volcanogenic iron deposit formed in a volcanic magmatic-hydrothermal system.
     Combined with previous data, we propose a preliminary metallogenic model of Awulale iron metallogenetic belt (ATMB) and suggest that iron deposit within AIMB are relevant ores that formed in a single metallogenic episode. Fe mineralizaion was controlled by volcanic-hydrothermal and volcanism-sedimentation. The metal source was magmatic in origin.
引文
Aleinikoff J.N., Wintsch R.P., Tollo R.P., Unruh D.M., Fanning C.M., Schmitz M.D. Ages and origins of rocks of the Killingworth dome, south-central Connecticut:Implications for the tectonic evolution of southern New England. American Journal of Science,2007,307:63-118.
    Allen M.B., Windley B.F., Zhang C. Palaeozoic collisional tectonics and magmatism of the Chinese Tien Shan, central Asia [J]. Tectonophysics,1992,220 (1-4):89-115.
    Barton M.D., Johnson D.A. Evaporitic-source model for igneous-related Fe oxide-(REE-Cu-Au-U) mineralization [J]. Geology,1996,24:259-262.
    Barton M.D., Johnson D.A. Footprints of Fe-oxide (-Cu-Au) systems [J]. University of Western Australia Special Publication,2004,33:112-116.
    Bazhenov M.L., Collins A.Q., Degtyarev K.E., Levashova N.M., Mikolaichuk A.V., Pavlov V.E., Van der Voo R. Paleozoic northward drift of the North Tien Shan (Central Asia) as revealed by Ordovician and Carboniferous paleomagnetism [J]. Tectonophysics,2003,366 (1-2):113-141.
    Bookstrom A.A. The magnetite deposits of El Romeral, Chile [J]. Economic Geology,1977,72 (6): 1101-1130.
    Bodnar R J. Revised equation and stable for determining the freezing point depression of F2O-NaCl solutions [J]. Geochimica et Cosmochimica Acta,1993,57:683-684.
    Carew M.J. Controls on Cu-Au mineralisation and Fe oxide metasomatism in the Eastern Fold Belt, NW Queensland[D]. Australia:James Coook University,2004:1-308.
    Clayton, R.N., and Mayeda, T.K. The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis [J]. Geochim. et Cosmochim. Acta.,1963,27:43-52.
    Chai F., Yang F., Liu F., Santosh M., Geng X., Li Q., et al. The Abagong apatite-rich magnetite deposit in the Chinese Altay Orogenic Belt:A Kiruna-type iron deposit [J]. Ore Geology Reviews.2014,57: 482-497.
    Charvet J., Shu L., Laurent-Charvet S., Wang B., Faure M., Cluzel D., et al. Palaeozoic tectonic evolution of the Tianshan belt, NW China [J]. Science China Earth Sciences.2011,54:166-84.
    Chen C.M., Lu H.F., Jia D., Cai D., Wu S. Closing history of the southern Tianshan oceanic basin, western China:an oblique collisional orogeny [J]. Tectonophysics,1999,302 (1-2):23-40.
    Chen H.Y. The Marcona-Mina Justa district, south-central Peru:Implications for the genesis and definition of the iron oxide-copper (-gold) ore deposit clan [D]. Kingston:Queen's University,2008:266.
    Chen H.Y., Clark A H, Kyser T K, Ullrich T D, Baxter R, Chen Y and Moody T C.2010a. Evolution of the Giant Marcona-Mina Justa Iron Oxide-Copper-Gold District, South-Central Peru [J]. Economic Geology,105 (1):155-185.
    Chen H.Y., Clark A H and Kyser T K.2010b. The Marcona Magnetite Deposit, Iea, South-Central Peru:A Product of Hydrous, Iron Oxide-Rich Melts? [J]. Economic Geology,105 (8):1441-1456.
    Chen H.Y. External sulphur in IOCG mineralization:Implications on definition and classification of the IOCG clan [J]. Ore Geology Reviews,2013,51:74-8.
    Chou I.-M., Eugster H.P. Solubility of magnetite in supercritical chloride solutions [J]. American Journal of Science,1977,277:1296-314.
    Cliff R.A., Rickard D., Blake K. Isotope systematics of the Kiruna magnetite ores, Sweden; Part 1, Age of the ore [J]. Economic Geology,1990,85 (8):1770-1776.
    Coleman R.G. Continental growth of northwest China [J]. Tectonics,1989,8 (3):621-635.
    Cox D.P., Singer D. Descriptive and Grade-Tonnage Models and Database for Iron Oxide Cu-Au Deposits [R]. Geological Survey Open File Report,2007:3-14.
    Dare S.A.S., Barnes S.-J., Beaudoin G. Variation in trace element content of magnetite crystallized from a fractionating sulfide liquid, Sudbury, Canada:Implications for provenance discrimination [J]. Geochimica et Cosmochimica Acta,2012,88:27-50.
    Dare S.A.S., Barnes S.-J., Meric J., Neron A., Beaudoin G., Boutroy E. The use of trace elements in Fe-Oxides as provenance and petrogenetic indicators in magmatic and hydrothermal environments. 12th SGA Biennial Meeting 2013. Proceedings, Volume 1:256-259
    Davidson J. Deciphering mantle and crustal signatures in subduction zone magmatism [J].Geophysical monograph,1996,96:251-262.
    Deer WA, Howie RA, Zussman J. An introduction to rock-forming minerals,2nd edn. Longman, Harlow, Wiley, New York,1992.1-696
    DePaolo D.J., Daley E.E. Neodymium isotopes in basalts of the southwest basin and range and lithospheric thinning during continental extension [J]. Chemical Geology,2000,169:157-85.
    Dill H.G. The "chessboard" classification scheme of mineral deposits:Mineralogy and geology from aluminum to zirconium[J]. Earth-Science Reviews.2010,100:1-420.
    Duan S., Zhang Z., Jiang Z., Zhao J., Zhang Y., Li F., et al. Geology, geochemistry, and geochronology of the Dunde iron-zinc ore deposit in western Tianshan, China[J]. Ore Geology Reviews.2014,57: 441-461.
    Duncan R.J., Stein H.J., Evans K.A., Hitzman M.W., Nelson E.P., Kirwin D.J. A New Geochronological Framework for Mineralization and Alteration in the Selwyn-Mount Dore Corridor, Eastern Fold Belt, Mount Isa Inlier, Australia:Genetic Implications for Iron Oxide Copper-Gold Deposits [J]. Economic Geology,2011,106:169-192.
    Dupuis C, Beaudoin G. Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types [J]. Mineralium Deposita,2011,46:319-335.
    Fenner C.N. The crystallization of basalts. American Journal of Science.1929,5 (18):225-53.
    Frietsch R. On themagmatic origin of iron ores of the Kiruna type [J]. Economic Geology,1978,73 (4): 478-485.
    Frietsch R., Perdahl J.A. Rare earth elements in apatite and magnetite in Kiruna-type iron ores and some other iron ore types [J]. Ore Geology Reviews,1995,9 (6):489-510.
    Frost B.R., Chamberlain K.R., Schumacher J.C. Sphene (titanite):phase relations and role as a geochronometer [J]. Chemical Geology,2001,172:131-148.
    Frutos J. Tectonic and geochemical evidence concerning the genesis of El Laco magnetite lava flow deposits, Chile [J]. Economic Geology,1975,70 (5):988-990.
    Gao J., He G., Li M.S., Xiao X.C., Tang Y.Q., Wang J., Zhao M. The mineralogy, petrology, metamorphic PTDt trajectory and exhumation mechanism of blueschists, south Tianshan, northwestern China [J]. Tectonophysics,1995,250 (1-3):151-168.
    Gao J., Li M.S., Xiao X.C., Tang Y.Q., He G.Q. Paleozoic tectonic evolution of the Tianshan Orogen, northwestern China [J]. Tectonophysics,1998,287 (1-4):213-231.
    Gao J., Klemd R., Zhang L.F., Wang Z., Xiao X.C. PT path of high-pressure/low-temperature rocks and tectonic implications in the western Tianshan Mountains, NW China [J]. Journal of Metamorphic Geology,1999,17:621-636.
    Gao J., Long L.L., Klemd R., Qian Q., Liu D.Y., Xiong X.M., Su W., Liu W., Wang Y.T., Yang F.Q. Tectonic evolution of the South Tianshan orogen and adjacent regions, NW China:geochemical and age constraints of granitoid rocks [J]. International Journal of Earth Sciences,2009,98 (6): 1221-1238.
    Geijer P. The iron ores of the Kiruna type:geographical distribution, geological characters and origin [J]. Sveriges geologiska undersokning,1931.1-39.
    Griffin W L, Powell W J, Pearson N J, et al. GLITTER:Data reduction software for laser ablation ICP-MS. In:Sylvester P, ed. Laser Ablation-ICP-MS in the Earth Sciences:Current Practices and Outstanding Issues. Mineralogical Association of Canada Short Course,2008,40:308-311.
    Groves D.I., Bierlein F.P., Meinert L.D., Hitzman M.W. Iron Oxide Copper-Gold (IOCG) Deposits through Earth History:Implications for Origin, Lithospheric Setting, and Distinction from Other Epigenetic Iron Oxide Deposits [J]. Economic Geology,2010,105 (3):641-654.
    Han B.F., Liu J., Zhang L. A noncognate relationship between megacrysts and host basalts from the Tuoyun Basin, Chinese Tian Shan [J]. The Journal of Geology,2008,116 (5):499-509.
    Han B.F., Guo Z.J., Zhang Z.C., Zhang L., Chen J.F., Song B. Age, geochemistry, and tectonic implications of a late Paleozoic stitching pluton in the North Tian Shan suture zone, western China [J]. Geological Society of America Bulletin,2010,122 (3-4):627-640.
    Hart S.R. A large-scale isotope anomaly in the Southern Hemisphere mantle [J]. Nature,1984,309: 753-757.
    Henriquez F., Martin R.F. Crystal-growth textures in magnetite flows and feeder dykes, El Laco, Chile [J]. The Canadian Mineralogist,1978,16 (4):581-589.
    Henriquez F and Nystr m J O. Magnetite bombs at El Laco volcano, Chile [J]. GFF,1998,120:269-272.
    Henrfquez F., Naslund H.R., Nystrom J.O., Vivallo W, Aguirre R., Dobbs F.M., Lledo H. New field evidence bearing on the origin of the El Laco magnetite deposit, northern Chile-a discussion [J]. Economic Geology,2003,98 (7):1497-1500.
    Higgins J.B., Ribbe P.H. The crystal chemistry and space groups of natural and synthetic titanites [J]. American Mineralogist,1976,61:878-88.
    Hildebrand R.S. Kiruna-type deposits; their origin and relationship to intermediate subvolcanic plutons in the Great Bear magmatic zone, Northwest Canada. Economic Geology.1986,81:640-59.
    Hitzman M.W., Oreskes N, Einaudi M.T. Geological characteristics and tectonic setting of proterozoic iron oxide (Cu-U-Au-REE) deposits [J]. Precambrian Research,1992,58 (1-4):241-287.
    Hoefs J. Stable isotope geochemistry [M]. Berlin:Springer,2009:285.
    Hoskin P.W.O., Schaltegger U. The Composition of Zircon and Igneous and Metamorphic Petrogenesis [J]. Reviews in Mineralogy and Geochemistry,2003,53:27-62.
    Hou T., Zhang Z.C., Encarnacion J., Du Y.S., Zhao Z.D., Liu J.L. Geochemistry of Late Mesozoic dioritic porphyries associated with Kiruna-style and stratabound carbonate-hosted Zhonggu iron ores, Middle-Lower Yangtze Valley, Eastern China:Constraints on petrogenesis and iron sources [J]. Lithos,2010,119 (3):330-344.
    Hou T., Zhang Z., Kusky T. Gushan magnetite-apatite deposit in the Ningwu basin, Lower Yangtze River Valley, SE China:Hydrothermal or Kiruna-type? [J].Ore Geology Reviews.2011,43:333-46.
    Hu A.Q., Jahn B.M., Zhang G.X., Chen Y.B., Zhang Q.F. Crastal evolution and Phanerozoic crustal growth in northern Xinjiang:Nd isotopic evidence. PartI. Isotopic characterization of basement rocks [J]. Tectonophysics,2000,328 (1-2):15-51.
    Irvine T.N., Baragar W.R.A. A guide to the chemical classification of the common volcanic rocks [J]. Canadian Journal of Earth Sciences,1971,8 (5):523-548.
    Jahn, B.M.,2004. The Central Asian Orogenic Belt and growth of the continental crust in the Phanerozoic [J]. Geological Society, London, Special Publications 226,73-100.
    Jonsson E., Troll V.R., Hogdahl K., Harris C., Weis F., Nilsson K.P., et al. Magmatic origin of giant 'Kiruna-type'apatite-iron-oxide ores in Central Sweden [J]. Sci Rep,2013,3.
    Kroner A., Windley B.F., Badarch G., Tomurtogoo O., Hegner E., Jahn B.M., et al. Accretionary growth and crust formation in the Central Asian Orogenic Belt and comparison with the Arabian-Nubian shield [J]. Geological Society of America Memoirs,2007,200:181-209.
    Kwak T.A.P., Brown W.M., Abeysinghe P.B., Tan T.H. Fe solubilities in very saline hydrothermal fluids; their relation to zoning in some ore deposits [J]. Economic Geology,1986,81:447-65.
    Large R.R., Gemmell J.B., Paulick H., Huston D.L. The Alteration Box Plot:A Simple Approach toUnderstanding the Relationship between Alteration Mineralogy andLithogeochemistry Associated with Volcanic-Hosted Massive Sulfide Deposits [J]. Economic Geology,2001,96:957-971.
    Le Bas M., Maitre R., Streckeisen A., Zanettin B. A chemical classification of volcanic rocks based on the total alkali-silica diagram [J]. Journal of Petrology,1986,27 (3):745-750.
    Leake B.E., Woolley A.R., Arps C., Birch W., Gilbert M., Grice J., Hawthorne F., KatoA., Kisch H., Krivovichev V. Nomenclature of amphiboles; report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on new minerals and mineral names [J]. Mineralogical Magazine,1997,61 (405):295-322.
    Li, J.W., Deng, X.D., Zhou, M.F., Liu, Y.S., Zhao, X.F., Guo, J.L.. Laser ablation ICP-MS titanite U-Th-Pb dating of hydrothermal ore deposits:A case study of the Tonglushan Cu-Fe-Au skarn deposit, SE Hubei Province, China [J]. Chemical Geology,2010,270,56-67.
    Li, J.L., Gao, J., John, T., Klemd, R., Su, W., Fluid-mediated metal transport in subduction zones and its link to arc-related giant ore deposits:Constraints from a sulfide-bearing HP vein in lawsonite eclogite (Tianshan, China) [J]. Geochimica et Cosmochimica Acta,2013,120:326-62
    Lindsley, D.H. The crystal chemistry and structure of oxide minerals as exemplified by the Fe-Ti oxides: Reviews in Mineralogy,1976,3:L1-L60.
    Lindsley, D.H. Experimental studies of oxide minerals:Reviews in Mineralogy,1991,25:69-100.
    Liu Y., Gao S., Hu Z., Gao C., Zong K., Wang D. Continental and oceanic crust recycling-induced melt-peridotite interactions in the trans-north China Orogen:U-Pb dating, Hf isotopes and trace elements in Zircons from Mantle Xenoliths [J]. Journal of Petrology,2010,51:537.
    Lledo, L.H.,2005, Experimental studies on the origin of iron deposits and mineralization of Sierra La Bandera, Chile. Unpublished Ph.D. thesis, Binghamton, New York, State University of New York, 200 pp.
    Lomize M.G., Demina L.I., Zarshchikov A.A. The Kyrgyz-Terskei Paleoceanic Basin, Tien Shan [J]. Geotectonics,1997,31 (6):463-482.
    Long L.L., Gao J., Wang J.B., Qian Q., Xiong X.M., Wang Y.W., Wang L.J., Gao L.M. Geochemistry and SHRIMP Zircon U-Pb Age of Post-Collisional Granites in the Southwest Tianshan Orogenic Belt of China:Examples from the Heiyingshan and Laohutai Plutons [J]. Acta Geologica Sinica-English Edition,2008,82 (2):415-424.
    Long L.L., Gao J., Klemd R., Beier C., Qian Q., Zhang X., Wang J.B., Jiang T. Geochemical and geochronological studies of granitoid rocks from the Western Tianshan Orogen:Implications for continental growth in the southwestern Central Asian Orogenic Belt [J]. Lithos,2011,126 (3-4): 321-340.
    Ludwig K.R. User's manual for Isoplot 3.0:A Geochronological Toolkit for Microsoft Excel [J]. Berkeley Geochronology Center, Special Publication,2003, No.4
    Macdonald R., Hawkesworth C., Heath E. The Lesser Antilles volcanic chain:a study in arc magmatism [J]. Earth-Science Reviews,2000,49 (1-4):1-76.
    Mark G., Oliver N., Williams P. Mineralogical and chemical evolution of the Ernest Henry Fe oxide-Cu-Au ore system, Cloncurry district, northwest Queensland, Australia [J]. Mineralium Deposita,2006,40:769-801.
    Meinert L.D., Dipple G.M., Nicolescu S. World skarn deposits [C]. Economic Geology 100th Anniversary Volume,2005:299-336.
    Morimoto N, Fabries J, Ferguson A K, Ginzburg IV, Ross M, Seifert F A, Zussman J, Aoki K and Gottardi G.1988. Nomenclature of pyroxenes. American Mineralogist 73,1123-1133.
    Morrison G.W. Characteristics and tectonic setting of the shoshonite rock association [J]. Lithos,1980,13-: 97-108.
    Naslund H.R., Henriquez F., Nystrom J.O., Vivallo W., Dobbs F.M. Magmatic iron ores and associated mineralization:Examples from the Chilean High Andes and Coastal Cordillera [J]. Hydrothermal Iron Oxide-Copper-Gold and Related deposits:A global Perspective:Adelaide:South Australia, PGC Publishing, Porter Geoconsultancy Pty. Ltd,2002,2:207-228.
    Nadoll P., Koenig A.E. LA-ICP-MS of magnetite:methods and reference materials [J]. Journal of Analytical Atomic Spectrometry,2011,26:1872-1877.
    Nadoll P., Mauk J.L., Hayes T.S., Koenig A.E., Box S.E. Geochemistry of Magnetite from Hydrothermal Ore Deposits and Host Rocks of the Mesoproterozoic Belt Supergroup, United States [J]. Economic Geology,2012,107:1275-1292.
    Nadoll P., Angerer T., Mauk J.L., French D., Walshe J. The chemistry of hydrothermal magnetite:A review [J]. Ore Geology Reviews,2014,61:1-32.
    Nakano T, Yoshino T, Shimazaki H and Shimizu M. Pyroxene composition as an indicator in the classification of skarn deposits[J]. Economic Geology,1994,89 (7):1567-1580.
    Nasdala L., Hofmeister W., Norberg N., Martinson J.M., Corfu F., Dorr W., et al. Zircon M257-a Homogeneous Natural Reference Material for the Ion Microprobe U-Pb Analysis of Zircon [J]. Geostandards and Geoanalytical Research,2008,32:247-265.
    Nystrom J.O. Apatite iron ores of the Kiruna Field, northern Sweden:Magmatic textures and carbonatitic affinity [J]. Geologiska Foreningen i Stockholm Forhandlingar.1985,107:133-41.
    Nystrom J.O., Henriquez F. Dendritic magnetite and miniature diapir-like concentrations of apatite:Two magmatic features of the Kiirunavaara iron ore [J]. Geologiska Foereningan i Stockholm Foerhandlingar,1989,111:53-64.
    Nystrom J.O., Henriquez F. Magmatic features of iron ores of the Kiruna type in Chile and Sweden; ore textures and magnetite geochemistry [J]. Economic Geology,1994,89 (4):820-839.
    Nystrom J.O., Billstrom K., Henriquez F., Fallick A.E., Naslund H.R. Oxygen isotope composition of magnetite in iron ores of the Kiruna type in Chile and Sweden [J]. GFF,2008,130 (4):177-188.
    Ohmoto H., Rye R.O. Isotope of sulfur and carbon [A]. In:Barnes H. L. Geochemistry of Hydorothermal Ore Deposits [M]. New York:J.Wiley and Sons,1979:509-567.
    Oliver N., Cleverley J., Mark G., Pollard P., Fu B., Marshall L., Rubenach M., Williams P., Baker T. Modeling the role of sodic alteration in the genesis of iron oxide-copper-gold deposits, Eastern Mount Isa Block, Australia [J]. Economic Geology,2004,99 (6):1145-1176.
    Oyarzun R, Rodriguez M, Pincheira M, Doblas M and Helle S.1999. The Candelaria (Cu-Fe-Au) and Punta del Cobre (Cu-Fe) deposits (Copiapo, Chile):a case for extension-related granitoid emplacement and mineralization processes? [J]. Mineralium Deposita,34 (8):799-801.
    Oyarzun R, Oyarzun J, Menard J J and Lillo J.2002. The Cretaceous iron belt of northern Chile:role of oceanic plates, a superplume event, and a major shear zone [J]. Mineralium Deposita,38 (5):640-646.
    Parak T. Kiruna iron ores are not "intrusivemagmatic ores of the Kiruna type". Economic Geology,1975, 70:1242-1258
    Pearce J.A., Cann J.R. Tectonic setting of basic volcanic rocks determined using trace element analyses [J]. Earth and Planetary Science Letters,1973,19:290-300.
    Pearce, J.A.,1982. Trace element characteristics of lavas from destructive plate boundaries. Orogenic andesites and related rocks,528-548.
    Pearce JA. Role of the sub-continental lithosphere in magma genesis at active continental margins. In: Hawkesworth CJ and Norry MJ (eds.). Continental Basalts and Mantle Xenoliths. Shiva, Cheshire, U.K.1983:230-249
    Pearce J.A., Harris N.B.W., Tindle A.G. Trace-element discrimination diagrams for the tectonic interpretation of granitic-rocks [J]. Journal of Petrology,1984,25 (4):956-983.
    Pearce J., Peate D. Tectonic implications of the composition of volcanic arc magmas [J]. Annual Review of Earth and Planetary Sciences,1995,23 (1):251-285.
    Pearce, J.A.,1996. A user's guide to basalt discrimination diagrams:Geological Association of Canada Short Course Notes 12,79-113.
    Philpotts A.R. Compositions of immiscible liquids in volcanic rocks [J]. Contributions to Mineralogy and Petrology,1982,80 (3):201-218.
    Philpotts A R. Origin of certain iron-titanium oxide and apatite rocks [J]. Economic Geology,1967,62 (3): 303-315.
    Pollard P.J. Evidence of a magmatic fluid and metal source for Fe-oxide Cu-Au mineralization [J]. Hydrothermal iron oxide copper-gold & related deposits:a global perspective:Glenside, South Australia, Australia, Australian Mineral Foundation,2000,1:27-41.
    Pollard P.J. Sodic(-calcic) alteration in Fe-oxide-Cu-Au districts:an origin via unmixing of magmatic H2O-CO2-NaCl±aCl-KCl fluids [J]. Mineralium Deposita,2001,36:93-100.
    Qian Q., Gao J., Klemd R., He G.Q., Song B., Liu D.Y., Xu R.H. Early Paleozoic tectonic evolution of the Chinese South Tianshan Orogen:constraints from SHRIMP zircon U-Pb geochronology and geochemistry of basaltic and dioritic rocks from Xiate, NW China [J]. International Journal of Earth Sciences,2009,98 (3):551-569.
    Righter, K., Leeman, W.P., and Hervig, R.L. Partitioning of Ni, Co and V between spinel-structured oxides and silicate melts:Importance of spinel composition:Chemical Geology,2006,227:1-25.
    Roedder E. Fluid inclusions:an introduction to studies of all types of fluid inclusions, gas, liquid, or melt, trapped in materials from earth and space, and their application to the understanding of geologic processes. Blacksburg:Mineralogical Society of America; 1984,12:1-664.
    Romer R.L., Martinsson O., Perdahl J.A. Geochronology of the Kiruna iron ores and hydrothermal alterations [J]. Economic Geology,1994,89:1249-61.
    Rubatto D. Zircon trace element geochemistry:partitioning with garnet and thelink between U-Pb ages and metamorphism [J]. Chemical Geology,2002,184 (1-2):123-138.
    Rudnick R., Gao S. Composition of the continental crust [J]. Treatise on geochemistry,2003,3:1-64.
    Rottura A., Bargossi G.M., Caggianelli A., Del Moro A., Visona D., Tranne C.A. Origin and significance of the Permian high-K calc-alkaline magmatism in the central-eastern Southern Alps, Italy [J]. Lithos, 1998,45:329-48.
    Seghedi I., Downes H., Pecskay Z., Thirlwall M., Szakacs A., Prychodko M., Mattey D. Magmagenesis in a subduction-related post-collisional volcanic arc segment:the Ukrainian Carpathians [J]. Lithos,2001, 57 (4):237-262.
    Sengor A. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia [J]. Nature, 1993,364:299-307.
    Shannon R. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides [J]. Acta Crystallographica Section A,1976,32:751-67.
    Smith M.P., Storey C.D., Jeffries T.E., Ryan C. In Situ U-Pb and Trace Element Analysis of Accessory Minerals in the Kiruna District, Norrbotten, Sweden:New Constraints on the Timing and Origin of Mineralization [J]. Journal of Petrology,2009.
    Shu L., Yu J., Charvet J., Laurent-Charvet S., Sang H., Zhang R. Geological, geochronological and geochemical features of granulites in the Eastern Tianshan, NW China [J]. Journal of Asian Earth Sciences,2004,24 (1):25-41.
    Sillitoe R. Iron oxide-copper-gold deposits:an Andean view [J]. Mineralium Deposita,2003,38 (7): 787-812.
    Sillitoe R.H., Burrows D.R. New field evidence bearing on the origin of the El Laco magnetite deposit, northern Chile [J]. Economic Geology,2002,97 (5):1101-1109.
    Skirrow, R.G., Bastrakov, E.N., Barovich, K., Fraser, G.L., Creaser, R.A., Fanning, C.M., Raymond, O.L.,Davidson, G.J. Timing of Iron Oxide Cu-Au-(U) Hydrothermal Activity and Nd Isotope Constraints on Metal Sources in the Gawler Craton, South Australia. Economic Geology,2007,102, 1441-1470.
    Slama J., Kosler J., Condon D.J., Crowley J.L., Gerdes A., Hanchar J.M., et al. Plesovice zircon- A new natural reference material for U-Pb and Hf isotopic microanalysis [J]. Chemical Geology,2008,249:
    Stacey J S, Kramers J D. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett,1975,26:207-221
    Sun J F, Yang J H, Wu F Y, et al. Magma mixing controlling the origin of the Early Cretaceous Fangshan granitic pluton, North China Craton:In situ U-Pb age and Sr-, Nd-, Hf-and O-isotope evidence. Lithos,2010,120:421-438
    Sun S.S., McDonough W.F. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes [A]. In:Saunders A., Norry M. Magmatism in the Ocean Basin [M]. London:Geological Society of London Special Publications,1989:313-345.
    Su W., Gao J., Klemd R., Li J.L., Zhang X., Li X.H., Chen N.S., Zhang L. U-Pb zircon geochronology of Tianshan eclogites in NW China:implication for the collision between the Yili and Tarim blocks of the southwestern Altaids [J]. European Journal of Mineralogy,2010,22 (4):473-478.
    Taylor H.P.J. Oxygen isotope studies of hydrothermal mineral deposits [A]. In:Barnes H. L. Geochemistry of Hydrothermal Ore Deposits [M]. New York,1967:109-142.
    Taylor, B.E. Magmatic volatiles:Isotopic variation of C, H, and S:Reviews in Mineralogy,1986.16, p. 185-226.
    Taylor S R, McLennan S.The geochemical evolution of the continental crust.Reviews of Geophysics,1995, 33:241-265.
    Tera F, Wasserburg G J. U-Th-Pb systematics in three Apollo 14 basalts and the problem of initial Pb in lunar rocks. Earth Planet Sci Lett,1972,14:281-304
    Valley, P.M., Hanchar, J.M.,Whitehouse, M.J. Direct dating of Fe oxide-(Cu-Au) mineralization by U/Pb zircon geochronology. Geology,2009,37,223-226.
    Wang B., Shu L.S., Cluzel D., Faure M., Charvet J. Geochemical constraints on Carboniferous volcanic rocks of the Yili Block (Xinjiang, NW China):implication for the tectonic evolution of Western Tianshan [J]. Journal of Asian Earth Sciences,2007,29 (1):148-159.
    Wang B., Faure M., Shu L.S., Cluzel D., Charvet J., De Jong K., Chen Y. Paleozoic tectonic evolution of the Yili Block, western Chinese Tianshan [J]. Bulletin de la Societe Geologique de France,2008,179 (5):483-490.
    Williams, P.J., Barton, M.D., Johnson, D.A., Fontbote, L., De Haller, A., Mark, G., Oliver, N.H.S., Marschik, R. Iron oxide copper-gold deposits:Geology, space-time distribution, and possible modes of origin. Economic Geology,2005,100th Anniversary Volume,371-405.
    Winchester, J.A., Floyd, P.A.. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology 20,1977,325-343.
    Windley B.F., Allen M.B., Zhang C., Zhao Z., Wang Q. Paleozoic accretion and Cenozoic redeformation of the Chinese Tien Shan range, central Asia [J]. Geology,1990,18:128-131.
    Wood D. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province [J]. Earth and Planetary Science Letters,1980,50:11-30.
    Xia L.Q., Xu X.Y., Xia Z.C., Li X.M., Ma Z.P., Wang L.S. Petrogenesis of Carboniferous rift-related volcanic rocks in the Tianshan, northwestern China [J]. Geological Society of America Bulletin,2004, 116 (3-4):419-433.
    Xia L.Q., Xu X.Y., Li X.M., Ma Z.P., Xia Z.C. Reassessment of petrogenesis of Carboniferous-Early Permian rift-related volcanic rocks in the Chinese Tianshan and its neighboring areas [J]. Geoscience Frontiers,2012,3 (4):445-471.
    Xiao W J, Windley B F, Huang B C. End-Permian to mid-Triassic termination of the accretionary processes of the southern Altaids:implications for the geodynamic evolution, Phanerozoic continental growth, and metallogeny of Central Asia[J]. International Journal of Earth Sciences,2009, 98:1189-1217.
    Xiao W.J., Zhang L.C., Qin K.Z., Sun S., Li J.L. Paleozoic accretionary and collisional tectonics of the Eastern Tianshan(China):Implications for the continental growth of central Asia [J]. American Journal of Science,2004,304 (4):370-395.
    Yang, F.Q., Mao, J.W., Bierlein, F.P., Pirajno, F., Zhao, C.S., Ye, H.S., Liu, F. A review of the geological characteristics and geodynamic mechanisms of Late Paleozoic epithermal gold deposits in North Xinjiang, China. Ore Geology Reviews,2009,35,217-234.
    Yu J, Chen Y, Mao J, Pirajno F and Duan C.2011. Review of geology, alteration and origin of iron oxide-apatite deposits in the Cretaceous Ningwu basin, Lower Yangtze River Valley, eastern China: Implications for ore genesis and geodynamic setting [J]. Ore Geology Reviews,43 (1):170-181.
    Yuan H.-L., Gao S., Dai M.-N., Zong C.-L., Gunther D., Fontaine G.H., et al. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS [J]. Chemical Geology,2008,247:100-18.
    Zhai Y.S., Xiong Y.L., Yao S., Lin X. Metallogeny of copper and iron deposits in the Eastern Yangtse Craton, east-central China[J]. Ore Geology Reviews,1996,11 (4):229-248.
    Zhang L F, Ai Y L, Li X P, et al. Triassic collision of western Tianshan orogenic belt, China:evidence from SHRIMP U-Pb dat ing of zircon from HP/UHP eclogitic rocks[J]. Lithos,2007,96:266-280.
    Zhang X., Tian J.Q., Gao J., Klemd R., Dong L.H., Fan J.J., Jiang T., Hu C.J., Qian Q. Geochronology and geochemistry of granitoid rocks from the Zhibo syngenetic volcanogenic iron ore deposit in the Western Tianshan Mountains (NW-China):Constraints on the age of mineralization and tectonic setting [J]. Gondwana Research,2012a,22 (2):585-596.
    Zhang Z.H., Hong W., Jiang Z.S., Duan S.G., Xu L.G., Li F.M., Guo X.C., Zhao Z.G. Geological Characteristics and Zircon U-Pb Dating of Volcanic Rocks fromthe Beizhan Iron Deposit in Western Tianshan Mountains, Xinjiang, NW China [J]. Acta Geologica sinica,2012b,86 (3):131-141.
    Zhang Z.C., Hou T., Santosh M., Li H.M., Li J.W., Zhang Z.H., et al. Spatio-temporal distribution and tectonic settings of the major iron deposits in China:An overview [J]. Ore Geology Reviews,2014a, 57:247-263.
    Zhang Z.H., Hong W., Jiang Z.S., Duan S.G., Li F.M., Shi F.P. Geological characteristics and metallogenesis of iron deposits in western Tianshan, China[J].Ore Geology Reviews.2014b, 57:425-40.
    Zhao Z.H., Xiong X.L., Wang Q., Wyman D.A., Bao Z.W., Bai Z.H, Qiao Y.L. Underplating-related adakites in Xinjiang Tianshan, China [J]. Lithos,2008,102 (1-2):374-391.
    Zheng YF. Calculation of oxygen isotope fractionation in anhydrous silicate minerals:Geochimica et Cosmochimica Acta,1993a,57:1079-1091
    Zheng YF. Calculation of oxygen isotope fractionation in hydroxyl-bearing silicate:Earth and Planetary Science Letters,1993b,120:247-26
    Zhu Y.F., Guo X., Song B., Zhang L.F., Gu L. Petrology, Sr-Nd-Hf isotopic geochemistry and zircon chronology of the Late Palaeozoic volcanic rocks in the southwestern Tianshan Mountains, Xinjiang, NW China [J]. Journal of the Geological Society,2009,166 (6):1085-1099.
    Zhu Z.M., Sun Y.L. Direct Re-Os dating of Chalcopyrite from the Lala IOCG deposit in the Kangdian Copper Belt, China. Economic Geology.2013,108:871-82.
    Zindler A., Hart S. Chemical geodynamics [J]. Annual Review of Earth and Planetary Sciences,1986,14: 493-571.
    阿丽娜,弓小平,徐谢军.新疆和静县备战铁矿矿体特征及围岩蚀变[J].西部探矿工程,2012,24(3):171-172.
    安芳,朱永峰.西北天山吐拉苏盆地火山岩SHRIMP年代学和微量元素地球化学研究[J].岩石学报,2008,24:2741-2748.
    车自成,刘洪福,刘良.中天山造山带的形成与演化[M].北京:地质出版社,1994:135.
    车自成,刘良,刘洪福.论伊犁古裂谷[J].岩石学报,1996,12(3):478-490.
    陈丹玲,刘良.中天山骆驼沟火山岩的地球化学特征及其构造环境[J].岩石学报,2001,17(3):378-384.
    陈光远,孙岱生,殷辉安.成因矿物学与找矿矿物学.重庆:重庆出版社,1987.1-874
    陈新跃,王岳军,孙林华,范蔚茗.天山冰达坂和拉尔敦达坂花岗片麻岩SHRIMP锆石年代学特征及其地质意义[J].地球化学,2009,38(5):424-431.
    陈义兵,胡霭琴.西天山前寒武纪天窗花岗片麻岩的锆石U-Pb年龄及Nd-Sr同位素特征[J].地球化学,1999,28(6):515-520.
    陈毓川,刘德权,唐延龄,王登红,董连慧,徐新,王晓地.中国天山矿产及成矿体系[M].北京:地质出版社,2008:1062.
    陈衍景,肖文交,张进江.成矿系统:地球动力学的有效探针.中国地质.2008:1059-73.
    程裕淇,赵一鸣,陆松年.1978.中国几组主要铁矿类型[J].地质学报,52(4):253-268.
    程裕淇,赵一鸣,林文蔚.1994.中国铁矿床[A].见:宋叔和主编.中国矿床(中册)[M].北京:地质出版社.386-478.
    董连慧等.新疆铁矿资源潜力评价成果报告[R].乌鲁木齐:新疆维吾尔自治区地质矿产勘查开发局,2010:774.
    董连慧,冯京,庄道泽,李凤鸣,屈迅,刘德权,唐延龄.新疆富铁矿成矿特征及主攻类型成矿模式探讨[J].新疆地质,2011,29(4):416-422.
    董云鹏,张国伟,周鼎武,罗金海,张成立,夏林圻,徐学义,李向民.中天山北缘冰达坂蛇绿混杂岩的厘定及其构造意义[J].中国科学D辑,2005,35(6):552-560.
    董云鹏,周鼎武,张国伟,赵霞,罗金海,徐静刚.中天山北缘干沟蛇绿混杂岩带的地质地球化学[J].岩石学报,2006,22(1):49-56.
    段超.宁芜矿集区凹山玢岩型铁矿床成矿作用研究[D].中国地质大学(北京),2012.
    方维萱,柳玉龙,张守林,郭茂华.全球铁氧化物铜金型(IOCG)矿床的3类大陆动力学背景与成矿模式[J].西北大学学报:自然科学版,2009,(3):404-413.
    冯金星,石福品,王邦耀等.西天山阿吾拉勒成矿带火山岩型铁矿[M].北京:地质出版社,2010:132.
    高俊,吴汉泉.南天山库米什蓝片岩的发现及其大地构造意义[J].中国区域地质,1993,(4):344-347.
    高俊,钱青,龙灵利,张喜,李继磊,苏文.西天山的增生造山过程[J].地质通报,2009,28(12):1804-1816.
    郭新成,张建收,余元军,马中华,张建奎,宋海涛.新疆和静县备战铁矿地质特征及找矿标志[J].新疆地质,2009,27(4):341-345.
    韩宝福,何国琦,吴泰然,李惠民.天山早古生代花岗岩锆石U-Pb定年、岩石地球化学特征及其大地构造意义[J].新疆地质,2004,22(1):4-11.
    韩琼,弓小平,毛磊,宋相龙,刘学良,潘展超,苏虎.西天山备战铁矿成岩年代厘定及矿床成因研究[J].新疆地质,2013,136-140
    何国琦,李茂松,刘德权.中国新疆古生代地壳演化及成矿[M].乌鲁木齐:新疆人民出版社,1994:437.
    洪为.新疆西天山查岗诺尔铁矿地质特征与矿床成因[D].北京:中国地质科学院,2012:124.
    洪为,张作衡,蒋宗胜,李凤鸣,刘兴忠.新疆西天山查岗诺尔铁矿床磁铁矿和石榴子石微量元素特征及其对矿床成因的制约[J].岩石学报,2012a,28(7):2089-2102.
    洪为,张作衡,李华芹,李凤鸣,刘兴忠.新疆西天山查岗诺尔铁矿床成矿时代—来自石榴子石Sm-Nd等时线年龄的信息[J].矿床地质,2012b,31(5):1067-1074.
    侯可军,李延河,田有荣.LA-MC-ICP-MS锆石微区原位U-Pb定年技术[J].矿床地质,2009:481-492.
    胡霭琴,韦刚健,江博明,张积斌,邓文峰,陈林丽.天山0.9 Ga新元古代花岗岩SHRIMP锆石U-Pb年龄及其构造意义[J].地球化学,2010,39(3):197-212.
    黄汲清,任纪舜,姜春发,等.中国大地构造及其演化[M].北京:科学出版社,1980:1-124.
    黄汲清.中国大地构造特征的新研究[J].地球学报,1984,9(2):5-18.
    姜常义,吴文奎,张学仁,崔尚森.西天山阿吾拉勒地区岩浆活动与构造演化.西安工程学院学报.1996,18(2):2074-2088.
    蒋宗胜,张作衡,侯可军,洪为,王志华,李凤鸣,田敬全.西天山查岗诺尔和智博铁矿区火山岩地球化学特征,锆石U-Pb年龄及地质意义[J].岩石学报,2012,28(7):2074-2088.
    李凤鸣,彭湘萍,石福品,周昌平,陈建中.西天山石炭纪火山—沉积盆地铁锰矿成矿规律浅析[J].新疆地质,2011,29(1):55-60.
    李永军,李注苍,周继兵,高占华,高永利,佟黎明,刘静.2009.西天山阿吾拉勒一带石炭系岩石地层单位厘定.岩石学报,25(6):1332-1340
    林师整.磁铁矿矿物化学、成因及演化的探讨.矿物学报,1982,(3):166-174
    孙林华,彭头平,王岳军.2007.新疆特克斯东南大哈拉军山组玄武安山岩地球化学特征:岩石成因和构造背景探讨.大地构造与成矿学,31(3):372-379
    孙金凤,杨进辉,吴福元,谢烈文,杨岳衡,刘志超,李献华.榍石原位微区LA-ICPMS U-Pb年龄测定.科学通报.2012,57(18):1591-615.
    单强,张兵,罗勇,周昌平,于学元,曾乔松,杨武斌,牛贺才.新疆尼勒克县松湖铁矿床黄铁矿的特征和微量元素地球化学[J].岩石学报,2009,25(6):1456--1464.
    李大鹏.新疆西天山阿吾拉勒铁成矿带叠加成矿作用[D].中国地质大学(北京),2012:1-146.
    李厚民,王瑞江,肖克炎,刘亚玲,李立兴.立足国内保障国家铁矿资源需求的可行性分析[J].地质通报,2010,1:1-7.
    李厚民,陈毓川,李立兴,王登红等.中国铁矿成矿规律.北京:地质出版社;2012:1-246.
    李继磊,苏文,张喜,刘新.西天山阿吾拉勒西段麻粒岩相片麻岩锆石Cameca U-Pb年龄及其地质意义[J].地质通报,2009,28(12):1852-1862.
    李继磊,钱青,高俊,苏文,张喜,刘新,江拓.西天山昭苏东南部阿登套地区大哈拉军山组火山岩及花岗岩侵入体的地球化学特征,时代和构造环境[J].岩石学报,2010,26(10):2913-2924.
    李锦轶,何国琦,徐新,李华芹,孙桂华,杨天南,高立明,朱志新.新疆北部及邻区地壳构造格架及其形成过程的初步探讨.地质学报.2006:148-68.
    李九玲,张桂兰,苏良赫.与矿浆成矿有关的FeO-Ca5(PO4)3F-NaAlSiO4-CaMgSi2O6四元体系模拟实验研究[J].中国地质科学院矿床地质研究所文集(18),1986:198-204.
    李文渊,牛耀龄,张照伟,张铭杰,高永宝,胡沛青,张江伟,谭文娟,姜寒冰.新疆北部晚古生代大规模岩浆成矿的地球动力学背景和战略找矿远景[J].地学前缘,2012,4:41-50.
    李向东.新疆北天山晚古生代洋盆演化与推覆构造[J].新疆地质,1993,11(3):207-214.
    刘斌.中高盐度NaCl-H2O包裹体的密度式和等容式及其应用.地质论评,2001,(06):617-622
    刘楚雄,许保良,邹天人,路凤香,童英,蔡剑辉.塔里木北缘及邻区海西期碱性岩岩石化学特征及其大地构造意义[J].新疆地质,2004,22(1):43-49.
    龙灵利,高俊,熊贤明,钱青.南天山库勒湖蛇绿岩地球化学特征及其年龄[J].岩石学报,2006,22(1):65-73.
    龙灵利,高俊,钱青,熊贤明,王京彬,王玉往,高立明.西天山伊犁地区石炭纪火山岩地球化学特征及构造环境[J].岩石学报,2008,24(4):699-710.
    卢焕章,范宏瑞,倪培,欧光习,沈昆,张文淮:流体包裹体[M].北京:科学出版社,2004:487.
    卢宗柳,莫江平.新疆阿吾拉勒富铁矿地质特征和矿床成因[J].地质与勘探,2006,42(5):8-11.
    陆松年.新元古时期Rodinia超大陆研究进展述评.地质论评,1998,44(5):489-495.
    罗勇,牛贺才,单强,张兵,周昌平,杨武斌,于学元.西天山玉希莫勒盖达坂玄武安山岩-高钾玄武安山岩-粗安岩组合的发现及其地质意义[J].岩石学报,2009,25:934-943.
    马倚等.查岗诺尔铁矿区详查中间地质报告[R].库尔勒:新疆地质局第三地质大队,1981:314.
    毛景文,余金杰,袁顺达,程彦博,谢桂青,侯可军,向君峰,杨宗喜.铁氧化物—铜—金(IOCG)型矿床:基本特征,研究现状与找矿勘查[J].矿床地质,2008,27(3):267-278.
    毛景文,段超,刘佳林,张成.陆相火山—侵入岩有关的铁多金属矿成矿作用及矿床模型—以长江中下游为例[J].岩石学报,2012,28(1):1-14.
    莫江平,黄明杨.新疆预须开普台铁铜矿矿床成因探讨[J].地质与勘探,1997,33(4):7-12.
    聂凤军,江思宏,路彦明.氧化铁型铜—金(IOCG)矿床的地质特征,成因机理与找矿模型[J].中国地质,2008,35(6):1074-1087.
    宁芜研究项目编写小组.宁芜玢岩铁矿[M].北京:地质出版社,1978:196.
    牛贺才,单强,杨武斌,罗勇,李宁波,于学元.新疆西天山查岗诺尔地区富铁玄武岩—流纹岩组合的发现[J].中国矿物岩石地球化学学会第13届学术年会论文集,2011
    钱锦和,沈远仁等.云南大红山古火山岩铁铜矿[M].北京:地质出版社,1-236.
    钱青,高俊,熊贤明,龙灵利,黄德志.西天山昭苏北部石炭纪火山岩的岩石地球化学特征,成因及形成环境[J].岩石学报,2006,22(5):1307-1323.
    秦克章.新疆北部中亚型造山与成矿作用[D]:中国科学院研究生院(地质与地球物理研究所),2000.
    任纪舜,姜春发,张正坤等.中国大地构造及其演化.北京:科学出版社.1980:40--45.
    舒良树,朱文斌,王博,Faure M., Charvet J., Cluzel D.新疆博格达南缘后碰撞期陆内裂谷和水下滑塌构造[J].岩石学报,2005,21(1):25-36.
    沈立军.新疆智博铁矿特征和成因[D].中国地质大学(北京),2013:1-65
    宋学信,陈毓川,盛继福,艾永德.论火山—浅成矿浆铁矿床[J].地质学报,1981,55(1):41-54.
    苏良赫.液相不共溶在岩石学及矿床学中的重要性[J].地球科学—中国地质大学学报,1984,1:1-13.
    孙吉明,马中平,徐学义,李晓英,翁凯,张涛.新疆西天山备战铁矿流纹岩的形成时代及其地质意义[J].地质通报,2012,31(12):1973-1982.
    孙启祯.论我国铁矿边缘成矿[J].地质与勘探,1993,29(08):13-18.
    田敬全,胡敬涛,易习正,李明,董全宏,刘兴忠.西天山查岗诺尔名战一带铁矿成矿条件及找矿分析[J].西部探矿工程,2009,(08):88-92.
    田敬全等.新疆和静县智博铁矿普—详查地质报告[R].库尔勒:新疆地质矿产勘查开发局第三地质大队,2010:171.
    田培仕.新疆预须开普台铁铜矿矿床特征及成因探讨[J].矿产与勘查,1990,(5):17-26.
    汪邦耀,胡秀军,王江涛,邵青红,凌锦兰,郭娜欣,赵彦锋,夏昭德,姜常义.西天山查岗诺尔铁矿矿床地质特征及矿床成因研究[J].矿床地质,2011,30(3):385-402.
    王博.西天山伊犁地块古生代地球动力学演化[D].南京:南京大学,2006:153.
    王超,刘良,车自成,等.西南天山阔克萨彦岭巴雷公镁铁质岩石的地球化学特征、LA-ICP-MS U-Pb年龄及其大地构造意义[J].地质论评,2007,53(6):743-754.
    王春龙.新疆西天山松湖铁矿床地质地球化学特征与成因研究[D].中国地质科学院,2012,1-98.
    王军年,白新兰,李岩龙,陈春明.新疆尼勒克县松湖铁矿地质特征[J].资源环境与工程,2009,23(2):104-107.
    王庆明,林卓斌.西天山查岗诺尔地区矿床成矿系列和找矿方向[J].新疆地质,2001,19(4):263-267.
    王润三,王居里.南天山榆树沟遭受麻业岩相变质改造的蛇绿岩套研究[J].地质科学,1999,34(2):166-176.
    王志华,张作衡,蒋宗胜,洪为,田敬全.西天山智博铁矿床磁铁矿成分特征及其矿床成因意义[J].矿床地质,2012,(05):983-998.
    王志华.新疆西天山智博铁矿床地质特征及成因研究[D].中国地质大学(北京),2013.
    王作勋,邬继易,吕喜朝,张经国,刘德成.天山多旋回构造演化与成矿[M].北京:科学出版社,1990:217.
    夏林圻,夏祖春,徐学义,李向民,马中平,王立社.天山石炭纪大火成岩省与地幔柱[J].地质通报,2004,23(9-10):903-910.
    肖序常,汤耀庆,冯益民,朱宝清,李锦轶,赵明.新疆北部及其邻区大地构造[M].北京:地质出版社,1992:169.
    谢承祥,李厚民,王瑞江,肖克炎.中国查明铁矿资源储量的数量,分布及保障程度分析[J].地球学报,2009,30(3):387-394.
    谢桂青,毛景文,李瑞玲,蒋国豪,赵财胜,赵海杰,侯可军,潘怀军.鄂东南地区大型矽卡岩型铁矿床金云母40Ar_39Ar同位素年龄及其构造背景初探[J].岩石学报,2008,24(08):1917-1927.
    谢烈文,张艳斌,张辉煌,等.锆石/斜锆石U-Pb和Lu-Hf同位素以及微量元素成分的同时原位测定.科学通报,2008,53:220-228
    新疆地矿局第十一地质大队.新疆和静县备战铁矿详查报告[R].2006.
    新疆地矿局第三地质大队.新疆和静县敦德铁锌矿普查设计[R].2011.
    新疆地矿局第三地质大队.新疆和静敦德铁锌矿区新发现矿产地申请报告[R].2010.
    新疆维吾尔自治区地质矿产开发局.新疆维吾尔自治区区域地质志[M].北京:地质出版社,1993:841.
    徐国风,邵沽涟.磁铁矿的标型特征及其实际意义.地质与勘探,1979, (3):30-37
    徐学义,李向民,马中平,夏林圻,夏祖春,彭素霞.北天山巴音沟蛇绿岩形成于早石炭世:来自辉长岩LA-ICPMS锆石U-Pb年龄的证据[J].地质学报,2006a,80(8):1168-1176.
    徐学义,马中平,夏祖春,夏林圻,李向民,王立社.天山中西段古生代花岗岩TIMS法锆石U-Pb同位素定年及岩石地球化学特征研究[J].西北地质,2006b,39(1):50-75.
    徐学义,夏林圻,马中平,王彦斌,夏祖春,李向民,王立社.北天山巴音沟蛇绿岩斜长花岗岩SHRIMP锆石U-Pb年龄及蛇绿岩成因研究[J].岩石学报,2006c,22(1):83-94.
    徐祖芳.新疆查铁矿主矿体赋矿岩石的成因探讨[J].新疆地质,1984,2(2):30-47.
    杨天南,李锦轶,孙桂华,王彦斌.中天山早泥盆世陆弧:来自花岗质糜棱岩地球化学及SHRIMP-U/Pb定年的证据[J].岩石学报,2006,22(]):41-48.
    杨富全,刘锋,柴凤梅,张志欣,耿新霞,吕书君,姜丽萍,欧阳刘进.新疆阿尔泰铁矿:地质特征、时空分布及成矿作用[J].矿床地质,2011:575-598.
    应立娟,王登红,李建康,陈郑辉,席忠,杨文华,刘乃忠.新疆乔夏哈拉铁铜金矿床与国内外IOCG矿床的对比研究[J].大地构造与成矿学,2008,32(3):338-345.
    余金杰,毛景文Kiruna型铁矿床基本地质特征和成矿环境.矿床地质.2002a,21(增刊):83-6.
    余金杰,毛景文.宁芜玢岩铁矿磷灰石的稀土元素特征[J].矿床地质,2002b,21(1):65-73.
    袁家铮,张峰.梅山铁矿矿浆成因的系统探讨[J].现代地质,1997,11(2):170-176.
    袁家铮.梅山铁矿矿石类型及成因——高温实验结果探讨[J].现代地质.1990,4(4):77-84.
    袁涛.新疆西天山莫托沙拉铁(锰)矿床与式可布台铁矿床地质特征对比[J].地质找矿论丛,2003,18(增刊):88-92.
    翟伟,孙晓明,高俊,贺小平,梁金龙,苗来成,吴有良.新疆阿希金矿床赋矿围岩—大哈拉军山组火山岩SHRIMP锆石年龄及其地质意义[J].岩石学报,2006,22(5):1399-1404.
    翟裕生,石准立,林新多,熊鹏飞,王定域,姚书振,金振民.鄂东大冶式铁矿成因的若干问题[J].地球科学—中国地质大学学报,1982,3:239-251.
    翟裕生,姚书振,林新多.长江中下游地区铁铜矿床的类型、形成条件和成矿演化.地球科学.1983:95-106.
    张喜.西天山智博和查岗诺尔铁矿成矿背景与成矿作用研究[D].中国科学院大学,2013:1-226.
    张作衡,王志良,左国朝,刘敏,王龙生,王见蓶.西天山达巴特矿区火山岩的形成时代、构造背景及对斑岩型矿化的制约[J].地质学报,2008,82(11):1494-1503.
    张作衡,洪为,蒋宗胜,段士刚,王志华,李凤鸣,石福品,赵军,郑仁乔.新疆西天山晚古生代铁矿床的地质特征、矿化类型及形成环境[J].矿床地质,2012,31(5):941-964.
    赵建安.中国利用周边国家铁矿资源的潜力与对策.资源科学,2009,31(10):1640-1646.
    赵一鸣,林文蔚,毕承思等.1990.中国矽卡岩矿床[M].北京:地质出版社,1-351.
    赵一鸣,张轶男,林文蔚.1997.我国夕卡岩矿床中的辉石和似辉石特征及其与金属矿化的关系[J].矿床地质,16(4):319-329.
    赵一鸣,李大新.中国夕卡岩矿床中的角闪石[J].矿床地质,2003,22(4):345-359.
    赵一鸣.中国铁矿资源现状,保证程度和对策[J].地质论评,2004,50(4):396-396.
    赵一鸣.中国主要富铁矿床类型及地质特征.矿床地质,2013,50(4):686-705.
    赵振华,白正华,熊小林,梅厚钧,王一先.西天山北部晚古生代火山-浅侵位岩浆岩~(40)Ar/-(39)Ar同位素定年[J].地球化学,2003,32:317-327.
    周昌平,任毅,张本科.新疆尼勒克县松湖铁矿详查报告[R].乌苏:新疆地质矿产勘查开发局第七地质大队,2007.
    周鼎武,苏犁,简平,王润三,柳小明,陆关祥,王居里.南天山榆树沟蛇绿岩地体中高压麻粒岩SHRIMP锆石U-Pb年龄及构造意义[J].科学通报,2004,49(14):1411-1415.
    周涛发,范裕,袁峰,张乐骏,马良,钱兵.长江中下游成矿带火山岩盆地的成岩成矿作用.地质学报.2011:712-730.
    朱永峰,张立飞,古丽冰,郭璇,周晶.西天山石炭纪火山岩SHRIMP年代学及其微量元素地球化学研究[J].科学通报,2005,50(18):2004-2014.
    朱永峰,周晶,郭璇.西天山石炭纪火山岩岩石学及Sr-Nd同位素地球化学研究[J].岩石学报,2006a,22(5):1341-1350.
    朱永峰,周晶,宋彪,张立飞,郭璇.新疆“大哈拉军山组”火山岩的形成时代问题及其解体方案[J].中国地质,2006b,33(3):487-497.
    朱志敏.拉拉铁氧化物铜金矿成矿时代和金属来源[D].成都理工大学,2011.
    朱志新,王克卓,徐达,苏延龙,吴玉门.依连哈比尔尕山石炭纪侵入岩锆石SHRIMP U-Pb测年及其地质意义[J].地质通报,2006a,25(8):986-991.
    朱志新,王克卓,郑玉洁,孙桂华,张超,李亚萍.新疆伊犁地块南缘志留纪和泥盆纪花岗质侵入体锆石SHRIMP定年及其形成时构造背景的初步探讨[J].岩石学报,2006b,22(5):1193-1200.
    朱志新,李锦轶,董连慧,王克卓,张晓帆,徐仕琪.新疆西天山古生代侵入岩的地质特征及构造意义.地学前缘.2011:170-179.
    左国朝,张作衡,王志良,刘敏,王龙生.新疆西天山地区构造单元划分、地层系统及其构造演化.地质论评,2008,54(6):748-67.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700